organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­benzyl-2,2′-(3,6-dioxa­octane-1,8-diyldi­­oxy)dibenzamide

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: wenyyhh@126.com

(Received 14 November 2010; accepted 14 January 2011; online 22 January 2011)

The title compound, C34H36N2O6, located on a center of inversion, crystallizes with one half-mol­ecule in the asymmetric unit. The dihedral angle between the benzene rings is 86.19 (2)°. An intra­molecular N—H⋯O hydrogen bond forms a six-membered ring; it affects the conformation of the mol­ecule which adopts a folded rather than open conformation. The crystal packing is stabilized by inter­molecular C—H⋯O inter­actions.

Related literature

For background to the applications of amide-type acyclic polyethers, see: Wen et al. (2002[Wen, Y. H., Lahiri, S., Qin, Z., Wu, X. L. & Liu, W. S. (2002). J. Radioanal. Nucl. Chem. 253, 263-265.], 2008[Wen, Y.-H., Zhang, K. & Zhang, S. S. (2008). J. Coord. Chem. 61, 1157-1164.]); Lehn et al. (1995[Lehn, J. M. (1995). Supramolecular Chemistry, p. 61. New York: VCH Publisher.]). For related structures of amide-type acyclic polyethers, see: Wen et al. (2005[Wen, Y.-H., Li, M.-J., Zhang, S.-S. & Li, X.-M. (2005). Acta Cryst. E61, o3373-o3374.], 2008[Wen, Y.-H., Zhang, K. & Zhang, S. S. (2008). J. Coord. Chem. 61, 1157-1164.]).

[Scheme 1]

Experimental

Crystal data
  • C34H36N2O6

  • Mr = 568.65

  • Monoclinic, P 21 /c

  • a = 12.065 (3) Å

  • b = 15.964 (4) Å

  • c = 8.251 (2) Å

  • β = 104.820 (5)°

  • V = 1536.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.983

  • 7850 measured reflections

  • 2707 independent reflections

  • 1284 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.149

  • S = 1.00

  • 2707 reflections

  • 190 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.97 2.645 (3) 135
C15—H15B⋯O1i 0.97 2.69 3.580 (5) 152
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Increasing attention has focused on acyclic polyether compounds, due to their complexing ability (Wen et al., 2008), selectivity (Wen et al., 2002) to metal ions and their potential application in supramolecular chemistry (Lehn et al., 1995). In our ongoing studies of structures and properties of diamide-type acyclic polyethers, a new flexible acyclic polyether ligand 3,6-dioxa-1,8-octylenedi(N-benzyl-salicylamide) was synthesized. Herein we report the synthesis and structure of the title compound, (Fig. 1).

The title compound crystallizes in the monoclinic space group P21/c. The asymmetric unit of the title compound contains one half-molecule, the other half being related by a crystallographic center of inversion (Fig. 1). All bond lengths and angles in the title compound are within normal ranges, and comparable with those in the related compounds (Wen et al., 2005, & Wen et al., 2008). In the asymmetric unit, the dihedral angle between two benzene rings is 86.19 (2)°. An intramolecular N(1)—H(1)···O(2) hydrogen bond (Table 1) forms a six-numbered ring, and affects the conformation of the molecule which thus adopts a folded rather than open conformation. The crystal packing is stabilized by intermolecular C(15)—H(15B)···O(1) short-contact interactions (Table 1).

Related literature top

For background to the applications of amide-type acyclic polyethers, see: Wen et al. (2002, 2008); Lehn et al. (1995). For related structures of amide-type acyclic polyethers, see: Wen et al. (2005, 2008).

Experimental top

The title compound was synthesized according to literature method (Wen et al., 2008). Colourless single cystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution over a period of 5 d.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.95–0.99 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N). In the refinement, SIMU was used to restraint the displacement parameters of the atoms N1, C7, C6, C5, C1, C2 and C3 to move similarly.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids, Unlabelled atoms are related to labelled atoms by the symmetry operator (1 - x,2 - y,-z).
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the a axis.
N,N'-Dibenzyl-2,2'-(3,6-dioxaoctane-1,8-diyldioxy)dibenzamide top
Crystal data top
C34H36N2O6F(000) = 604
Mr = 568.65Dx = 1.229 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1307 reflections
a = 12.065 (3) Åθ = 2.6–20.3°
b = 15.964 (4) ŵ = 0.08 mm1
c = 8.251 (2) ÅT = 294 K
β = 104.820 (5)°Prism, colourless
V = 1536.3 (7) Å30.24 × 0.20 × 0.16 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2707 independent reflections
Radiation source: fine-focus sealed tube1284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.976, Tmax = 0.983k = 1818
7850 measured reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.3181P]
where P = (Fo2 + 2Fc2)/3
2707 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.21 e Å3
36 restraintsΔρmin = 0.17 e Å3
Crystal data top
C34H36N2O6V = 1536.3 (7) Å3
Mr = 568.65Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.065 (3) ŵ = 0.08 mm1
b = 15.964 (4) ÅT = 294 K
c = 8.251 (2) Å0.24 × 0.20 × 0.16 mm
β = 104.820 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2707 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1284 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.983Rint = 0.041
7850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04836 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
2707 reflectionsΔρmin = 0.17 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8814 (2)0.90823 (13)0.7723 (3)0.1004 (8)
O20.83284 (14)1.05219 (11)0.3438 (2)0.0662 (5)
O30.63670 (17)1.03915 (16)0.0958 (3)0.0971 (8)
N10.7835 (2)0.91898 (14)0.5028 (3)0.0738 (7)
H10.76650.95040.41520.089*
C10.5392 (3)0.7869 (2)0.3307 (5)0.1097 (13)
H1A0.57560.75210.26990.132*
C20.4202 (4)0.7860 (3)0.2970 (5)0.1218 (14)
H20.37800.75040.21470.146*
C30.3657 (3)0.8361 (2)0.3827 (5)0.0925 (10)
H30.28610.83550.36030.111*
C40.4281 (3)0.88690 (19)0.5011 (4)0.0820 (10)
H40.39130.92190.56110.098*
C50.5463 (3)0.88771 (18)0.5347 (4)0.0750 (9)
H50.58780.92350.61720.090*
C60.6031 (3)0.83769 (17)0.4504 (4)0.0670 (8)
C70.7328 (3)0.83619 (18)0.4915 (5)0.0901 (10)
H7B0.76190.80740.59740.108*
H7A0.75640.80450.40570.108*
C80.8553 (3)0.94947 (19)0.6421 (4)0.0679 (8)
C90.9030 (2)1.03553 (16)0.6358 (3)0.0562 (7)
C100.9664 (3)1.0684 (2)0.7883 (4)0.0741 (9)
H100.97541.03630.88480.089*
C111.0157 (3)1.1460 (2)0.8009 (4)0.0831 (10)
H111.05761.16580.90450.100*
C121.0031 (2)1.1942 (2)0.6606 (4)0.0752 (9)
H121.03601.24720.66870.090*
C130.9419 (2)1.16458 (18)0.5074 (4)0.0644 (8)
H130.93341.19780.41240.077*
C140.8926 (2)1.08525 (17)0.4938 (3)0.0549 (7)
C150.8169 (2)1.09965 (18)0.1928 (3)0.0706 (8)
H15B0.89011.11110.16910.085*
H15A0.77961.15250.20290.085*
C160.7438 (2)1.0481 (2)0.0572 (4)0.0816 (9)
H16B0.73411.07550.05040.098*
H16A0.77860.99360.05240.098*
C170.5563 (2)0.9992 (3)0.0245 (4)0.1032 (12)
H17A0.57970.94180.03520.124*
H17B0.54771.02700.13160.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1298 (19)0.0877 (16)0.0854 (16)0.0126 (13)0.0307 (15)0.0363 (13)
O20.0697 (12)0.0723 (12)0.0529 (12)0.0104 (10)0.0088 (10)0.0102 (10)
O30.0592 (12)0.166 (2)0.0638 (13)0.0177 (13)0.0111 (11)0.0132 (14)
N10.0729 (15)0.0547 (15)0.094 (2)0.0021 (12)0.0223 (15)0.0136 (13)
C10.104 (3)0.111 (3)0.135 (3)0.023 (2)0.070 (3)0.057 (3)
C20.109 (3)0.143 (4)0.123 (3)0.039 (3)0.048 (3)0.060 (3)
C30.078 (2)0.095 (3)0.112 (3)0.005 (2)0.038 (2)0.004 (2)
C40.093 (3)0.063 (2)0.104 (3)0.0074 (18)0.052 (2)0.0007 (19)
C50.088 (2)0.060 (2)0.082 (2)0.0002 (16)0.0303 (19)0.0095 (15)
C60.080 (2)0.0470 (17)0.084 (2)0.0002 (15)0.0404 (18)0.0021 (15)
C70.082 (2)0.061 (2)0.136 (3)0.0042 (17)0.042 (2)0.0050 (19)
C80.0675 (18)0.069 (2)0.072 (2)0.0162 (16)0.0270 (17)0.0122 (18)
C90.0540 (15)0.0587 (17)0.0592 (18)0.0141 (13)0.0206 (14)0.0100 (14)
C100.085 (2)0.082 (2)0.056 (2)0.0255 (18)0.0178 (17)0.0048 (17)
C110.085 (2)0.090 (3)0.072 (2)0.015 (2)0.0155 (19)0.021 (2)
C120.0698 (19)0.075 (2)0.083 (2)0.0045 (16)0.0235 (18)0.021 (2)
C130.0664 (17)0.0639 (19)0.068 (2)0.0026 (15)0.0261 (16)0.0025 (15)
C140.0453 (14)0.0676 (19)0.0531 (17)0.0065 (13)0.0152 (13)0.0018 (14)
C150.0653 (18)0.087 (2)0.0589 (18)0.0016 (16)0.0151 (15)0.0157 (16)
C160.0552 (18)0.129 (3)0.060 (2)0.0024 (18)0.0141 (16)0.0139 (19)
C170.077 (2)0.161 (3)0.071 (2)0.031 (2)0.0201 (19)0.019 (2)
Geometric parameters (Å, º) top
O1—C81.231 (3)C7—H7A0.9700
O2—C141.369 (3)C8—C91.496 (4)
O2—C151.429 (3)C9—C141.394 (3)
O3—C171.356 (3)C9—C101.397 (4)
O3—C161.415 (3)C10—C111.365 (4)
N1—C81.341 (3)C10—H100.9300
N1—C71.449 (3)C11—C121.366 (4)
N1—H10.8600C11—H110.9300
C1—C61.356 (4)C12—C131.374 (4)
C1—C21.392 (5)C12—H120.9300
C1—H1A0.9300C13—C141.391 (4)
C2—C31.345 (4)C13—H130.9300
C2—H20.9300C15—C161.484 (4)
C3—C41.343 (4)C15—H15B0.9700
C3—H30.9300C15—H15A0.9700
C4—C51.381 (4)C16—H16B0.9700
C4—H40.9300C16—H16A0.9700
C5—C61.355 (4)C17—C17i1.514 (6)
C5—H50.9300C17—H17A0.9700
C6—C71.514 (4)C17—H17B0.9700
C7—H7B0.9700
C14—O2—C15120.4 (2)C10—C9—C8116.2 (3)
C17—O3—C16113.9 (2)C11—C10—C9122.5 (3)
C8—N1—C7123.7 (3)C11—C10—H10118.8
C8—N1—H1118.1C9—C10—H10118.8
C7—N1—H1118.1C10—C11—C12119.6 (3)
C6—C1—C2121.1 (3)C10—C11—H11120.2
C6—C1—H1A119.4C12—C11—H11120.2
C2—C1—H1A119.4C11—C12—C13120.2 (3)
C3—C2—C1120.5 (3)C11—C12—H12119.9
C3—C2—H2119.8C13—C12—H12119.9
C1—C2—H2119.8C12—C13—C14120.3 (3)
C4—C3—C2118.9 (3)C12—C13—H13119.8
C4—C3—H3120.5C14—C13—H13119.8
C2—C3—H3120.5O2—C14—C13122.6 (2)
C3—C4—C5120.6 (3)O2—C14—C9117.0 (2)
C3—C4—H4119.7C13—C14—C9120.4 (3)
C5—C4—H4119.7O2—C15—C16106.5 (2)
C6—C5—C4121.6 (3)O2—C15—H15B110.4
C6—C5—H5119.2C16—C15—H15B110.4
C4—C5—H5119.2O2—C15—H15A110.4
C5—C6—C1117.3 (3)C16—C15—H15A110.4
C5—C6—C7121.6 (3)H15B—C15—H15A108.6
C1—C6—C7121.1 (3)O3—C16—C15106.7 (2)
N1—C7—C6113.2 (2)O3—C16—H16B110.4
N1—C7—H7B108.9C15—C16—H16B110.4
C6—C7—H7B108.9O3—C16—H16A110.4
N1—C7—H7A108.9C15—C16—H16A110.4
C6—C7—H7A108.9H16B—C16—H16A108.6
H7B—C7—H7A107.7O3—C17—C17i108.6 (3)
O1—C8—N1121.3 (3)O3—C17—H17A110.0
O1—C8—C9120.5 (3)C17i—C17—H17A110.0
N1—C8—C9118.3 (3)O3—C17—H17B110.0
C14—C9—C10117.0 (3)C17i—C17—H17B110.0
C14—C9—C8126.8 (3)H17A—C17—H17B108.3
C6—C1—C2—C30.3 (6)C14—C9—C10—C110.7 (4)
C1—C2—C3—C40.0 (6)C8—C9—C10—C11179.5 (3)
C2—C3—C4—C50.1 (5)C9—C10—C11—C120.2 (5)
C3—C4—C5—C60.1 (5)C10—C11—C12—C130.5 (5)
C4—C5—C6—C10.4 (5)C11—C12—C13—C140.2 (4)
C4—C5—C6—C7177.7 (3)C15—O2—C14—C131.1 (4)
C2—C1—C6—C50.5 (5)C15—O2—C14—C9179.1 (2)
C2—C1—C6—C7177.6 (3)C12—C13—C14—O2178.7 (2)
C8—N1—C7—C6119.0 (3)C12—C13—C14—C91.2 (4)
C5—C6—C7—N148.7 (4)C10—C9—C14—O2178.5 (2)
C1—C6—C7—N1133.4 (3)C8—C9—C14—O20.2 (4)
C7—N1—C8—O11.2 (4)C10—C9—C14—C131.3 (4)
C7—N1—C8—C9179.0 (2)C8—C9—C14—C13180.0 (2)
O1—C8—C9—C14171.6 (3)C14—O2—C15—C16176.8 (2)
N1—C8—C9—C148.5 (4)C17—O3—C16—C15174.7 (3)
O1—C8—C9—C107.1 (4)O2—C15—C16—O363.9 (3)
N1—C8—C9—C10172.7 (2)C16—O3—C17—C17i174.9 (4)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.972.645 (3)135
C15—H15B···O1ii0.972.693.580 (5)152
Symmetry code: (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC34H36N2O6
Mr568.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.065 (3), 15.964 (4), 8.251 (2)
β (°) 104.820 (5)
V3)1536.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7850, 2707, 1284
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.149, 1.00
No. of reflections2707
No. of parameters190
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.972.645 (3)135
C15—H15B···O1i0.972.693.580 (5)152
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20971076) and the Outstanding Adult–Young Scientific Research Encouraging Foundation of Shandong Province, China (No. 2008BS0901).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLehn, J. M. (1995). Supramolecular Chemistry, p. 61. New York: VCH Publisher.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Y. H., Lahiri, S., Qin, Z., Wu, X. L. & Liu, W. S. (2002). J. Radioanal. Nucl. Chem. 253, 263–265.  Web of Science CrossRef CAS Google Scholar
First citationWen, Y.-H., Li, M.-J., Zhang, S.-S. & Li, X.-M. (2005). Acta Cryst. E61, o3373–o3374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, Y.-H., Zhang, K. & Zhang, S. S. (2008). J. Coord. Chem. 61, 1157–1164.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds