organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic polymorph of 2-(pyrimidin-2-ylsulfan­yl)acetic acid

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 29 December 2010; accepted 5 January 2011; online 12 January 2011)

The title compound, C6H6N2O2S, is a new polymorphic form of 2-(pyrimidin-2-ylsulfan­yl)acetic acid. Unlike the previous orthorhombic polymorph [Pan & Chen (2009[Pan, J. X. & Chen, Q. W. (2009). Acta Cryst. E65, o652.]) Acta Cryst. E65, o652], the mol­ecules are not planar: the aromatic ring makes an angle of 80.67 (17)° with the carboxyl plane. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds into chains along [[\overline{1}]02].

Related literature

For the previously reported orthorhombic polymorph, see: Pan & Chen (2009[Pan, J. X. & Chen, Q. W. (2009). Acta Cryst. E65, o652.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N2O2S

  • Mr = 170.19

  • Monoclinic, P 21 /c

  • a = 8.2617 (3) Å

  • b = 10.3028 (4) Å

  • c = 9.9289 (3) Å

  • β = 119.845 (2)°

  • V = 733.05 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.40 × 0.23 × 0.20 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.891, Tmax = 0.999

  • 14257 measured reflections

  • 1688 independent reflections

  • 1532 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.133

  • S = 1.17

  • 1688 reflections

  • 100 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.74 1.97 2.700 (3) 166
Symmetry code: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In an attempt to synthesize low dimensional compounds with transition metal elements, crystals of a new monoclinic phase of the title compound (Fig. 1) were obtained. In the previously reported orthorhombic phase the molecules are planar and pack in layers, joined by a O—H···N intermolecular bond (Pan & Chen, 2009). In the new monoclinic phase the molecules are not planar, the C3—S1—C2—C1 torsion angle is 77.84 (18)°. There is a similar strong hydrogen bond (Table 1) as in the orthorhombic phase, but in the title compound this intermolecular bond groups the molecules in chains, that run along the [-102] direction.

Related literature top

For the previously reported polymorph, see: Pan & Chen (2009).

Experimental top

0.2 mmol of 2-(Pyrimidin-2-ylsulfanyl)acetic acid (98%) and 0.2 mmol of CuCl2.2H2O (99.0%)were dissolved in 20 ml of water plus 20 ml of ethanol. The solution was slightly warmed and left to evaporate for a few weeks. After that time, small yellowish single crystals were obtained.

Refinement top

Hydrogen atoms bound to C atoms were positioned geometrically with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The coordinates of the H atom bound to O were freely refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Packing of the molecules in the unit cell showing the H-bonds as dashed lines.
2-(pyrimidin-2-ylsulfanyl)acetic acid top
Crystal data top
C6H6N2O2SF(000) = 352
Mr = 170.19Dx = 1.542 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2617 (3) ÅCell parameters from 6019 reflections
b = 10.3028 (4) Åθ = 2.8–27.2°
c = 9.9289 (3) ŵ = 0.39 mm1
β = 119.845 (2)°T = 293 K
V = 733.05 (4) Å3Prism, yellow
Z = 40.40 × 0.23 × 0.20 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1688 independent reflections
Radiation source: fine-focus sealed tube1532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.891, Tmax = 0.999k = 1313
14257 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.3572P]
where P = (Fo2 + 2Fc2)/3
1688 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C6H6N2O2SV = 733.05 (4) Å3
Mr = 170.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2617 (3) ŵ = 0.39 mm1
b = 10.3028 (4) ÅT = 293 K
c = 9.9289 (3) Å0.40 × 0.23 × 0.20 mm
β = 119.845 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1688 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1532 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.999Rint = 0.027
14257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.31 e Å3
1688 reflectionsΔρmin = 0.18 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79236 (8)0.78200 (6)0.43768 (7)0.0451 (2)
O20.2618 (3)0.7405 (2)0.1323 (3)0.0642 (6)
H20.21060.70510.05720.096*
O10.5054 (3)0.63141 (18)0.1564 (2)0.0544 (5)
C10.4398 (3)0.7107 (2)0.2002 (3)0.0383 (5)
C20.5444 (3)0.7939 (2)0.3434 (3)0.0411 (5)
H2A0.50480.77010.41710.049*
H2B0.50940.88380.31460.049*
C30.8442 (3)0.8782 (2)0.3184 (2)0.0358 (5)
N10.7074 (2)0.92846 (19)0.1883 (2)0.0407 (4)
C60.7635 (4)1.0039 (2)0.1100 (3)0.0495 (6)
H60.67321.04250.01850.059*
C50.9468 (4)1.0271 (3)0.1575 (3)0.0544 (7)
H50.98201.08100.10130.065*
C41.0766 (4)0.9677 (3)0.2916 (3)0.0536 (7)
H41.20280.98030.32610.064*
N21.0268 (3)0.8926 (2)0.3736 (2)0.0459 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0382 (3)0.0520 (4)0.0360 (3)0.0017 (2)0.0116 (2)0.0089 (2)
O20.0394 (10)0.0662 (13)0.0664 (13)0.0044 (8)0.0108 (9)0.0106 (10)
O10.0514 (10)0.0554 (11)0.0595 (11)0.0035 (8)0.0299 (9)0.0133 (9)
C10.0362 (11)0.0383 (12)0.0411 (12)0.0037 (8)0.0197 (9)0.0045 (9)
C20.0398 (12)0.0454 (13)0.0418 (12)0.0021 (9)0.0233 (10)0.0007 (10)
C30.0341 (10)0.0336 (11)0.0360 (11)0.0000 (8)0.0147 (9)0.0030 (8)
N10.0371 (9)0.0426 (11)0.0396 (10)0.0039 (8)0.0169 (8)0.0058 (8)
C60.0604 (15)0.0433 (14)0.0478 (13)0.0062 (11)0.0291 (12)0.0072 (11)
C50.0705 (17)0.0440 (14)0.0667 (17)0.0068 (12)0.0477 (15)0.0022 (12)
C40.0437 (13)0.0522 (15)0.0729 (18)0.0101 (11)0.0350 (13)0.0138 (13)
N20.0325 (9)0.0479 (12)0.0511 (12)0.0016 (8)0.0161 (9)0.0032 (9)
Geometric parameters (Å, º) top
S1—C31.753 (2)C3—N21.333 (3)
S1—C21.783 (2)N1—C61.335 (3)
O2—C11.313 (3)C6—C51.365 (4)
O2—H20.7449C6—H60.9300
O1—C11.177 (3)C5—C41.370 (4)
C1—C21.510 (3)C5—H50.9300
C2—H2A0.9700C4—N21.328 (3)
C2—H2B0.9700C4—H40.9300
C3—N11.327 (3)
C3—S1—C2102.08 (10)N2—C3—S1113.08 (16)
C1—O2—H2109.4C3—N1—C6114.8 (2)
O1—C1—O2125.2 (2)N1—C6—C5123.2 (2)
O1—C1—C2126.1 (2)N1—C6—H6118.4
O2—C1—C2108.7 (2)C5—C6—H6118.4
C1—C2—S1115.15 (16)C6—C5—C4117.1 (2)
C1—C2—H2A108.5C6—C5—H5121.5
S1—C2—H2A108.5C4—C5—H5121.5
C1—C2—H2B108.5N2—C4—C5121.6 (2)
S1—C2—H2B108.5N2—C4—H4119.2
H2A—C2—H2B107.5C5—C4—H4119.2
N1—C3—N2126.8 (2)C4—N2—C3116.5 (2)
N1—C3—S1120.15 (16)
O1—C1—C2—S18.2 (3)C3—N1—C6—C50.8 (4)
O2—C1—C2—S1172.38 (16)N1—C6—C5—C40.8 (4)
C3—S1—C2—C177.84 (18)C6—C5—C4—N21.2 (4)
C2—S1—C3—N14.9 (2)C5—C4—N2—C30.0 (4)
C2—S1—C3—N2174.94 (16)N1—C3—N2—C41.8 (4)
N2—C3—N1—C62.2 (3)S1—C3—N2—C4177.99 (18)
S1—C3—N1—C6177.60 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.741.972.700 (3)166
Symmetry code: (i) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H6N2O2S
Mr170.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2617 (3), 10.3028 (4), 9.9289 (3)
β (°) 119.845 (2)
V3)733.05 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.40 × 0.23 × 0.20
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.891, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
14257, 1688, 1532
Rint0.027
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.133, 1.17
No. of reflections1688
No. of parameters100
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.741.972.700 (3)166
Symmetry code: (i) x1, y+3/2, z1/2.
 

Acknowledgements

This work was supported by Fundo Europeu de Desenvolvimento Regional-QREN-COMPETE through project PTDC/FIS/102284/2008-Fundação para a Ciência e a Tecnologia (FCT).

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationPan, J. X. & Chen, Q. W. (2009). Acta Cryst. E65, o652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds