organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Methyl­benzyl­­idene)-2,3-di­hydro-1,5-benzo­thia­zepin-4(5H)-one

aDepartment of Physics, Queen Mary's College(A), Chennai-4, Tamilnadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-25, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 26 November 2010; accepted 16 December 2010; online 8 January 2011)

In the crystal structure of the title compound, C17H15NOS, the mol­ecules form centrosymmetric dimers through pairs of N—H⋯O hydrogen bonds. The seven-membered ring adopts a distorted half-chair conformation.

Related literature

Dibenzo[c,e]thiepine derivatives exhibit chiroptical properties (Tomascovic et al., 2000[Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479-493.]) and dibenzo[b,e]thiepin-5,5-dioxide derivatives possess anti­histaminic and anti­allergenic activities (Rajsner et al., 1971[Rajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.]) while benzene thiepine derivatives have been identified as effective anti­histaminic compounds (Metys et al., 1965[Metys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871-873.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NOS

  • Mr = 281.36

  • Monoclinic, C 2/c

  • a = 19.1192 (5) Å

  • b = 13.0049 (3) Å

  • c = 14.8903 (4) Å

  • β = 128.591 (1)°

  • V = 2893.84 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 13879 measured reflections

  • 3560 independent reflections

  • 2707 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.202

  • S = 0.83

  • 3560 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0⋯Oi 0.86 2.01 2.8705 (18) 177
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiepine derivatives exhibit chiroptical properties (Tomascovic et al., 2000). Dibenzo[b,e]thiepin-5,5-dioxide derivatives possess antihistaminic and antiallergenic activities (Rajsner et al., 1971). Benzene thiepine derivatives are identified as a new type of effective antihistaminic compounds (Metys et al., 1965). Considering the wide range of biological activities of the thiepine derivatives, we determined the crystal structure of the title compound. The seven membered thiepin ring adopts a distorted half-chair conformation. The molecules form centrosymmetric dimers through N—H···O hydrogen bonds.

Related literature top

Dibenzo[c,e]thiepine derivatives exhibit chiroptical properties (Tomascovic et al., 2000) and dibenzo[b,e]thiepin-5,5-dioxide derivatives possess antihistaminic and antiallergenic activities (Rajsner et al., 1971) while benzene thiepine derivatives have been identified as effective antihistaminic compounds (Metys et al., 1965).

Experimental top

A mixture of(Z)-methyl 2-(bromomethyl)-3-o-tolylacrylate (2 mmol) and o-aminothiophenol(2 mmol) in the presence of potassium tert-butoxide (2.4 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3 x 20ml). The organic layer was washed with brine (2 x 20ml) and dried over anhydrous sodium sulfate. The organic layer was concentrated, which provided a crude mass (Z)-methyl 2-((2-aminophenylthio)methyl)-3-o-tolylacrylate. The crude product was treated with a catalytic amount of p-toluene sulphonic acid (0.4 mmol), in p-xylene (10 ml), under reflux conditions for 12 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure and worked up as mentioned previously, which successfully provide the crude final product. The final product was purified by column chromatography on silica gel to afford the title compound in good yield (67%).

Refinement top

H atoms were positioned geometrically and were treated as riding on their parent atoms, with C—H distances of 0.93–0.97Å, an N—H distance of 0.86Å and Uiso(H)=1.2Ueq(N, C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with 30% probability ellipsoids.
[Figure 2] Fig. 2. Partial packing diagram, viewed along the c axis.
3-(2-Methylbenzylidene)-2,3-dihydro-1,5-benzothiazepin-4(5H)-one top
Crystal data top
C17H15NOSF(000) = 1184
Mr = 281.36Dx = 1.292 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.1192 (5) ÅCell parameters from 3560 reflections
b = 13.0049 (3) Åθ = 2–28°
c = 14.8903 (4) ŵ = 0.22 mm1
β = 128.591 (1)°T = 293 K
V = 2893.84 (13) Å3Block, colourless
Z = 80.22 × 0.18 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2707 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.4°, θmin = 2.1°
ω and ϕ scansh = 2520
13879 measured reflectionsk = 1516
3560 independent reflectionsl = 1519
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
3560 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
0 constraints
Crystal data top
C17H15NOSV = 2893.84 (13) Å3
Mr = 281.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.1192 (5) ŵ = 0.22 mm1
b = 13.0049 (3) ÅT = 293 K
c = 14.8903 (4) Å0.22 × 0.18 × 0.18 mm
β = 128.591 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2707 reflections with I > 2σ(I)
13879 measured reflectionsRint = 0.024
3560 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 0.83Δρmax = 0.27 e Å3
3560 reflectionsΔρmin = 0.30 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07250 (13)0.88179 (15)0.21097 (16)0.0540 (5)
H10.11460.92330.27300.065*
C20.00643 (15)0.92462 (17)0.11794 (18)0.0623 (5)
H20.01690.99470.11640.075*
C30.06956 (12)0.86298 (15)0.02748 (16)0.0557 (5)
H30.12330.89120.03510.067*
C40.05362 (11)0.75966 (14)0.02896 (14)0.0448 (4)
H40.09700.71850.03260.054*
C50.02685 (10)0.71567 (12)0.12171 (12)0.0365 (4)
C60.08537 (12)0.52859 (14)0.17690 (13)0.0485 (4)
C70.14280 (11)0.52918 (13)0.30555 (12)0.0424 (4)
C80.15581 (12)0.62540 (13)0.36935 (13)0.0478 (4)
H8A0.19880.61230.45120.057*
H8B0.09950.64410.35230.057*
C90.09042 (10)0.77806 (13)0.21391 (13)0.0398 (4)
C100.18328 (12)0.44083 (13)0.35720 (14)0.0477 (4)
H100.17420.38760.30920.057*
C110.24053 (11)0.41648 (13)0.48045 (14)0.0449 (4)
C120.21413 (14)0.43985 (16)0.54648 (16)0.0573 (5)
H120.16120.47590.51350.069*
C130.26536 (17)0.4103 (2)0.66057 (18)0.0723 (7)
H130.24720.42690.70400.087*
C140.34253 (16)0.35663 (19)0.70886 (18)0.0750 (7)
H140.37700.33600.78530.090*
C150.36932 (13)0.33310 (17)0.64501 (18)0.0676 (6)
H150.42220.29660.67920.081*
C160.31970 (11)0.36225 (14)0.52991 (15)0.0504 (4)
C170.35129 (16)0.33506 (19)0.4639 (2)0.0722 (6)
H17A0.40680.29830.51260.108*
H17B0.36010.39670.43660.108*
H17C0.30740.29260.39970.108*
N0.03793 (9)0.61072 (12)0.10949 (10)0.0450 (4)
H00.00470.59390.03810.054*
O0.07844 (12)0.44836 (11)0.12814 (11)0.0766 (5)
S10.19459 (3)0.73150 (4)0.33323 (3)0.0503 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0582 (10)0.0419 (10)0.0457 (9)0.0007 (8)0.0246 (8)0.0069 (7)
C20.0737 (12)0.0426 (10)0.0558 (11)0.0134 (8)0.0332 (10)0.0055 (8)
C30.0507 (9)0.0560 (12)0.0456 (10)0.0109 (8)0.0228 (8)0.0110 (8)
C40.0400 (8)0.0503 (10)0.0332 (8)0.0013 (6)0.0174 (7)0.0027 (6)
C50.0373 (7)0.0405 (8)0.0284 (7)0.0002 (6)0.0190 (6)0.0005 (6)
C60.0570 (9)0.0436 (10)0.0281 (7)0.0032 (7)0.0183 (7)0.0047 (6)
C70.0501 (8)0.0414 (9)0.0262 (7)0.0001 (7)0.0192 (6)0.0041 (6)
C80.0600 (9)0.0448 (10)0.0258 (7)0.0080 (7)0.0205 (7)0.0024 (6)
C90.0391 (7)0.0424 (9)0.0305 (7)0.0003 (6)0.0180 (6)0.0004 (6)
C100.0579 (9)0.0426 (10)0.0323 (8)0.0020 (7)0.0231 (8)0.0030 (7)
C110.0497 (8)0.0391 (9)0.0345 (8)0.0061 (6)0.0207 (7)0.0027 (6)
C120.0610 (10)0.0628 (13)0.0444 (10)0.0029 (9)0.0310 (9)0.0050 (8)
C130.0867 (16)0.0852 (17)0.0483 (11)0.0180 (12)0.0438 (12)0.0024 (11)
C140.0811 (14)0.0757 (16)0.0366 (9)0.0188 (12)0.0211 (10)0.0107 (9)
C150.0500 (9)0.0583 (13)0.0547 (12)0.0067 (8)0.0131 (9)0.0079 (9)
C160.0489 (8)0.0429 (10)0.0442 (9)0.0116 (7)0.0217 (8)0.0030 (7)
C170.0664 (12)0.0654 (14)0.0809 (16)0.0040 (10)0.0441 (12)0.0149 (11)
N0.0499 (7)0.0433 (8)0.0229 (6)0.0019 (6)0.0135 (6)0.0046 (5)
O0.1042 (12)0.0492 (9)0.0302 (6)0.0191 (8)0.0193 (7)0.0072 (5)
S10.0394 (3)0.0464 (3)0.0371 (3)0.00100 (15)0.0101 (2)0.00664 (16)
Geometric parameters (Å, º) top
C1—C21.378 (3)C9—S11.7538 (16)
C1—C91.386 (2)C10—C111.470 (2)
C1—H10.9300C10—H100.9300
C2—C31.373 (3)C11—C161.393 (3)
C2—H20.9300C11—C121.390 (3)
C3—C41.375 (3)C12—C131.385 (3)
C3—H30.9300C12—H120.9300
C4—C51.397 (2)C13—C141.363 (3)
C4—H40.9300C13—H130.9300
C5—C91.392 (2)C14—C151.367 (4)
C5—N1.410 (2)C14—H140.9300
C6—O1.230 (2)C15—C161.397 (3)
C6—N1.355 (2)C15—H150.9300
C6—C71.501 (2)C16—C171.482 (3)
C7—C101.330 (2)C17—H17A0.9600
C7—C81.495 (2)C17—H17B0.9600
C8—S11.8001 (19)C17—H17C0.9600
C8—H8A0.9700N—H00.8600
C8—H8B0.9700
C2—C1—C9121.29 (17)C7—C10—H10115.8
C2—C1—H1119.4C11—C10—H10115.8
C9—C1—H1119.4C16—C11—C12119.40 (16)
C3—C2—C1119.44 (19)C16—C11—C10119.11 (17)
C3—C2—H2120.3C12—C11—C10121.33 (17)
C1—C2—H2120.3C13—C12—C11121.1 (2)
C2—C3—C4120.29 (17)C13—C12—H12119.5
C2—C3—H3119.9C11—C12—H12119.5
C4—C3—H3119.9C14—C13—C12119.6 (2)
C3—C4—C5120.83 (16)C14—C13—H13120.2
C3—C4—H4119.6C12—C13—H13120.2
C5—C4—H4119.6C15—C14—C13119.99 (19)
C9—C5—C4118.81 (15)C15—C14—H14120.0
C9—C5—N125.61 (14)C13—C14—H14120.0
C4—C5—N115.48 (14)C14—C15—C16122.0 (2)
O—C6—N117.10 (14)C14—C15—H15119.0
O—C6—C7118.78 (15)C16—C15—H15119.0
N—C6—C7124.09 (14)C11—C16—C15117.93 (19)
C10—C7—C8123.34 (14)C11—C16—C17121.88 (18)
C10—C7—C6115.63 (14)C15—C16—C17120.2 (2)
C8—C7—C6120.97 (14)C16—C17—H17A109.5
C7—C8—S1112.83 (12)C16—C17—H17B109.5
C7—C8—H8A109.0H17A—C17—H17B109.5
S1—C8—H8A109.0C16—C17—H17C109.5
C7—C8—H8B109.0H17A—C17—H17C109.5
S1—C8—H8B109.0H17B—C17—H17C109.5
H8A—C8—H8B107.8C6—N—C5138.81 (13)
C1—C9—C5119.31 (15)C6—N—H0110.6
C1—C9—S1118.05 (13)C5—N—H0110.6
C5—C9—S1122.61 (13)C9—S1—C898.53 (8)
C7—C10—C11128.30 (16)
C9—C1—C2—C31.6 (3)C7—C10—C11—C1249.1 (3)
C1—C2—C3—C40.9 (3)C16—C11—C12—C130.1 (3)
C2—C3—C4—C50.3 (3)C10—C11—C12—C13175.39 (19)
C3—C4—C5—C91.0 (2)C11—C12—C13—C140.6 (3)
C3—C4—C5—N175.59 (16)C12—C13—C14—C150.5 (4)
O—C6—C7—C100.9 (3)C13—C14—C15—C160.1 (3)
N—C6—C7—C10178.94 (17)C12—C11—C16—C150.3 (3)
O—C6—C7—C8178.10 (19)C10—C11—C16—C15175.08 (17)
N—C6—C7—C83.8 (3)C12—C11—C16—C17179.97 (18)
C10—C7—C8—S1123.26 (16)C10—C11—C16—C174.6 (3)
C6—C7—C8—S153.7 (2)C14—C15—C16—C110.3 (3)
C2—C1—C9—C50.9 (3)C14—C15—C16—C17180.0 (2)
C2—C1—C9—S1177.38 (15)O—C6—N—C5175.66 (19)
C4—C5—C9—C10.4 (2)C7—C6—N—C56.3 (3)
N—C5—C9—C1175.84 (16)C9—C5—N—C626.7 (3)
C4—C5—C9—S1178.59 (12)C4—C5—N—C6157.0 (2)
N—C5—C9—S12.4 (2)C1—C9—S1—C8128.73 (15)
C8—C7—C10—C115.3 (3)C5—C9—S1—C853.03 (15)
C6—C7—C10—C11177.56 (18)C7—C8—S1—C987.11 (13)
C7—C10—C11—C16135.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0···Oi0.862.012.8705 (18)177
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H15NOS
Mr281.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.1192 (5), 13.0049 (3), 14.8903 (4)
β (°) 128.591 (1)
V3)2893.84 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.22 × 0.18 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13879, 3560, 2707
Rint0.024
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.202, 0.83
No. of reflections3560
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0···Oi0.862.012.8705 (18)177
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computing facilities.

References

First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMetys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871–873.  CAS PubMed Web of Science Google Scholar
First citationRajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds