Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2-Dichloro-1-(4-methylphenyl)ethanone

Ping-An Wang,* Jun-Ping Gao and Peng Liu

Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China
Correspondence e-mail: ping_an1718@yahoo.com.cn

Received 23 December 2010; accepted 4 January 2011

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.054 ; w R$ factor $=0.155$; data-to-parameter ratio $=15.4$.

The molecule of the title compound, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$, is almost planar: the dihedral angle between the benzene ring and the plane defined by the carbonyl O and ethane C atoms is $15.5(2)^{\circ}$. The crystal packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the preparation, see: Aston et al. (1943); Terent'ev et al. (2004). For synthetic use of the title compound and mandelic acid derivatives, see: Schiffers \& Bolm (2008); Blay et al. (2006).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$
$M_{r}=203.05$
Monoclinic, $P 2_{1} / c$
$a=6.650$ (5) A
$b=9.959$ (7) A
$c=14.475$ (11) \AA
$\beta=92.921(9)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.826, T_{\text {max }}=0.920$
4496 measured reflections 1694 independent reflections 874 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.061$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054 \quad 110$ parameters
$w R\left(F^{2}\right)=0.155 \quad \mathrm{H}$-atom parameters constrained
$S=1.03$
1694 reflections
$\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.93	2.58	3.42	150
Symmetry code: $(\mathrm{i})-x+2, y+\frac{1}{2},-z+\frac{1}{2}$.				

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997).

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5447).

References

Aston, J. G., Newkirk, J. D., Jenkins, D. M. \& Dorsky, J. (1943). Org. Synth. 23, 48-52.
Blay, G., Fernández, I., Molina, E., Munõz, M. C., Pedro, J. R. \& Vila, C. T. (2006). Tetrahedron, 62, 8069-8076.

Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Schiffers, I. \& Bolm, C. (2008). Org. Synth. 85, 106-117.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Terent'ev, A. O., Khodykin, S. V., Troitskii, N. A., Ogibin, Y. N. \& Nikishin, G. I. (2004). Synthesis, pp. 2845-2848.

supporting information

Acta Cryst. (2011). E67, o337 [doi:10.1107/S1600536811000134]

2,2-Dichloro-1-(4-methylphenyl)ethanone

Ping-An Wang, Jun-Ping Gao and Peng Liu

S1. Comment

The title compound, 2,2-Dichloro-1-(4-methylphenyl)ethanone, was obtained by chloration of 1-(4-methylphenyl)ethanone with concentrated hydrochloride and aqueous hydroperoxide in hot ethanol (Terent'ev et al., 2004) and it was used for the preparation of substituted mandelic acid and derivatives.
In the title compound, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$, the lengthes of two $\mathrm{C}-\mathrm{Cl}$ bonds are different, the distance of $\mathrm{C} 1-\mathrm{Cl} 1$ is $1.757 \AA$, otherwise, the distance of $\mathrm{C} 1-\mathrm{Cl} 2$ is $1.762 \AA$. The molecule is nearly planar, the dihedral angle between the phenyl ring and the plane defined by $\mathrm{O} 1, \mathrm{C} 2$ and C 1 is 15.5°. The packing of molecules in the crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

S2. Experimental

To a stirred hot mixed aqueous concentrated hydrochloride and ethanol solution ($300 \mathrm{~cm}^{3}$) of commercially available 1-ptolylethanone ($13.42 \mathrm{~g}, 0.10 \mathrm{~mol}$) added dropwise aqueous hydropeoxide ($35 \% \mathrm{wt}$ in water, 0.272 mol), and the mixture was stirred for 30 min at $90-100^{\circ} \mathrm{C}$. The solution was cooled to room temperature and diluted by addtion of water (300 $\left.\mathrm{cm}^{3}\right)$, it was extracted by ether $\left(2 \times 400 \mathrm{~cm}^{3}\right)$, the combined organic layer was washed with $1 \mathrm{M} \mathrm{NaOH}\left(100 \mathrm{~cm}^{3}\right)$, water $\left(100 \mathrm{~cm}^{3}\right)$, brine $\left(2 \times 110 \mathrm{~cm}^{3}\right)$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent afforded the title compound as a light yellow oli ($19.8 \mathrm{~g}, 97 \%$), which was solidfied as a pale block after24 h at room temperature. The melting point and the spectroscopic data of the title compound were consisted with the reported literature (Terent'ev et al., 2004).

S3. Refinement

All H atoms were placed in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

2,2-Dichloro-1-(4-methylphenyl)ethanone

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$

$M_{r}=203.05$
Monoclinic, $P 2_{1} / c$
$a=6.650$ (5) \AA
$b=9.959$ (7) \AA
$c=14.475$ (11) \AA
$\beta=92.921$ (9) ${ }^{\circ}$
$V=957.4(12) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.826, T_{\text {max }}=0.920$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.155$
$S=1.03$
1694 reflections
110 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=416$
$D_{\mathrm{x}}=1.409 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\theta=2.5-25.1^{\circ}$
$\mu=0.63 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.32 \times 0.26 \times 0.14 \mathrm{~mm}$

4496 measured reflections
1694 independent reflections
874 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=25.1^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-11 \rightarrow 9$
$l=-17 \rightarrow 15$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0679 P)^{2}\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
C11	$1.21054(15)$	$0.84106(11)$	$0.13668(8)$	$0.0912(5)$
C12	$0.79412(19)$	$0.87565(15)$	$0.07241(8)$	$0.1147(6)$
O1	$0.9705(4)$	$0.6849(3)$	$0.2551(2)$	$0.0966(10)$
C1	$0.9678(5)$	$0.8856(4)$	$0.1682(2)$	$0.0670(10)$
H1	0.9707	0.9780	0.1915	0.080^{*}
C2	$0.8918(5)$	$0.7929(4)$	$0.2428(2)$	$0.0627(9)$
C3	$0.7161(5)$	$0.8368(3)$	$0.2934(2)$	$0.0562(9)$
C4	$0.6500(5)$	$0.9690(4)$	$0.2946(2)$	$0.0662(10)$
H4	0.7173	1.0350	0.2629	0.079^{*}
C5	$0.4837(5)$	$1.0019(4)$	$0.3433(3)$	$0.0711(10)$
H5	0.4403	1.0907	0.3436	0.085^{*}
C6	$0.3800(5)$	$0.9072(4)$	$0.3915(2)$	$0.0662(10)$
C7	$0.4492(6)$	$0.7764(4)$	$0.3911(3)$	$0.0747(11)$
H7	0.3823	0.7111	0.4238	0.090^{*}
C8	$0.6142(6)$	$0.7406(4)$	$0.3439(3)$	$0.0691(10)$
H8	0.6588	0.6521	0.3453	0.083^{*}
C9	$0.1955(5)$	$0.9460(5)$	$0.4417(3)$	$0.0876(13)$
H9A	0.2314	1.0114	0.4884	0.131^{*}
H9B	0.1410	0.8679	0.4701	0.131^{*}
H9C	0.0965	0.9834	0.3985	0.131^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0822(7)$	$0.0892(9)$	$0.1049(9)$	$0.0029(6)$	$0.0303(6)$	$-0.0065(6)$
C12	$0.1093(9)$	$0.1452(13)$	$0.0881(9)$	$0.0030(8)$	$-0.0091(7)$	$0.0200(7)$
O1	$0.0959(19)$	$0.0598(18)$	$0.137(3)$	$0.0230(16)$	$0.0350(18)$	$0.0209(17)$
C1	$0.072(2)$	$0.050(2)$	$0.080(3)$	$-0.0003(18)$	$0.019(2)$	$-0.0037(18)$
C2	$0.065(2)$	$0.049(2)$	$0.075(2)$	$0.002(2)$	$0.0035(19)$	$-0.0052(19)$
C3	$0.0566(19)$	$0.046(2)$	$0.065(2)$	$-0.0002(17)$	$0.0016(17)$	$0.0010(17)$
C4	$0.062(2)$	$0.049(2)$	$0.088(3)$	$-0.0012(19)$	$0.0076(19)$	$0.0019(18)$
C5	$0.067(2)$	$0.058(3)$	$0.088(3)$	$0.012(2)$	$0.007(2)$	$0.000(2)$
C6	$0.063(2)$	$0.073(3)$	$0.063(2)$	$0.000(2)$	$0.0003(18)$	$0.001(2)$
C7	$0.081(3)$	$0.068(3)$	$0.076(3)$	$-0.007(2)$	$0.016(2)$	$0.007(2)$
C8	$0.080(2)$	$0.051(2)$	$0.076(3)$	$0.000(2)$	$0.003(2)$	$0.0040(19)$
C9	$0.070(2)$	$0.113(4)$	$0.081(3)$	$0.009(2)$	$0.014(2)$	$0.002(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cl1}-\mathrm{C} 1$	1.756 (4)	C5-C6	1.378 (5)
C12-C1	1.761 (4)	C5-H5	0.9300
O1-C2	1.206 (4)	C6-C7	1.382 (5)
$\mathrm{C} 1-\mathrm{C} 2$	1.527 (5)	C6-C9	1.508 (5)
C1-H1	0.9800	C7-C8	1.369 (5)
C2-C3	1.476 (5)	C7-H7	0.9300
C3-C4	1.388 (5)	C8-H8	0.9300
C3-C8	1.401 (5)	C9—H9A	0.9600
C4-C5	1.380 (5)	C9-H9B	0.9600
C4-H4	0.9300	C9-H9C	0.9600
C2- $\mathrm{C} 1-\mathrm{Cl1}$	111.9 (3)	C4-C5-H5	119.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 2$	107.2 (2)	C5-C6-C7	117.9 (3)
$\mathrm{Cl} 1-\mathrm{C} 1-\mathrm{Cl} 2$	110.86 (19)	C5-C6-C9	120.6 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	109.0	C7-C6-C9	121.5 (4)
$\mathrm{Cl1}-\mathrm{C} 1-\mathrm{H} 1$	109.0	C8-C7-C6	121.5 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	109.0	C8-C7-H7	119.2
O1-C2-C3	122.6 (3)	C6-C7-H7	119.2
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	119.2 (3)	C7-C8-C3	120.2 (4)
C3-C2-C1	118.1 (3)	C7-C8-H8	119.9
C4-C3-C8	118.7 (3)	C3-C8-H8	119.9
C4-C3-C2	123.1 (3)	C6-C9-H9A	109.5
C8-C3-C2	118.2 (3)	C6-C9-H9B	109.5
C5-C4-C3	119.6 (3)	H9A-C9-H9B	109.5
C5-C4-H4	120.2	C6-C9-H9C	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.2	H9A-C9-H9C	109.5
C6-C5-C4	122.0 (4)	H9B-C9-H9C	109.5
C6-C5-H5	119.0		
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	-19.0 (4)	C2-C3-C4-C5	179.7 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	102.8 (3)	C3-C4-C5-C6	0.1 (6)
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	164.5 (2)	C4-C5-C6-C7	1.0 (5)
$\mathrm{C} 22-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-73.7 (3)	C4-C5-C6-C9	-178.3 (3)
O1-C2-C3-C4	166.2 (4)	C5-C6-C7-C8	-0.7(5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-17.4 (5)	C9-C6-C7-C8	178.5 (3)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	-12.5 (5)	C6-C7-C8-C3	-0.7 (5)
C1-C2-C3-C8	163.8 (3)	C4-C3-C8-C7	1.9 (5)
C8-C3-C4-C5	-1.6 (5)	C2-C3-C8-C7	-179.4 (3)

Hydrogen-bond geometry (A, ,)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.58	3.42	150

Symmetry code: (i) $-x+2, y+1 / 2,-z+1 / 2$.

