organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­chloro-1-(4-methyl­phen­yl)ethanone

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China
*Correspondence e-mail: ping_an1718@yahoo.com.cn

(Received 23 December 2010; accepted 4 January 2011; online 12 January 2011)

The mol­ecule of the title compound, C9H8Cl2O, is almost planar: the dihedral angle between the benzene ring and the plane defined by the carbonyl O and ethane C atoms is 15.5 (2)°. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the preparation, see: Aston et al. (1943[Aston, J. G., Newkirk, J. D., Jenkins, D. M. & Dorsky, J. (1943). Org. Synth. 23, 48-52.]); Terent'ev et al. (2004[Terent'ev, A. O., Khodykin, S. V., Troitskii, N. A., Ogibin, Y. N. & Nikishin, G. I. (2004). Synthesis, pp. 2845-2848.]). For synthetic use of the title compound and mandelic acid derivatives, see: Schiffers & Bolm (2008[Schiffers, I. & Bolm, C. (2008). Org. Synth. 85, 106-117.]); Blay et al. (2006[Blay, G., Fernández, I., Molina, E., Munõz, M. C., Pedro, J. R. & Vila, C. T. (2006). Tetrahedron, 62, 8069-8076.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8Cl2O

  • Mr = 203.05

  • Monoclinic, P 21 /c

  • a = 6.650 (5) Å

  • b = 9.959 (7) Å

  • c = 14.475 (11) Å

  • β = 92.921 (9)°

  • V = 957.4 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 0.920

  • 4496 measured reflections

  • 1694 independent reflections

  • 874 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.155

  • S = 1.03

  • 1694 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.58 3.42 150
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]).

Supporting information


Comment top

The title compound, 2,2-Dichloro-1-(4-methylphenyl)ethanone, was obtained by chloration of 1-(4-methylphenyl)ethanone with concentrated hydrochloride and aqueous hydroperoxide in hot ethanol (Terent'ev et al., 2004) and it was used for the preparation of substituted mandelic acid and derivatives.

In the title compound, C9H8Cl2O, the lengthes of two C—Cl bonds are different, the distance of C1—Cl1 is 1.757 Å, otherwise, the distance of C1—Cl2 is 1.762 Å. The molecule is nearly planar, the dihedral angle between the phenyl ring and the plane defined by O1, C2 and C1 is 15.5°. The packing of molecules in the crystal structure is stabilized by intermolecular C—H···O hydrogen bonds.

Related literature top

For the preparation, see: Aston et al. (1943); Terent'ev et al. (2004). For synthetic use of the title compound and mandelic acid derivatives, see: Schiffers & Bolm (2008); Blay et al. (2006).

Experimental top

To a stirred hot mixed aqueous concentrated hydrochloride and ethanol solution (300 cm3) of commercially available 1-p-tolylethanone (13.42 g, 0.10 mol) added dropwise aqueous hydropeoxide (35% wt in water, 0.272 mol), and the mixture was stirred for 30 min at 90–100°C. The solution was cooled to room temperature and diluted by addtion of water (300 cm3), it was extracted by ether (2× 400 cm3), the combined organic layer was washed with 1 M NaOH (100 cm3), water (100 cm3), brine (2× 110 cm3), and dried over Na2SO4. Evaporation of the solvent afforded the title compound as a light yellow oli (19.8 g, 97%), which was solidfied as a pale block after24 h at room temperature. The melting point and the spectroscopic data of the title compound were consisted with the reported literature (Terent'ev et al., 2004).

