# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (4,7-Diphenyl-1,10-phenanthroline- $\kappa^2 N, N'$ )dimethylbis(thiocyanato- $\kappa N$ )-tin(IV)

# Ezzatollah Najafi,<sup>a</sup> Mostafa M. Amini<sup>a</sup> and Seik Weng Ng<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 10 January 2011; accepted 12 January 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.004 Å; *R* factor = 0.034; *wR* factor = 0.084; data-to-parameter ratio = 18.0.

In the title compound,  $[Sn(CH_3)_2(NSC)_2(C_{24}H_{16}N_2)]$ , a 1:1 adduct of dimethyltin diisothiocyanate with 4,7-diphenyl-1,10-phenanthroline, the Sn<sup>IV</sup> atom shows a slightly distorted octahedral SnC<sub>2</sub>N<sub>4</sub> coordination. The methyl groups are *trans* to each other in the octahedron surrounding the metal atom  $[C-Sn-C = 176.61 (12)^{\circ}]$ .

#### **Related literature**

For the ethanol-solvated di-*n*-butyltin dichloride adduct of the *N*-heterocycle, see: Hu *et al.* (1989).



# Experimental

#### Crystal data

 $\begin{bmatrix} Sn(CH_3)_2(NSC)_2(C_{24}H_{16}N_2) \end{bmatrix} \\ M_r = 597.31 \\ Monoclinic, P2_1/n \\ a = 17.1918 (2) Å \\ b = 8.1907 (2) Å \\ c = 18.3045 (3) Å \\ \beta = 98.042 (1)^{\circ}$ 

#### Data collection

Agilent Technologies SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan

(CrysAlis PRO; Agilent

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$  $wR(F^2) = 0.084$ S = 1.035710 reflections V = 2552.16 (8) Å<sup>3</sup>

Mo Ka radiation

Z = 4

Technologies, 2010)  $T_{\min} = 0.797$ ,  $T_{\max} = 0.890$ 13167 measured reflections 5710 independent reflections 4833 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.031$ 

318 parameters H-atom parameters constrained 
$$\begin{split} &\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{\rm min} = -0.89 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *CrysAlis PRO* (Agilent Technologies, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5462).

## References

- Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Hu, S.-Z., Lin, W.-F., Wan, J. Z. & Huang, Z.-X. (1989). Chin. J. Struct. Chem. 8, 36–39.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

# Acta Cryst. (2011). E67, m244 [doi:10.1107/S1600536811001735]

# (4,7-Diphenyl-1,10-phenanthroline- $\kappa^2 N, N'$ )dimethylbis(thiocyanato- $\kappa N$ )tin(IV)

# Ezzatollah Najafi, Mostafa M. Amini and Seik Weng Ng

# S1. Comment

Diorganotin dihalides/pseudohalides form a number of adducts with 1,10-phenanthroline and its derivatives. The dibutytlin dichloride adduct with 4,7-diphenyl-1,10-phenanthroline exists as an ethanol solvate (Hu *et al.*, 1989). The dimethyltin diisothiocyanate adduct is anhydrous (Scheme I, Fig. 1). It also features the chelated tin atom in an octahedral geometry.

# **S2. Experimental**

Dimethyltin diisothiocyanate and 4,7-diphenyl-1,10-phenanthroline (1 mmol) were loaded into a convection tube. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

# S3. Refinement

H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å,  $U_{iso}$ (H) 1.2 to 1.5 $U_{eq}$ (C)] and were included in the refinement in the riding model approximation.



# Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of  $Sn(NCS)_2(CH_3)_2(C_{22}H_{16}N_2)$  at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

# (4,7-Diphenyl-1,10-phenanthroline- $\kappa^2 N, N'$ ) dimethylbis(thiocyanato- $\kappa N$ ) tin(IV)

F(000) = 1200

 $\theta = 2.2 - 29.4^{\circ}$ 

 $\mu = 1.19 \text{ mm}^{-1}$ T = 100 K

Prism, colorless

 $R_{\rm int} = 0.031$ 

 $h = -17 \rightarrow 22$   $k = -10 \rightarrow 8$  $l = -23 \rightarrow 23$ 

 $0.20 \times 0.15 \times 0.10$  mm

 $T_{\min} = 0.797, T_{\max} = 0.890$ 13167 measured reflections 5710 independent reflections 4833 reflections with  $I > 2\sigma(I)$ 

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$ 

 $D_{\rm x} = 1.555 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 6689 reflections

### Crystal data

 $[Sn(CH_3)_2(NSC)_2(C_{24}H_{16}N_2)]$   $M_r = 597.31$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 17.1918 (2) Å b = 8.1907 (2) Å c = 18.3045 (3) Å  $\beta = 98.042$  (1)° V = 2552.16 (8) Å<sup>3</sup> Z = 4

### Data collection

| Agilent Technologies SuperNova Dual (Cu at           |
|------------------------------------------------------|
| zero)                                                |
| diffractometer with an Atlas detector                |
| Radiation source: SuperNova (Mo) X-ray               |
| Source                                               |
| Mirror monochromator                                 |
| Detector resolution: 10.4041 pixels mm <sup>-1</sup> |
| $\omega$ scans                                       |
| Absorption correction: multi-scan                    |
| (CrysAlis PRO; Agilent Technologies, 2010)           |

## Refinement

| Secondary atom site location: difference Fourier          |
|-----------------------------------------------------------|
| map                                                       |
| Hydrogen site location: inferred from                     |
| neighbouring sites                                        |
| H-atom parameters constrained                             |
| $w = 1/[\sigma^2(F_o^2) + (0.0372P)^2 + 1.3448P]$         |
| where $P = (F_o^2 + 2F_c^2)/3$                            |
| $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| $\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3}$ |
| $\Delta \rho_{\rm min} = -0.89 \text{ e} \text{ Å}^{-3}$  |
|                                                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|---------------|-----------------------------|--|
| Sn1 | 0.430971 (9) | 0.35713 (2)  | 0.153313 (10) | 0.02007 (7)                 |  |
| S1  | 0.39425 (6)  | 0.14565 (14) | -0.10042 (6)  | 0.0523 (3)                  |  |
| S2  | 0.15135 (4)  | 0.31635 (11) | 0.17421 (5)   | 0.03287 (19)                |  |
| N1  | 0.50393 (11) | 0.4293 (3)   | 0.26740 (12)  | 0.0188 (5)                  |  |
| N2  | 0.56572 (12) | 0.3760 (3)   | 0.14104 (13)  | 0.0183 (5)                  |  |
| N3  | 0.39761 (16) | 0.3004 (3)   | 0.03302 (14)  | 0.0346 (6)                  |  |
| N4  | 0.31366 (17) | 0.3499 (4)   | 0.1919 (2)    | 0.0528 (9)                  |  |
| C1  | 0.44834 (17) | 0.1079 (4)   | 0.17985 (18)  | 0.0308 (7)                  |  |
| H1A | 0.4090       | 0.0722       | 0.2104        | 0.046*                      |  |
| H1B | 0.5011       | 0.0924       | 0.2072        | 0.046*                      |  |
| H1C | 0.4430       | 0.0433       | 0.1344        | 0.046*                      |  |
| C2  | 0.41642 (17) | 0.6092 (4)   | 0.13329 (18)  | 0.0291 (7)                  |  |
|     |              |              |               |                             |  |

| H2A | 0 3711       | 0 6271     | 0 0953        | 0 044*     |
|-----|--------------|------------|---------------|------------|
| H2B | 0.4638       | 0.6534     | 0.1163        | 0.044*     |
| H2C | 0.4076       | 0.6645     | 0.1789        | 0.044*     |
| C3  | 0.59521 (15) | 0.3505 (4) | 0.07902 (16)  | 0.0225 (6) |
| H3  | 0.5613       | 0.3103     | 0.0375        | 0.027*     |
| C4  | 0.67354 (15) | 0.3796 (3) | 0.07169 (15)  | 0.0207 (6) |
| H4  | 0.6919       | 0.3584     | 0.0260        | 0.025*     |
| C5  | 0.72464 (14) | 0.4391 (3) | 0.13051 (15)  | 0.0178(5)  |
| C6  | 0.69505 (14) | 0.4625 (3) | 0.19856 (15)  | 0.0169 (5) |
| C7  | 0.61521 (14) | 0.4290 (3) | 0.20143 (14)  | 0.0174 (5) |
| C8  | 0.74140 (14) | 0.5247 (3) | 0.26383 (15)  | 0.0196 (6) |
| H8  | 0.7944       | 0.5553     | 0.2619        | 0.023*     |
| С9  | 0.71173 (14) | 0.5409 (4) | 0.32806 (15)  | 0.0202 (6) |
| Н9  | 0.7451       | 0.5773     | 0.3707        | 0.024*     |
| C10 | 0.63136 (14) | 0.5044 (3) | 0.33323 (15)  | 0.0171 (5) |
| C11 | 0.58269 (13) | 0.4536 (3) | 0.26895 (14)  | 0.0165 (5) |
| C12 | 0.59669 (14) | 0.5299 (3) | 0.39857 (15)  | 0.0176 (5) |
| C13 | 0.51612 (14) | 0.5121 (4) | 0.39372 (15)  | 0.0197 (6) |
| H13 | 0.4906       | 0.5346     | 0.4354        | 0.024*     |
| C14 | 0.47207 (14) | 0.4613 (4) | 0.32769 (15)  | 0.0208 (6) |
| H14 | 0.4169       | 0.4491     | 0.3259        | 0.025*     |
| C15 | 0.80687 (14) | 0.4777 (3) | 0.11987 (15)  | 0.0184 (6) |
| C16 | 0.81958 (15) | 0.5699 (4) | 0.05879 (16)  | 0.0230 (6) |
| H16 | 0.7761       | 0.6070     | 0.0251        | 0.028*     |
| C17 | 0.89580 (17) | 0.6081 (4) | 0.04668 (18)  | 0.0286 (7) |
| H17 | 0.9042       | 0.6746     | 0.0060        | 0.034*     |
| C18 | 0.95916 (16) | 0.5487 (4) | 0.09433 (17)  | 0.0290 (7) |
| H18 | 1.0111       | 0.5734     | 0.0858        | 0.035*     |
| C19 | 0.94723 (15) | 0.4538 (4) | 0.15416 (16)  | 0.0249 (6) |
| H19 | 0.9910       | 0.4115     | 0.1860        | 0.030*     |
| C20 | 0.87128 (14) | 0.4198 (4) | 0.16795 (15)  | 0.0204 (6) |
| H20 | 0.8633       | 0.3574     | 0.2100        | 0.024*     |
| C21 | 0.64392 (14) | 0.5755 (3) | 0.46954 (14)  | 0.0173 (5) |
| C22 | 0.71205 (15) | 0.4890 (4) | 0.49706 (16)  | 0.0228 (6) |
| H22 | 0.7295       | 0.4020     | 0.4691        | 0.027*     |
| C23 | 0.75401 (15) | 0.5293 (4) | 0.56471 (16)  | 0.0252 (6) |
| H23 | 0.7995       | 0.4684     | 0.5834        | 0.030*     |
| C24 | 0.73016 (16) | 0.6579 (4) | 0.60538 (16)  | 0.0246 (6) |
| H24 | 0.7591       | 0.6851     | 0.6518        | 0.030*     |
| C25 | 0.66399 (15) | 0.7464 (4) | 0.57809 (15)  | 0.0238 (6) |
| H25 | 0.6484       | 0.8365     | 0.6053        | 0.029*     |
| C26 | 0.62034 (14) | 0.7044 (3) | 0.51140 (15)  | 0.0185 (6) |
| H26 | 0.5740       | 0.7637     | 0.4939        | 0.022*     |
| C27 | 0.39747 (15) | 0.2339 (4) | -0.02074 (18) | 0.0276 (7) |
| C28 | 0.24557 (18) | 0.3359 (4) | 0.18306 (19)  | 0.0323 (7) |
|     |              |            |               |            |

Atomic displacement parameters  $(Å^2)$ 

|            | <i>U</i> <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>12</sup> | U <sup>13</sup> | $U^{23}$     |
|------------|------------------------|-----------------|-----------------|-----------------|-----------------|--------------|
| Sn1        | 0.01425 (10)           | 0.02700 (13)    | 0.01784 (12)    | -0.00130 (7)    | -0.00165 (7)    | 0.00103 (8)  |
| <b>S</b> 1 | 0.0643 (6)             | 0.0581 (7)      | 0.0384 (5)      | -0.0235 (5)     | 0.0209 (5)      | -0.0208 (5)  |
| S2         | 0.0185 (3)             | 0.0407 (5)      | 0.0401 (5)      | -0.0003 (3)     | 0.0063 (3)      | 0.0046 (4)   |
| N1         | 0.0156 (10)            | 0.0238 (13)     | 0.0168 (11)     | -0.0006 (9)     | 0.0011 (9)      | 0.0047 (10)  |
| N2         | 0.0172 (10)            | 0.0224 (13)     | 0.0150 (11)     | -0.0005 (9)     | 0.0010 (9)      | 0.0011 (10)  |
| N3         | 0.0547 (17)            | 0.0268 (15)     | 0.0194 (14)     | 0.0013 (13)     | -0.0052 (12)    | -0.0013 (12) |
| N4         | 0.0261 (15)            | 0.053 (2)       | 0.083 (3)       | -0.0066 (13)    | 0.0204 (16)     | -0.0049 (18) |
| C1         | 0.0262 (14)            | 0.0320 (18)     | 0.0321 (17)     | -0.0039 (12)    | -0.0038 (13)    | 0.0119 (14)  |
| C2         | 0.0287 (15)            | 0.0300 (18)     | 0.0275 (16)     | 0.0092 (12)     | 0.0004 (13)     | 0.0032 (14)  |
| C3         | 0.0210 (13)            | 0.0283 (17)     | 0.0169 (14)     | -0.0005 (11)    | -0.0017 (11)    | 0.0015 (12)  |
| C4         | 0.0206 (13)            | 0.0257 (16)     | 0.0161 (14)     | 0.0016 (11)     | 0.0037 (11)     | 0.0004 (12)  |
| C5         | 0.0189 (12)            | 0.0152 (14)     | 0.0198 (14)     | 0.0023 (10)     | 0.0042 (10)     | 0.0011 (11)  |
| C6         | 0.0151 (11)            | 0.0163 (14)     | 0.0196 (13)     | 0.0001 (10)     | 0.0038 (10)     | -0.0008 (11) |
| C7         | 0.0159 (12)            | 0.0173 (14)     | 0.0184 (13)     | 0.0011 (10)     | 0.0000 (10)     | 0.0032 (11)  |
| C8         | 0.0150 (11)            | 0.0192 (14)     | 0.0248 (15)     | -0.0007 (10)    | 0.0042 (10)     | -0.0043 (12) |
| C9         | 0.0151 (12)            | 0.0243 (15)     | 0.0207 (14)     | -0.0010 (10)    | 0.0008 (10)     | -0.0038 (12) |
| C10        | 0.0184 (12)            | 0.0133 (13)     | 0.0194 (14)     | 0.0013 (10)     | 0.0026 (10)     | 0.0025 (11)  |
| C11        | 0.0151 (11)            | 0.0155 (14)     | 0.0185 (13)     | -0.0004 (10)    | 0.0013 (10)     | 0.0016 (11)  |
| C12        | 0.0175 (12)            | 0.0164 (14)     | 0.0191 (14)     | 0.0017 (10)     | 0.0027 (10)     | 0.0028 (11)  |
| C13        | 0.0189 (12)            | 0.0241 (15)     | 0.0170 (14)     | 0.0007 (11)     | 0.0054 (10)     | 0.0031 (12)  |
| C14        | 0.0152 (12)            | 0.0295 (16)     | 0.0177 (14)     | -0.0023 (11)    | 0.0025 (10)     | 0.0041 (12)  |
| C15        | 0.0190 (12)            | 0.0161 (14)     | 0.0212 (14)     | 0.0004 (10)     | 0.0070 (11)     | -0.0067 (11) |
| C16        | 0.0250 (13)            | 0.0191 (15)     | 0.0254 (15)     | 0.0019 (11)     | 0.0057 (11)     | -0.0014 (13) |
| C17        | 0.0326 (15)            | 0.0247 (17)     | 0.0315 (17)     | -0.0055 (12)    | 0.0148 (14)     | -0.0041 (14) |
| C18        | 0.0230 (14)            | 0.0298 (18)     | 0.0365 (18)     | -0.0092 (12)    | 0.0125 (13)     | -0.0131 (15) |
| C19        | 0.0166 (12)            | 0.0310 (17)     | 0.0266 (16)     | -0.0002 (11)    | 0.0021 (11)     | -0.0131 (13) |
| C20        | 0.0213 (12)            | 0.0199 (15)     | 0.0203 (14)     | -0.0014 (11)    | 0.0047 (11)     | -0.0064 (12) |
| C21        | 0.0174 (12)            | 0.0188 (14)     | 0.0160 (13)     | -0.0029 (10)    | 0.0031 (10)     | 0.0004 (12)  |
| C22        | 0.0211 (13)            | 0.0184 (15)     | 0.0281 (16)     | -0.0003 (10)    | 0.0014 (11)     | -0.0013 (12) |
| C23        | 0.0179 (12)            | 0.0290 (17)     | 0.0269 (16)     | 0.0004 (11)     | -0.0030 (11)    | 0.0037 (13)  |
| C24        | 0.0205 (13)            | 0.0340 (18)     | 0.0191 (15)     | -0.0082 (12)    | 0.0016 (11)     | -0.0003 (13) |
| C25        | 0.0271 (14)            | 0.0257 (16)     | 0.0204 (15)     | -0.0036 (12)    | 0.0102 (11)     | -0.0046 (13) |
| C26        | 0.0167 (12)            | 0.0197 (14)     | 0.0192 (14)     | -0.0005 (10)    | 0.0034 (10)     | 0.0016 (12)  |
| C27        | 0.0185 (13)            | 0.0306 (18)     | 0.0321 (18)     | -0.0043 (12)    | -0.0017 (12)    | 0.0093 (15)  |
| C28        | 0.0285 (16)            | 0.0304 (18)     | 0.040 (2)       | -0.0006 (12)    | 0.0132 (14)     | 0.0021 (15)  |

# Geometric parameters (Å, °)

| Sn1—C2 | 2.106 (3) | C9—C10  | 1.430 (3) |  |
|--------|-----------|---------|-----------|--|
| Sn1—C1 | 2.110 (3) | С9—Н9   | 0.9500    |  |
| Sn1—N4 | 2.229 (3) | C10—C11 | 1.408 (4) |  |
| Sn1—N3 | 2.245 (3) | C10—C12 | 1.424 (4) |  |
| Sn1—N1 | 2.356 (2) | C12—C13 | 1.383 (3) |  |
| Sn1—N2 | 2.364 (2) | C12—C21 | 1.480 (4) |  |
| S1—C27 | 1.622 (3) | C13—C14 | 1.397 (4) |  |
|        |           |         |           |  |

| S2—C28                           | 1.613 (3)              | С13—Н13                             | 0.9500               |
|----------------------------------|------------------------|-------------------------------------|----------------------|
| N1—C14                           | 1.325 (3)              | C14—H14                             | 0.9500               |
| N1—C11                           | 1.365 (3)              | C15—C16                             | 1.392 (4)            |
| N2—C3                            | 1.323 (4)              | C15—C20                             | 1.397 (4)            |
| N2—C7                            | 1.368 (3)              | C16—C17                             | 1.395 (4)            |
| N3—C27                           | 1.125 (4)              | С16—Н16                             | 0.9500               |
| N4—C28                           | 1.165 (4)              | C17—C18                             | 1.385 (4)            |
| C1—H1A                           | 0.9800                 | С17—Н17                             | 0.9500               |
| C1—H1B                           | 0.9800                 | C18 - C19                           | 1 382 (4)            |
| C1—H1C                           | 0.9800                 | C18—H18                             | 0.9500               |
| $C_2$ $H_2$ $A$                  | 0.9800                 | C19-C20                             | 1 392 (3)            |
| $C_2 = H_2 R$                    | 0.9800                 | $C_{10} = 0.000$                    | 1.392(3)             |
| C2—112B                          | 0.9800                 | C19—1119                            | 0.9300               |
| $C_2 = C_4$                      | 0.9800                 | C20—H20                             | 0.9300               |
| $C_3 = U_2$                      | 1.392 (4)              | $C_{21} = C_{20}$                   | 1.397 (4)            |
| C3—H3                            | 0.9500                 | C21—C22                             | 1.401 (4)            |
| C4—C5                            | 1.380 (4)              | C22—C23                             | 1.383 (4)            |
| C4—H4                            | 0.9500                 | C22—H22                             | 0.9500               |
| C5—C6                            | 1.423 (4)              | C23—C24                             | 1.384 (4)            |
| C5—C15                           | 1.488 (3)              | C23—H23                             | 0.9500               |
| C6—C7                            | 1.408 (3)              | C24—C25                             | 1.382 (4)            |
| C6—C8                            | 1.434 (4)              | C24—H24                             | 0.9500               |
| C7—C11                           | 1.440 (4)              | C25—C26                             | 1.384 (4)            |
| C8—C9                            | 1.352 (4)              | C25—H25                             | 0.9500               |
| С8—Н8                            | 0.9500                 | C26—H26                             | 0.9500               |
|                                  |                        |                                     |                      |
| C2—Sn1—C1                        | 176.61 (12)            | С10—С9—Н9                           | 119.2                |
| C2—Sn1—N4                        | 89.45 (12)             | C11—C10—C12                         | 118.4 (2)            |
| C1—Sn1—N4                        | 90.38 (12)             | C11—C10—C9                          | 118.2 (2)            |
| C2—Sn1—N3                        | 91.41 (12)             | C12—C10—C9                          | 123.1 (2)            |
| C1—Sn1—N3                        | 91.95 (12)             | N1—C11—C10                          | 122.2 (2)            |
| N4—Sn1—N3                        | 100.76 (12)            | N1—C11—C7                           | 117.7 (2)            |
| C2—Sn1—N1                        | 86.78 (11)             | C10—C11—C7                          | 120.1 (2)            |
| C1—Sn1—N1                        | 89.89 (11)             | C13—C12—C10                         | 117.6 (2)            |
| N4— $Sn1$ — $N1$                 | 96 84 (11)             | $C_{13}$ $C_{12}$ $C_{21}$          | 120.3(2)             |
| $N_3$ — $S_n_1$ — $N_1$          | 162 29 (9)             | C10-C12-C21                         | 120.3(2)<br>1221(2)  |
| $C_2$ —Sn1—N2                    | 90.76 (10)             | $C_{12}$ $C_{12}$ $C_{13}$ $C_{14}$ | 122.1(2)<br>120.2(2) |
| C1— $Sn1$ — $N2$                 | 88 64 (10)             | $C_{12} = C_{13} = H_{13}$          | 110.2 (2)            |
| $N_{1} = N_{1} = N_{2}$          | 166.05(11)             | $C_{12} = C_{13} = H_{13}$          | 110.0                |
| N4 = SI11 = IN2 $N2 = Sin1 = N2$ | 100.33(11)<br>02.27(0) | C14 - C13 - 1113                    | 119.9<br>122.0(2)    |
| $N_{1} = S_{11} = N_{2}$         | 92.27 (9)<br>70.15 (7) | N1 = C14 = U14                      | 122.9 (2)            |
| N1 = SI11 = N2                   | /0.13 (/)              | NI = C14 = H14                      | 118.0                |
|                                  | 118.6 (2)              | C13—C14—H14                         | 118.6                |
| $C_{14}$ NI $S_{11}$             | 123.85 (16)            | C10-C15-C20                         | 119.4 (2)            |
| C11—N1—Sn1                       | 11/.30(16)             | C16—C15—C5                          | 118.7 (2)            |
| C3—N2—C7                         | 118.3 (2)              | C20—C15—C5                          | 122.0 (2)            |
| C3—N2—Sn1                        | 124.71 (18)            | C15—C16—C17                         | 120.4 (3)            |
| C7—N2—Sn1                        | 116.81 (16)            | C15—C16—H16                         | 119.8                |
| C27—N3—Sn1                       | 158.1 (3)              | C17—C16—H16                         | 119.8                |
| C28—N4—Sn1                       | 153.5 (3)              | C18—C17—C16                         | 119.6 (3)            |

| Sn1—C1—H1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | C18—C17—H17                         | 120.2                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------|----------------------|
| Sn1—C1—H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | C16—C17—H17                         | 120.2                |
| H1A—C1—H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | C19—C18—C17                         | 120.4 (2)            |
| Sn1—C1—H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | C19—C18—H18                         | 119.8                |
| H1A—C1—H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | C17—C18—H18                         | 119.8                |
| H1B—C1—H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | C18—C19—C20                         | 120.2 (3)            |
| Sn1—C2—H2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | С18—С19—Н19                         | 119.9                |
| Sn1—C2—H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | С20—С19—Н19                         | 119.9                |
| H2A—C2—H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | C19—C20—C15                         | 119.9 (3)            |
| Sn1—C2—H2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | С19—С20—Н20                         | 120.0                |
| H2A—C2—H2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | С15—С20—Н20                         | 120.0                |
| H2B-C2-H2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 | C26—C21—C22                         | 118.5 (2)            |
| N2-C3-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123.2 (3)             | $C_{26} = C_{21} = C_{12}$          | 120.4(2)             |
| N2-C3-H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118.4                 | $C_{22}$ $C_{21}$ $C_{12}$          | 121.1(3)             |
| C4—C3—H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118.4                 | $C_{23}$ $C_{22}$ $C_{21}$          | 120.4(3)             |
| $C_{5}-C_{4}-C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 3 (3)             | $C_{23}$ $C_{22}$ $H_{22}$          | 119.8                |
| C5-C4-H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.9                 | $C_{21}$ $C_{22}$ $H_{22}$          | 119.8                |
| $C_3 - C_4 - H_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.9                 | $C^{22}$ $C^{23}$ $C^{24}$          | 1204(3)              |
| C4-C5-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117.6 (2)             | $C_{22} = C_{23} = H_{23}$          | 119.8                |
| C4-C5-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.1 (2)             | $C_{24}$ $C_{23}$ $H_{23}$          | 119.8                |
| $C_{1} = C_{1} = C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.1(2)<br>123.3(2)  | $C_{24} = C_{23} = C_{23}$          | 119.0<br>119.7(3)    |
| $C_{7}$ $C_{6}$ $C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1125.5(2)<br>118.4(2) | $C_{25} = C_{24} = H_{24}$          | 120.2                |
| C7 - C6 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.0(2)              | $C_{23} = C_{24} = H_{24}$          | 120.2                |
| $C_{5}$ $C_{6}$ $C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123.5(2)              | $C_{23} = C_{24} = C_{25} = C_{26}$ | 120.2<br>120.4(3)    |
| $N_{2} - C_{7} - C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123.3(2)<br>122.1(2)  | $C_{24} = C_{25} = C_{20}$          | 119.8                |
| $N_2 = C_7 = C_1^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122.1(2)<br>117.8(2)  | $C_{24} = C_{25} = H_{25}$          | 119.8                |
| C6-C7-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117.0(2)<br>1201(2)   | $C_{20} = C_{20} = C_{20} = C_{20}$ | 119.6                |
| $C_{0}$ $C_{8}$ $C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.1(2)<br>121.8(2)  | $C_{25} = C_{20} = C_{21}$          | 120.0 (2)            |
| C9-C8-H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.1                 | $C_{23} = C_{20} = H_{20}$          | 119.7                |
| C6 C8 H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.1                 | N3 C27 S1                           | 176.0 (3)            |
| $C_{8}$ $C_{9}$ $C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.1<br>121.5(2)     | N/ C28 S2                           | 170.9(3)<br>177.8(4) |
| $C_8 = C_9 = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.3 (2)             | 114-020-52                          | 177.8 (4)            |
| C8-C9-II9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.2                 |                                     |                      |
| $C_{2}$ Sp1 N1 C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85 1 (2)              | C8-C9-C10-C11                       | -12(4)               |
| $C1_{N1}_{N1}_{N1}_{N1}_{N1}_{N1}_{N1}_{N1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -943(2)               | $C_{8} - C_{9} - C_{10} - C_{12}$   | -175.8(3)            |
| $N_{1} = N_{1} = N_{1} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -39(2)                | $C_{14}$ N1 $-C_{11}$ $-C_{10}$     | 2 8 (4)              |
| $N_3$ _Sn1_N1_C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 169.6.(3)             | $n_{1} = N_{1} = C_{11} = C_{10}$   | 177.00(19)           |
| $N_{2}=S_{n1}=N_{1}=C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107.0(3)              | C14 N1 $-C11$ $-C7$                 | -175.8(2)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -887(2)               | $S_{n1}$ N1 C11 C7                  | -16(3)               |
| $C_{1}$ $S_{1}$ $N_{1}$ $C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91.9(2)               | $C_{12} - C_{10} - C_{11} - N_{11}$ | 1.0(3)               |
| $N_{\rm M}$ Sp1 N1 C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1777(2)              | $C_{12} = C_{10} = C_{11} = N_1$    | -1745(3)             |
| $N_{1} = S_{11} = N_{1} = C_{11}$ $N_{3} = S_{11} = N_{1} = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -42(4)                | $C_{12} = C_{10} = C_{11} = C_{12}$ | 174.3(3)             |
| $N_2 = Sn_1 = N_1 = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.2(4)                | $C_{12} = C_{10} = C_{11} = C_7$    | 1/9.0(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -03 A (2)             | $N_2 = C_1 = C_1 = C_1$             | -28(4)               |
| $C_2 = S_{11} = N_2 = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.4 (2)<br>80.0 (2)  | 102 - 0.7 - 0.11 - 101              | 2.0(4)               |
| $C_1 = S_{111} = IN2 = C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2) (2) (2) (4)       | $N_2 = C_7 = C_{11} = C_{10}$       | 1786(2)              |
| 104 - 5111 - 102 - C5<br>N2 Sp1 N2 C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -20(2)                | 102 - 0.7 - 0.11 - 0.10             | -28(4)               |
| $\frac{113}{5} - \frac{511}{112} - \frac{112}{5} - $ | 2.0(2)<br>-170.7(2)   | $C_{11} = C_{10} = C_{12} = C_{12}$ | -2.6(4)              |
| N1 - SIII - N2 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1/9.7(2)             | $U_{11} - U_{10} - U_{12} - U_{13}$ | -3.0 (4)             |

| C2—Sn1—N2—C7  | 81.6 (2)   | C9—C10—C12—C13  | 171.0 (3)  |
|---------------|------------|-----------------|------------|
| C1—Sn1—N2—C7  | -95.1 (2)  | C11—C10—C12—C21 | 177.0 (3)  |
| N4—Sn1—N2—C7  | -9.3 (6)   | C9—C10—C12—C21  | -8.4 (4)   |
| N3—Sn1—N2—C7  | 173.0 (2)  | C10-C12-C13-C14 | 3.7 (4)    |
| N1—Sn1—N2—C7  | -4.72 (18) | C21—C12—C13—C14 | -176.8 (3) |
| C2—Sn1—N3—C27 | 147.3 (7)  | C11—N1—C14—C13  | -2.8 (4)   |
| C1—Sn1—N3—C27 | -32.2 (7)  | Sn1—N1—C14—C13  | -176.6 (2) |
| N4—Sn1—N3—C27 | -123.0 (7) | C12-C13-C14-N1  | -0.5 (4)   |
| N1—Sn1—N3—C27 | 63.5 (8)   | C4—C5—C15—C16   | 47.9 (4)   |
| N2—Sn1—N3—C27 | 56.5 (7)   | C6-C5-C15-C16   | -131.2 (3) |
| C2—Sn1—N4—C28 | 88.5 (7)   | C4—C5—C15—C20   | -130.0 (3) |
| C1—Sn1—N4—C28 | -94.8 (7)  | C6-C5-C15-C20   | 50.9 (4)   |
| N3—Sn1—N4—C28 | -2.8 (7)   | C20-C15-C16-C17 | -1.8 (4)   |
| N1—Sn1—N4—C28 | 175.2 (7)  | C5-C15-C16-C17  | -179.7 (3) |
| N2—Sn1—N4—C28 | 179.5 (5)  | C15—C16—C17—C18 | 2.4 (4)    |
| C7—N2—C3—C4   | -2.0 (4)   | C16—C17—C18—C19 | -0.8 (5)   |
| Sn1—N2—C3—C4  | 172.9 (2)  | C17—C18—C19—C20 | -1.4 (4)   |
| N2—C3—C4—C5   | -0.5 (4)   | C18—C19—C20—C15 | 2.0 (4)    |
| C3—C4—C5—C6   | 2.5 (4)    | C16—C15—C20—C19 | -0.4 (4)   |
| C3—C4—C5—C15  | -176.6 (3) | C5-C15-C20-C19  | 177.5 (3)  |
| C4—C5—C6—C7   | -2.0 (4)   | C13—C12—C21—C26 | -47.3 (4)  |
| C15—C5—C6—C7  | 177.1 (3)  | C10-C12-C21-C26 | 132.1 (3)  |
| C4—C5—C6—C8   | -179.4 (3) | C13—C12—C21—C22 | 131.4 (3)  |
| C15—C5—C6—C8  | -0.3 (4)   | C10-C12-C21-C22 | -49.3 (4)  |
| C3—N2—C7—C6   | 2.4 (4)    | C26—C21—C22—C23 | 1.0 (4)    |
| Sn1—N2—C7—C6  | -172.9 (2) | C12—C21—C22—C23 | -177.7 (3) |
| C3—N2—C7—C11  | -178.9 (2) | C21—C22—C23—C24 | -1.3 (4)   |
| Sn1—N2—C7—C11 | 5.8 (3)    | C22—C23—C24—C25 | 0.0 (4)    |
| C5—C6—C7—N2   | -0.4(4)    | C23—C24—C25—C26 | 1.8 (4)    |
| C8—C6—C7—N2   | 177.1 (2)  | C24—C25—C26—C21 | -2.1 (4)   |
| C5—C6—C7—C11  | -179.0 (2) | C22—C21—C26—C25 | 0.8 (4)    |
| C8—C6—C7—C11  | -1.4 (4)   | C12—C21—C26—C25 | 179.4 (2)  |
| C7—C6—C8—C9   | 4.5 (4)    | Sn1—N3—C27—S1   | -174 (5)   |
| C5—C6—C8—C9   | -178.1 (3) | Sn1—N4—C28—S2   | 171 (8)    |
| C6—C8—C9—C10  | -3.2 (4)   |                 |            |
|               |            |                 |            |