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.98Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
2,2-Dichloro-1-(4-methylphenyl)ethanone top
Crystal data top
C9H8Cl2OF(000) = 416
Mr = 203.05Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.650 (5) Åθ = 2.5–25.1°
b = 9.959 (7) ŵ = 0.63 mm1
c = 14.475 (11) ÅT = 296 K
β = 92.921 (9)°Block, colorless
V = 957.4 (12) Å30.32 × 0.26 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1694 independent reflections
Radiation source: fine-focus sealed tube874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.826, Tmax = 0.920k = 119
4496 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0679P)2]
where P = (Fo2 + 2Fc2)/3
1694 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H8Cl2OV = 957.4 (12) Å3
Mr = 203.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.650 (5) ŵ = 0.63 mm1
b = 9.959 (7) ÅT = 296 K
c = 14.475 (11) Å0.32 × 0.26 × 0.14 mm
β = 92.921 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1694 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
874 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.920Rint = 0.061
4496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
1694 reflectionsΔρmin = 0.27 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.21054 (15)0.84106 (11)0.13668 (8)0.0912 (5)
Cl20.79412 (19)0.87565 (15)0.07241 (8)0.1147 (6)
O10.9705 (4)0.6849 (3)0.2551 (2)0.0966 (10)
C10.9678 (5)0.8856 (4)0.1682 (2)0.0670 (10)
H10.97070.97800.19150.080*
C20.8918 (5)0.7929 (4)0.2428 (2)0.0627 (9)
C30.7161 (5)0.8368 (3)0.2934 (2)0.0562 (9)
C40.6500 (5)0.9690 (4)0.2946 (2)0.0662 (10)
H40.71731.03500.26290.079*
C50.4837 (5)1.0019 (4)0.3433 (3)0.0711 (10)
H50.44031.09070.34360.085*
C60.3800 (5)0.9072 (4)0.3915 (2)0.0662 (10)
C70.4492 (6)0.7764 (4)0.3911 (3)0.0747 (11)
H70.38230.71110.42380.090*
C80.6142 (6)0.7406 (4)0.3439 (3)0.0691 (10)
H80.65880.65210.34530.083*
C90.1955 (5)0.9460 (5)0.4417 (3)0.0876 (13)
H9A0.23141.01140.48840.131*
H9B0.14100.86790.47010.131*
H9C0.09650.98340.39850.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0822 (7)0.0892 (9)0.1049 (9)0.0029 (6)0.0303 (6)0.0065 (6)
Cl20.1093 (9)0.1452 (13)0.0881 (9)0.0030 (8)0.0091 (7)0.0200 (7)
O10.0959 (19)0.0598 (18)0.137 (3)0.0230 (16)0.0350 (18)0.0209 (17)
C10.072 (2)0.050 (2)0.080 (3)0.0003 (18)0.019 (2)0.0037 (18)
C20.065 (2)0.049 (2)0.075 (2)0.002 (2)0.0035 (19)0.0052 (19)
C30.0566 (19)0.046 (2)0.065 (2)0.0002 (17)0.0016 (17)0.0010 (17)
C40.062 (2)0.049 (2)0.088 (3)0.0012 (19)0.0076 (19)0.0019 (18)
C50.067 (2)0.058 (3)0.088 (3)0.012 (2)0.007 (2)0.000 (2)
C60.063 (2)0.073 (3)0.063 (2)0.000 (2)0.0003 (18)0.001 (2)
C70.081 (3)0.068 (3)0.076 (3)0.007 (2)0.016 (2)0.007 (2)
C80.080 (2)0.051 (2)0.076 (3)0.000 (2)0.003 (2)0.0040 (19)
C90.070 (2)0.113 (4)0.081 (3)0.009 (2)0.014 (2)0.002 (2)
Geometric parameters (Å, º) top
Cl1—C11.756 (4)C5—C61.378 (5)
Cl2—C11.761 (4)C5—H50.9300
O1—C21.206 (4)C6—C71.382 (5)
C1—C21.527 (5)C6—C91.508 (5)
C1—H10.9800C7—C81.369 (5)
C2—C31.476 (5)C7—H70.9300
C3—C41.388 (5)C8—H80.9300
C3—C81.401 (5)C9—H9A0.9600
C4—C51.380 (5)C9—H9B0.9600
C4—H40.9300C9—H9C0.9600
C2—C1—Cl1111.9 (3)C4—C5—H5119.0
C2—C1—Cl2107.2 (2)C5—C6—C7117.9 (3)
Cl1—C1—Cl2110.86 (19)C5—C6—C9120.6 (4)
C2—C1—H1109.0C7—C6—C9121.5 (4)
Cl1—C1—H1109.0C8—C7—C6121.5 (4)
Cl2—C1—H1109.0C8—C7—H7119.2
O1—C2—C3122.6 (3)C6—C7—H7119.2
O1—C2—C1119.2 (3)C7—C8—C3120.2 (4)
C3—C2—C1118.1 (3)C7—C8—H8119.9
C4—C3—C8118.7 (3)C3—C8—H8119.9
C4—C3—C2123.1 (3)C6—C9—H9A109.5
C8—C3—C2118.2 (3)C6—C9—H9B109.5
C5—C4—C3119.6 (3)H9A—C9—H9B109.5
C5—C4—H4120.2C6—C9—H9C109.5
C3—C4—H4120.2H9A—C9—H9C109.5
C6—C5—C4122.0 (4)H9B—C9—H9C109.5
C6—C5—H5119.0
Cl1—C1—C2—O119.0 (4)C2—C3—C4—C5179.7 (3)
Cl2—C1—C2—O1102.8 (3)C3—C4—C5—C60.1 (6)
Cl1—C1—C2—C3164.5 (2)C4—C5—C6—C71.0 (5)
Cl2—C1—C2—C373.7 (3)C4—C5—C6—C9178.3 (3)
O1—C2—C3—C4166.2 (4)C5—C6—C7—C80.7 (5)
C1—C2—C3—C417.4 (5)C9—C6—C7—C8178.5 (3)
O1—C2—C3—C812.5 (5)C6—C7—C8—C30.7 (5)
C1—C2—C3—C8163.8 (3)C4—C3—C8—C71.9 (5)
C8—C3—C4—C51.6 (5)C2—C3—C8—C7179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.583.42150
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8Cl2O
Mr203.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.650 (5), 9.959 (7), 14.475 (11)
β (°) 92.921 (9)
V3)957.4 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.32 × 0.26 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.826, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
4496, 1694, 874
Rint0.061
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.155, 1.03
No. of reflections1694
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.583.42150
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

References

First citationAston, J. G., Newkirk, J. D., Jenkins, D. M. & Dorsky, J. (1943). Org. Synth. 23, 48–52.  CAS Google Scholar
First citationBlay, G., Fernández, I., Molina, E., Munõz, M. C., Pedro, J. R. & Vila, C. T. (2006). Tetrahedron, 62, 8069–8076.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchiffers, I. & Bolm, C. (2008). Org. Synth. 85, 106–117.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerent'ev, A. O., Khodykin, S. V., Troitskii, N. A., Ogibin, Y. N. & Nikishin, G. I. (2004). Synthesis, pp. 2845–2848.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds