metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of *cyclo*-tetrakis(*µ*-5,10,15,20-tetra-4-pyridylporphyrinato)tetrazinc(II) dimethylformamide octasolvate trihydrate at 100 K

Rüdiger W. Seidel,^a* Jürgen Graf,^b Richard Goddard^c and Iris M. Oppel^d

^aLehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany, ^bIncoatec GmbH, Max-Planck-Strasse 2, 21502 Geesthacht, Germany, ^cMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany, and ^dInstitut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074 Aachen, Germany

Correspondence e-mail: Ruediger.Seidel@rub.de

Received 2 December 2010; accepted 13 January 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; some non-H atoms missing; R factor = 0.042; wR factor = 0.108; data-to-parameter ratio = 17.5.

The structure of the title compound, $[Zn_4(C_{40}H_{24}N_8)_4]$ -8C₃H₇NO·3H₂O, has been redetermined at 100 K. The redetermination is of significantly higher precision and gives further insight into the disorder of pyridyl groups and solvent molecules. The molecules of (5,10,15,20-tetra-4-pyridyl-porphyrinato)zinc(II) (ZnTPyP) form homomolecular cyclic tetramers by coordination of a peripheral pyridyl group to the central Zn atom of an adjacent symmetry-related molecule. The tetramer so formed exhibits molecular S_4 symmetry and is located about a crystallographic fourfold rotoinversion axis. Severely disordered dimethylformamide and water molecules are present in the crystal, the contributions of which were omitted from refinement. Intermolecular C-H···N hydrogen bonding is observed.

Related literature

For the structure at 200 K, see: Seidel *et al.* (2010). For the 2chlorophenol solvate of cyclic tetrameric ZnTPyP, see: Lipstman & Goldberg (2010). For a review article on structural motifs in coordination polymers of the 5,10,15,20-tetra4pyridylporphyrin ligand, see: DeVries & Choe (2009). For the supramolecular chemistry of ZnTPyP in the solid-state, see: Lipstman & Goldberg (2010); Seidel *et al.* (2010) and references cited therein. For a description of the I μ S microfocus X-ray source used in the present study, see: Graf (2008); Schulz *et al.* (2009). For *PLATON / SQUEEZE*, see: van der Sluis & Spek (1990); Spek (2009). For a description of the program *COOT*, see: Emsley *et al.* (2010).

Z = 2

Cu $K\alpha$ radiation

 $0.16 \times 0.04 \times 0.02 \ \mathrm{mm}$

44415 measured reflections

7723 independent reflections

6768 reflections with $I > 2\sigma(I)$

 $\mu = 1.24 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int}=0.018$

Experimental

Crystal data

$$\begin{split} & [\text{Zn}_4(\text{C}_{40}\text{H}_{24}\text{N}_8)_4]\cdot8\text{C}_3\text{H}_7\text{NO}\cdot3\text{H}_2\text{O}\\ & M_r = 3366.98\\ & \text{Tetragonal}, \ P4_2/n\\ & a = 23.6897\ (5)\ \text{\AA}\\ & c = 14.9876\ (7)\ \text{\AA}\\ & V = 8411.1\ (5)\ \text{\AA}^3 \end{split}$$

Data collection

Bruker X8 PROSPECTOR diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\rm min} = 0.827, T_{\rm max} = 0.976$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 442 parameters $wR(F^2) = 0.108$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.59$ e Å⁻³7723 reflections $\Delta \rho_{min} = -0.42$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

Zn1-N24	2.0684 (15)	Zn1-N23	2.0747 (16)
Zn1-N21	2.0695 (16)	$Zn1-N101^{i}$	2.1385 (16)
Zn1-N22	2.0695 (17)		
N24-Zn1-N21	162.77 (7)	N22-Zn1-N23	161.70 (7)
N24-Zn1-N22	88.42 (6)	$N24 - Zn1 - N101^{i}$	95.10 (6)
N21-Zn1-N22	88.84 (7)	$N21 - Zn1 - N101^{i}$	102.11 (6)
N24-Zn1-N23	89.34 (6)	N22-Zn1-N101 ⁱ	102.00 (6)
N21-Zn1-N23	87.94 (6)	N23-Zn1-N101 ⁱ	96.29 (6)

Symmetry code: (i) $y, -x + \frac{1}{2}, -z + \frac{1}{2}$

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C7-H7\cdots N151^{ii}$	0.95	2.65	3.583 (4)	167
$C17-H17\cdots N51^{iii}$	0.95	2.66	3.583 (3)	165

Symmetry codes: (ii) x, y, z + 1; (iii) x, y, z - 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

The Deutsche Forschungsgemeinschaft (DFG) is acknowledged for financial support. RWS is grateful to Professor William S. Sheldrick and Professor Christian W. Lehmann for generous support. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2170).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2010). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- DeVries, L. D. & Choe, W. (2009). J. Chem. Crystallogr. 39, 229-240.
- Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501.
- Graf, J. (2008). Nachr. Chem. 56, 1050-1052.
- Lipstman, S. & Goldberg, I. (2010). CrystEngComm, 12, 52-54.
- Schulz, T., Meindl, K., Leusser, D., Stern, D., Graf, J., Michaelsen, C., Ruf, M., Sheldrick, G. M. & Stalke, D. (2009). J. Appl. Cryst. 42, 885–891.
- Seidel, R. W., Goddard, R., Föcker, K. & Oppel, I. M. (2010). CrystEngComm, 12, 387–394.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, m236-m237 [doi:10.1107/S1600536811002054]

Redetermination of *cyclo*-tetrakis(*µ*-5,10,15,20-tetra-4-pyridylporphyrinato)tetrazinc(II) dimethylformamide octasolvate trihydrate at 100 K

Rüdiger W. Seidel, Jürgen Graf, Richard Goddard and Iris M. Oppel

S1. Comment

5,10,15,20-Tetra(4-pyridyl)porphyrin has been widely used as ligand for the construction of coordination polymers (DeVries & Choe, 2009). We and others have reported on the solid-state supramolecular chemistry of the self-complementary [5,10,15,20-tetra(4-pyridyl)porphyrinato]zinc(II) (ZnTPyP) building block (Lipstman & Goldberg, 2010; Seidel *et al.*, 2010 and references cited therein). Recently, we reported the title structure of [ZnTPyP]₄.

The small dark red plate-shaped crystals of the title compound were subjected to diffraction experiments using a Bruker AXS X8 PROSPECTOR diffractometer equipped with an INCOATEC microfocus X-ray source (I μ S) for Cu radiation (Graf, 2008). Such microfocus X-ray sources use multilayer mirrors to focus the X-ray beam onto the crystal and, therefore, lead to a significant reduction of the background and an increase in diffracted intensities. It has already been demonstrated that the Mo I μ S gives data of significantly higher quality than a 2 kW Mo fine focus sealed tube, when small crystals are examined (Schulz *et al.*, 2009). The data collection presented here, using the Cu I μ S, resulted in intensity data of surprisingly good quality and, hence, indicated a re-refinement of the crystal structure. The crystals investigated in the original work were significantly larger than those examined in the present study and split on cooling to 100 K. For this reason, the data were collected at 200 K with a Cu rotating anode system at that time. Using small crystals has the advantage that these are less likely to split on flash cooling.

The molecular structure of $[ZnTPyP]_4$ is depicted in Fig. 1. The asymmetric unit contains one ZnTPyP unit (Fig 2.) and the S_4 symmetric tetramer is generated by crystallographic fourfold rotoinversion symmetry. One peripheral pyridyl group binds to the central Zn atom of an adjacent symmetry related ZnTPyP unit. Zn1 is pentacoordinated and is displaced from the N₄ mean plane by 0.3196 (9) Å. The coordination geometry parameters about Zn1 are given in Table 1. The three remaining pyridyl groups are non-coordinating. Even at 100 K, the pyridyl groups attached to C5 and C15 show elongated ellipsoids, which cause a checkCIF B level alert (Spek, 2009) due to large $U_{eq}(max)/U_{eq}(min)$ ratio. This reveals that the disorder is rather of static than dynamic nature. Attempts were made to describe the electron density of the pyridyl ring attached to C15 (Fig. 3) by a split model. However, the refinement results could not be improved thereby. Thus, both pyridyl rings were finally described with large displacement parameters.

In the crystal, the $[ZnTPyP]_4$ entities are stacked into columns located at x = 1/4, y = 1/4 and x = 3/4, y = 3/4 (Fig 4). The stacking propagates *via* C_β—H···N_{py} interactions (see Table 2) by translational symmetry in the *c* axis direction. Within a column, the distance between the centroids of the pyridyl rings attached to C5 and C15ⁱⁱⁱ is 4.0714 (1) Å. Adjacent columns of $[ZnTPyP]_4$ are arranged with an offset of c/2 (*ca* 7.49 Å). Interstitial channels are formed parallel to the *c* axis direction centred at x = 1/4, y = 3/4 and x = 3/4, y = 1/4 (Fig 5). The potential solvent accessible void estimated with *PLATON / SOLV* (Spek, 2009) is 33.2% of the unit cell volume. On cooling to 100 K, the *a* lattice vector is shortened by approximately 0.27 Å in comparison to the tetragonal unit cell at 200 K (*a* = 23.958 (2) Å), whereas the

length of c lattice vector remains relatively unaffected (c = 15.0646 (16) Å at 200 K; Seidel et al., 2010).

Despite intensive efforts, the disordered solvent molecules filling the voids within the columns of [ZnTPvP]₄ and the interstitial channels could not be modeled reasonably with the data collected at 100 K. Nevertheless, residual electron density was visible in a difference Fourier synthesis calculated for the solvent regions (Fig. 6) with phases based on the model using COOT (Emsley et al., 2010). For the visualization of the surface of the (difference) electron density using a three-dimensional mesh, the electron densities should be read into COOT in terms of structure factors. To obtain a structure factor (.fcf) file containg the informations necessary for the calculation of electron density maps and suitable for COOT, the LIST 6 instruction of SHELXL-97 was used. The atomic model of the framework was read into COOT by means of the SHELXL-97. res file. The visual inspection of the difference electron density map indicates that four molecules of dimethylformamide (DMF) plus one water molecule are located within the voids in the columns approximately centred at (1/4, 1/4, 0), whereas another four molecules of DMF and two water molecules are clustered around the 4_2 screw axes running through the interstitial channels parallel to the c axis direction. The compound can, therefore, probably best be described as [ZnTPyP]₄. 8 DMF. 3 H₂O. The compound was originally formulated as being a pure DMF solvate (Seidel et al., 2010). To improve the fit of the model to the data and, hence, the precision of the main part of the structure, the contributions of the disordered solvent molecules were removed from the diffraction data with PLATON / SOUEEZE (van der Sluis & Spek, 1990; Spek, 2009). SOUEEZE estimated the electron counts in the voids within the columns and interstitial channels of [ZnTPyP]₄ to be 182 and 207, respectively. These values are relatively close to those based on the proposed chemical formula (178 and 196).

S2. Experimental

Small dark red plate-shaped crystals of the title compound were obtained similarly as reported previously (Seidel *et al.*, 2010); 12 mg of ZnTPyP (Aldrich) and 11 mg of $[Pd(NO_3)_2(en)]$ (en = 1,2-diaminoethane) were placed in an ampoule and 4 ml of DMF were added. The ampoule was sealed and placed in a heater. The sample was heated to 150 °C in 24 h and held for five days at this temperature. Subsequently, the sample was cooled down to room temperature in 100 h. Noteworthy, the crystals of the title compound were accompanied by crystals of the triclinic phase, containing a polymeric one-dimensional ladder structure of ZnTPyP, as observed previously (Seidel *et al.*, 2010).

S3. Refinement

For the final refinement, the contributions of severely disordered DMF and water molecules of crystallization were removed from the diffraction data with *PLATON / SQUEEZE* (van der Sluis & Spek, 1990; Spek, 2009), see comment. H atoms were placed at geometrically calculated positions and refined with constrained C—H bond length of 0.95 Å and $U_{iso}(H) = 1.2 U_{eo}(C)$ allowing them to ride on the parent C atom.

Figure 2

Displacement ellipsoid plot of one repeat unit of cyclic $[ZnTPyP]_4$ drawn at 50% probability. H atoms are omitted for clarity. Symmetry code: (i) *y*, -*x* + 1/2, -*z* + 1/2.

Contour plot of the F_0 electron density map in the plane of the pyridyl group attached to C15, calculated with phases from F_c . Contours are drawn at 0.50 e Å⁻³ starting at 6.00 e Å⁻³. The contour plot was generated with *PLATON* (Spek, 2009).

Stacking of the [ZnTPyP]₄ entities viewed along the a axis direction. H atoms are omitted for clarity. C_{β} —H···N_{py} interactions are represented by dashed lines.

Packing diagram of the title compound projected along the *c* axis direction. H atoms are omitted for clarity.

The tetragonal unit cell of the title compound viewed approximately along the *c* axis direction showing the F_o - F_c map of the disordered solvent regions (contoured at 3.0 σ level). The figure was created with *COOT* (Emsley *et al.*, 2010) using F_o including the contributions of the disordered solvent with phases from F_c based on the model.

cyclo-tetrakis(µ-5,10,15,20-tetra-4-pyridylporphyrinato)tetrazinc(II) dimethylformamide octasolvate

$D_x = 1.329 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 130 reflections $\theta = 3.5-31.5^{\circ}$ $\mu = 1.24 \text{ mm}^{-1}$ T = 100 K Plate, dark red $0.16 \times 0.04 \times 0.02 \text{ mm}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{min} = 0.827, T_{max} = 0.976$ 44415 measured reflections 7723 independent reflections
6768 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.018$ $\theta_{\text{max}} = 69.2^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$

$h = -28 \rightarrow 25$ $k = -24 \rightarrow 28$	$l = -17 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$ wR(F^2) = 0.108	Hydrogen site location: inferred from neighbouring sites
<i>S</i> = 1.04	H-atom parameters constrained
7723 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0472P)^2 + 5.0454P]$
442 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.59 \ { m e} \ { m \AA}^{-3}$

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.350673 (11)	0.520064 (11)	0.185590 (16)	0.03823 (9)	
N21	0.38601 (8)	0.54998 (7)	0.06850 (10)	0.0433 (4)	
N22	0.27781 (7)	0.50134 (7)	0.11541 (10)	0.0404 (4)	
N23	0.41242 (7)	0.56428 (7)	0.25451 (10)	0.0404 (4)	
N24	0.30440 (7)	0.51392 (7)	0.30222 (10)	0.0377 (4)	
C1	0.46288 (9)	0.58336 (8)	0.22081 (13)	0.0420 (4)	
C2	0.50033 (10)	0.59793 (10)	0.29314 (14)	0.0532 (6)	
H2	0.5379	0.6115	0.2880	0.064*	
C3	0.47175 (10)	0.58861 (10)	0.36945 (15)	0.0534 (6)	
H3	0.4853	0.5949	0.4283	0.064*	
C4	0.41675 (9)	0.56739 (9)	0.34544 (13)	0.0428 (5)	
C5	0.37497 (9)	0.55138 (9)	0.40720 (13)	0.0442 (5)	
C6	0.32280 (9)	0.52641 (9)	0.38657 (12)	0.0411 (4)	
C7	0.28126 (9)	0.50864 (9)	0.45108 (13)	0.0451 (5)	
H7	0.2835	0.5130	0.5140	0.054*	
C8	0.23852 (9)	0.48459 (9)	0.40491 (13)	0.0422 (4)	
H8	0.2052	0.4684	0.4292	0.051*	
C9	0.25323 (8)	0.48825 (8)	0.31165 (12)	0.0362 (4)	
C10	0.21846 (8)	0.46994 (8)	0.24113 (12)	0.0360 (4)	
C11	0.22974 (8)	0.47834 (8)	0.14991 (12)	0.0376 (4)	
C12	0.19052 (9)	0.46543 (9)	0.07858 (13)	0.0460 (5)	
H12	0.1543	0.4486	0.0845	0.055*	
C13	0.21544 (10)	0.48202 (10)	0.00230 (14)	0.0526 (6)	

H13	0.1998	0.4794	-0.0559	0.063*
C14	0.26979 (9)	0.50435 (10)	0.02480 (13)	0.0477 (5)
C15	0.30923 (11)	0.52569 (10)	-0.03612 (14)	0.0545 (6)
C16	0.36281 (10)	0.54737 (10)	-0.01508 (13)	0.0515 (5)
C17	0.40164 (12)	0.57099 (11)	-0.07905 (15)	0.0636 (7)
H17	0.3959	0.5743	-0.1416	0.076*
C18	0.44735 (11)	0.58736 (10)	-0.03328 (15)	0.0581 (6)
H18	0.4801	0.6046	-0.0575	0.070*
C19	0.43790 (9)	0.57411 (9)	0.05937 (13)	0.0455 (5)
C20	0.47569 (9)	0.58754 (8)	0.12914 (13)	0.0429 (5)
N51	0.40921 (10)	0.58630 (15)	0.68340 (15)	0.0812 (8)
C52	0.38597 (16)	0.62318 (17)	0.6300 (2)	0.0945 (11)
H52	0.3762	0.6589	0.6542	0.113*
C53	0.37466 (15)	0.61389 (13)	0.54115 (18)	0.0816 (9)
H53	0.3581	0.6429	0.5060	0.098*
C54	0.38735 (9)	0.56279 (11)	0.50349 (14)	0.0513 (5)
C55	0.41194 (13)	0.52451 (15)	0.55825 (18)	0.0792 (8)
H55	0.4222	0.4884	0.5360	0.095*
C56	0.42214 (14)	0.53814 (18)	0.6469 (2)	0.0885 (10)
H56	0.4397	0.5105	0.6834	0.106*
N101	0.06117 (6)	0.38923 (7)	0.30189 (10)	0.0355 (3)
C102	0.06574 (8)	0.44515 (8)	0.29549 (13)	0.0403 (4)
H102	0.0327	0.4673	0.3038	0.048*
C103	0.11567 (8)	0.47254 (8)	0.27747 (13)	0.0406 (4)
H103	0.1167	0.5126	0.2740	0.049*
C104	0.16441 (8)	0.44146 (8)	0.26451 (11)	0.0339 (4)
C105	0.16034 (9)	0.38345 (9)	0.27246 (17)	0.0506 (5)
H105	0.1928	0.3604	0.2652	0.061*
C106	0.10845 (9)	0.35925 (9)	0.29112 (16)	0.0490 (5)
H106	0.1064	0.3194	0.2965	0.059*
N151	0.2660 (2)	0.5329 (2)	-0.3142 (2)	0.1294 (17)
C152	0.2458 (3)	0.5685 (2)	-0.2569 (3)	0.155 (2)
H152	0.2211	0.5972	-0.2780	0.185*
C153	0.2581 (2)	0.56707 (18)	-0.1666 (2)	0.1290 (18)
H153	0.2421	0.5945	-0.1278	0.155*
C154	0.29319 (12)	0.52625 (14)	-0.13291 (16)	0.0729 (8)
C155	0.31337 (15)	0.4886 (2)	-0.19209 (18)	0.1009 (13)
H155	0.3375	0.4591	-0.1726	0.121*
C156	0.29872 (18)	0.4931 (2)	-0.2832 (2)	0.1174 (17)
H156	0.3133	0.4659	-0.3237	0.141*
N201	0.63736 (10)	0.65387 (10)	0.05085 (15)	0.0695 (6)
C202	0.60235 (13)	0.68222 (12)	0.1038 (2)	0.0742 (8)
H202	0.6140	0.7184	0.1241	0.089*
C203	0.55016 (12)	0.66270 (10)	0.13114 (18)	0.0635 (7)
H203	0.5271	0.6852	0.1689	0.076*
C204	0.53176 (10)	0.61002 (9)	0.10312 (14)	0.0474 (5)
C205	0.56798 (10)	0.58046 (10)	0.04725 (15)	0.0548 (6)
H205	0.5577	0.5442	0.0255	0.066*

supporting information

C206	0.61911 (11)	0.60416 (12)	0.02354 (17)	0.0645 (7)
H206	0.6429	0.5831	-0.0153	0.077*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.04778 (16)	0.04374 (16)	0.02318 (14)	-0.00756 (11)	0.00168 (10)	-0.00080 (10)
N21	0.0579 (10)	0.0455 (9)	0.0266 (8)	-0.0116 (8)	0.0027 (7)	0.0007 (7)
N22	0.0485 (9)	0.0476 (9)	0.0251 (8)	-0.0020 (7)	-0.0005 (7)	0.0025 (7)
N23	0.0531 (10)	0.0414 (9)	0.0266 (8)	-0.0084 (7)	0.0028 (7)	-0.0033 (6)
N24	0.0438 (9)	0.0446 (9)	0.0247 (8)	-0.0010 (7)	0.0004 (6)	-0.0035 (6)
C1	0.0521 (12)	0.0395 (10)	0.0342 (10)	-0.0129 (9)	0.0034 (8)	-0.0050 (8)
C2	0.0581 (14)	0.0608 (14)	0.0408 (12)	-0.0204 (11)	0.0039 (10)	-0.0108 (10)
C3	0.0599 (14)	0.0649 (14)	0.0354 (11)	-0.0209 (11)	-0.0001 (10)	-0.0111 (10)
C4	0.0522 (12)	0.0473 (11)	0.0290 (10)	-0.0094 (9)	0.0010 (8)	-0.0072 (8)
C5	0.0520 (12)	0.0531 (12)	0.0275 (10)	-0.0066 (9)	-0.0019 (8)	-0.0055 (8)
C6	0.0479 (11)	0.0494 (11)	0.0259 (10)	0.0000 (9)	0.0024 (8)	-0.0038 (8)
C7	0.0494 (12)	0.0603 (13)	0.0256 (10)	-0.0036 (10)	0.0010 (8)	-0.0026 (9)
C8	0.0458 (11)	0.0528 (12)	0.0279 (10)	0.0012 (9)	0.0035 (8)	-0.0002 (8)
C9	0.0410 (10)	0.0403 (10)	0.0274 (9)	0.0045 (8)	0.0019 (7)	-0.0024 (7)
C10	0.0421 (10)	0.0373 (10)	0.0286 (9)	0.0047 (8)	0.0014 (7)	-0.0020 (7)
C11	0.0428 (10)	0.0414 (10)	0.0287 (10)	0.0024 (8)	-0.0018 (8)	-0.0010 (8)
C12	0.0457 (11)	0.0623 (13)	0.0300 (10)	-0.0037 (10)	-0.0036 (8)	-0.0017 (9)
C13	0.0565 (13)	0.0725 (15)	0.0289 (11)	-0.0093 (11)	-0.0068 (9)	0.0036 (10)
C14	0.0566 (13)	0.0600 (13)	0.0264 (10)	-0.0071 (10)	-0.0044 (9)	0.0036 (9)
C15	0.0687 (15)	0.0670 (15)	0.0279 (11)	-0.0171 (12)	-0.0035 (10)	0.0076 (9)
C16	0.0697 (15)	0.0574 (13)	0.0273 (10)	-0.0158 (11)	0.0024 (9)	0.0052 (9)
C17	0.0816 (18)	0.0817 (17)	0.0276 (11)	-0.0288 (14)	0.0023 (11)	0.0087 (11)
C18	0.0723 (16)	0.0672 (15)	0.0347 (12)	-0.0260 (12)	0.0053 (10)	0.0071 (10)
C19	0.0595 (13)	0.0455 (11)	0.0314 (10)	-0.0118 (9)	0.0050 (9)	0.0012 (8)
C20	0.0570 (12)	0.0366 (10)	0.0351 (10)	-0.0118 (9)	0.0066 (9)	-0.0009 (8)
N51	0.0633 (14)	0.145 (3)	0.0359 (12)	-0.0305 (15)	-0.0006 (10)	-0.0144 (14)
C52	0.126 (3)	0.113 (3)	0.0447 (17)	-0.011 (2)	-0.0056 (17)	-0.0286 (17)
C53	0.126 (3)	0.0787 (19)	0.0403 (14)	-0.0017 (18)	-0.0102 (15)	-0.0181 (13)
C54	0.0499 (12)	0.0755 (16)	0.0286 (11)	-0.0147 (11)	0.0009 (9)	-0.0067 (10)
C55	0.096 (2)	0.100 (2)	0.0419 (15)	0.0139 (17)	-0.0143 (14)	-0.0037 (14)
C56	0.082 (2)	0.135 (3)	0.0486 (17)	0.002 (2)	-0.0152 (14)	0.0081 (18)
N101	0.0379 (8)	0.0442 (9)	0.0244 (8)	0.0040 (7)	-0.0013 (6)	-0.0035 (6)
C102	0.0418 (11)	0.0434 (11)	0.0358 (10)	0.0092 (8)	0.0059 (8)	-0.0024 (8)
C103	0.0466 (11)	0.0392 (10)	0.0360 (10)	0.0058 (8)	0.0063 (8)	0.0009 (8)
C104	0.0386 (10)	0.0412 (10)	0.0218 (8)	0.0052 (8)	-0.0005 (7)	-0.0033 (7)
C105	0.0376 (11)	0.0436 (12)	0.0707 (15)	0.0078 (9)	0.0018 (10)	-0.0042 (10)
C106	0.0422 (11)	0.0384 (11)	0.0665 (15)	0.0038 (9)	-0.0002 (10)	-0.0022 (10)
N151	0.157 (4)	0.182 (4)	0.0499 (18)	-0.092 (3)	-0.022 (2)	0.029 (2)
C152	0.267 (7)	0.130 (4)	0.067 (3)	-0.043 (4)	-0.074 (3)	0.028 (3)
C153	0.218 (5)	0.105 (3)	0.064 (2)	-0.016 (3)	-0.068 (3)	0.026 (2)
C154	0.0797 (18)	0.108 (2)	0.0312 (13)	-0.0441 (16)	-0.0058 (12)	0.0136 (13)
C155	0.088 (2)	0.180 (4)	0.0349 (15)	-0.029 (2)	0.0018 (13)	-0.0193 (18)

supporting information

C156	0.098 (3)	0.210 (5)	0.0446 (19)	-0.059 (3)	0.0097 (17)	-0.011 (2)
N201	0.0714 (14)	0.0754 (15)	0.0616 (13)	-0.0299 (12)	0.0153 (11)	-0.0022 (11)
C202	0.0847 (19)	0.0592 (15)	0.0786 (19)	-0.0325 (14)	0.0173 (16)	-0.0085 (14)
C203	0.0751 (17)	0.0495 (13)	0.0658 (16)	-0.0190 (12)	0.0165 (13)	-0.0104 (11)
C204	0.0627 (13)	0.0454 (11)	0.0340 (11)	-0.0135 (10)	0.0057 (9)	0.0004 (8)
C203 C204	0.0627 (13)	0.0493 (13)	0.0340 (11)	-0.0130(12) -0.0135(10)	0.0103 (13) 0.0057 (9)	0.0004 (8)
C205	0.0693 (15)	0.0540 (13)	0.0410 (12)	-0.0153(11)	0.0148 (10)	-0.0076(10)
C206	0.0700 (16)		0.0482 (14)	-0.0173(13)	0.0177 (12)	-0.0064(12)
-				- (-)		

Geometric parameters (Å, °)

2.0684 (15)	C19—C20	1.413 (3)
2.0695 (16)	C20—C204	1.483 (3)
2.0695 (17)	N51—C56	1.302 (5)
2.0747 (16)	N51—C52	1.306 (5)
2.1385 (16)	C52—C53	1.376 (4)
1.363 (3)	С52—Н52	0.9500
1.369 (3)	C53—C54	1.369 (4)
1.364 (3)	С53—Н53	0.9500
1.373 (2)	C54—C55	1.355 (4)
1.369 (3)	C55—C56	1.389 (4)
1.374 (3)	С55—Н55	0.9500
1.363 (3)	С56—Н56	0.9500
1.370 (2)	N101—C102	1.333 (3)
1.411 (3)	N101—C106	1.336 (3)
1.443 (3)	N101—Zn1 ⁱⁱ	2.1385 (16)
1.347 (3)	C102—C103	1.376 (3)
0.9500	C102—H102	0.9500
1.442 (3)	C103—C104	1.383 (3)
0.9500	С103—Н103	0.9500
1.407 (3)	C104—C105	1.383 (3)
1.404 (3)	C105—C106	1.385 (3)
1.497 (3)	C105—H105	0.9500
1.442 (3)	C106—H106	0.9500
1.352 (3)	N151—C152	1.294 (7)
0.9500	N151—C156	1.307 (6)
1.443 (3)	C152—C153	1.385 (5)
0.9500	С152—Н152	0.9500
1.408 (3)	C153—C154	1.372 (5)
1.407 (3)	С153—Н153	0.9500
1.489 (3)	C154—C155	1.345 (5)
1.449 (3)	C155—C156	1.413 (5)
1.345 (3)	С155—Н155	0.9500
0.9500	C156—H156	0.9500
1.432 (3)	N201—C206	1.320 (3)
0.9500	N201—C202	1.330 (4)
1.401 (3)	C202—C203	1.382 (4)
1.405 (3)	C202—H202	0.9500
1.500 (3)	C203—C204	1.387 (3)
	2.0684 (15) 2.0695 (16) 2.0695 (17) 2.0747 (16) 2.1385 (16) 1.363 (3) 1.364 (3) 1.373 (2) 1.369 (3) 1.374 (3) 1.374 (3) 1.363 (3) 1.370 (2) 1.411 (3) 1.443 (3) 1.347 (3) 0.9500 1.442 (3) 0.9500 1.407 (3) 1.404 (3) 1.497 (3) 1.442 (3) 0.9500 1.443 (3) 0.9500 1.443 (3) 0.9500 1.443 (3) 0.9500 1.443 (3) 0.9500 1.443 (3) 0.9500 1.443 (3) 0.9500 1.448 (3) 1.407 (3) 1.498 (3) 1.345 (3) 0.9500 1.401 (3) 1.405 (3) 1.500 (3)	2.0684 (15) $C19-C20$ 2.0695 (16) $C20-C204$ 2.0695 (17) $N51-C56$ 2.0747 (16) $N51-C52$ 2.1385 (16) $C52-C53$ 1.363 (3) $C52-H52$ 1.369 (3) $C53-C54$ 1.364 (3) $C53-H53$ 1.373 (2) $C54-C55$ 1.369 (3) $C55-C56$ 1.374 (3) $C55-H55$ 1.363 (3) $C56-H56$ 1.370 (2) $N101-C102$ 1.411 (3) $N101-C106$ 1.443 (3) $N101-Z11^{ii}$ 1.347 (3) $C102-C103$ 0.9500 $C102-H102$ 1.442 (3) $C103-C104$ 0.9500 $C103-H103$ 1.407 (3) $C105-H105$ 1.442 (3) $C106-H106$ 1.352 (3) $N151-C152$ 0.9500 $C152-H152$ 1.448 (3) $C152-C153$ 0.9500 $C152-H152$ 1.448 (3) $C152-C153$ 0.9500 $C152-H152$ 1.448 (3) $C152-C153$ 0.9500 $C152-H152$ 1.498 (3) $C153-C156$ 1.449 (3) $C153-H155$ 0.9500 $C155-H155$ 1.449 (3) $C155-C156$ 1.345 (3) $C155-H155$ 0.9500 $C156-H156$ 1.432 (3) $N201-C206$ 0.9500 $N201-C202$ 1.401 (3) $C202-C203$ 1.405 (3) $C202-H202$ 1.500 (3) $C203-C204$

C16—C17	1.442 (3)	C203—H203	0.9500
C17—C18	1.339 (3)	C204—C205	1.388 (3)
С17—Н17	0.9500	C205—C206	1.382 (3)
C18—C19	1.441 (3)	С205—Н205	0.9500
C18—H18	0.9500	C206—H206	0.9500
N24—Zn1—N21	162.77 (7)	C17—C18—H18	126.1
N24—Zn1—N22	88.42 (6)	C19—C18—H18	126.1
N21—Zn1—N22	88.84 (7)	N21—C19—C20	126.29 (18)
N24—Zn1—N23	89.34 (6)	N21—C19—C18	109.15 (18)
N21—Zn1—N23	87.94 (6)	C20—C19—C18	124.46 (19)
N22—Zn1—N23	161.70 (7)	C1—C20—C19	124.66 (19)
N24—Zn1—N101 ⁱ	95.10 (6)	C1—C20—C204	118.30 (18)
N21-Zn1-N101 ⁱ	102.11 (6)	C19—C20—C204	116.97 (18)
N22—Zn1—N101 ⁱ	102.00 (6)	C56—N51—C52	115.3 (3)
N23—Zn1—N101 ⁱ	96.29 (6)	N51—C52—C53	124.6 (3)
C19—N21—C16	106.82 (16)	N51—C52—H52	117.7
C19—N21—Zn1	126.42 (13)	С53—С52—Н52	117.7
C16—N21—Zn1	126.72 (14)	C54—C53—C52	119.8 (3)
C11—N22—C14	106.27 (17)	С54—С53—Н53	120.1
C11—N22—Zn1	126.10 (13)	С52—С53—Н53	120.1
C14—N22—Zn1	127.37 (14)	C55—C54—C53	115.9 (2)
C4—N23—C1	106.45 (16)	C55—C54—C5	123.2(2)
C4-N23-Zn1	125.15 (13)	C53—C54—C5	120.9(2)
C1-N23-Zn1	126.61 (13)	C54—C55—C56	119.9 (3)
C9—N24—C6	106.48 (15)	С54—С55—Н55	120.0
C9-N24-Zn1	126.17 (12)	С56—С55—Н55	120.0
C6-N24-Zn1	126.59 (13)	N51—C56—C55	124.4 (3)
N23—C1—C20	124.64 (18)	N51—C56—H56	117.8
N23—C1—C2	109.72 (17)	С55—С56—Н56	117.8
C20—C1—C2	125.64 (19)	C102—N101—C106	116.85 (17)
C3—C2—C1	106.8 (2)	C102—N101—Zn1 ⁱⁱ	120.26 (13)
С3—С2—Н2	126.6	C106—N101—Zn1 ⁱⁱ	122.55 (14)
C1—C2—H2	126.6	N101—C102—C103	123.56 (18)
C2—C3—C4	107.42 (19)	N101—C102—H102	118.2
С2—С3—Н3	126.3	C103—C102—H102	118.2
С4—С3—Н3	126.3	C102—C103—C104	119.61 (18)
N23—C4—C5	126.00 (18)	C102—C103—H103	120.2
N23—C4—C3	109.56 (18)	C104—C103—H103	120.2
C5—C4—C3	124.42 (18)	C105—C104—C103	117.31 (18)
C6—C5—C4	125.98 (18)	C105—C104—C10	122.03 (17)
C6—C5—C54	117.43 (18)	C103—C104—C10	120.65 (17)
C4—C5—C54	116.59 (18)	C104—C105—C106	119.38 (19)
N24—C6—C5	125.05 (18)	C104—C105—H105	120.3
N24—C6—C7	109.78 (17)	C106—C105—H105	120.3
C5—C6—C7	125.15 (18)	N101—C106—C105	123.3 (2)
C8—C7—C6	106.91 (17)	N101—C106—H106	118.4
C8—C7—H7	126.5	C105—C106—H106	118.4

С6—С7—Н7	126.5	C152—N151—C156	117.0 (4)
C7—C8—C9	106.83 (18)	N151—C152—C153	123.7 (5)
С7—С8—Н8	126.6	N151—C152—H152	118.2
С9—С8—Н8	126.6	С153—С152—Н152	118.2
N24—C9—C10	125.42 (17)	C154—C153—C152	120.3 (5)
N24—C9—C8	110.00 (16)	С154—С153—Н153	119.9
С10—С9—С8	124.54 (18)	С152—С153—Н153	119.9
C11—C10—C9	125.06 (18)	C155—C154—C153	116.1 (3)
C11—C10—C104	117.12 (16)	C155—C154—C15	122.8 (3)
C9—C10—C104	117.77 (16)	C153—C154—C15	121.1 (3)
N22-C11-C10	125.68 (17)	C154—C155—C156	120.0 (4)
N22—C11—C12	109.87 (17)	С154—С155—Н155	120.0
C10—C11—C12	124.42 (18)	С156—С155—Н155	120.0
C13—C12—C11	106.50 (19)	N151—C156—C155	122.9 (5)
C13—C12—H12	126.7	N151—C156—H156	118.6
C11—C12—H12	126.7	С155—С156—Н156	118.6
C12—C13—C14	107.59 (19)	C206—N201—C202	115.6 (2)
C12—C13—H13	126.2	N201—C202—C203	124.5 (2)
C14—C13—H13	126.2	N201—C202—H202	117.8
N22—C14—C15	124.8 (2)	С203—С202—Н202	117.8
N22—C14—C13	109.76 (18)	C202—C203—C204	119.5 (2)
C15—C14—C13	125.41 (19)	С202—С203—Н203	120.3
C14—C15—C16	126.03 (19)	С204—С203—Н203	120.3
C14—C15—C154	117.7 (2)	C203—C204—C205	116.2 (2)
C16—C15—C154	116.28 (19)	C203—C204—C20	121.7 (2)
N21—C16—C15	125.76 (19)	C205—C204—C20	122.07 (19)
N21—C16—C17	109.5 (2)	C206—C205—C204	119.5 (2)
C15—C16—C17	124.7 (2)	С206—С205—Н205	120.3
C18—C17—C16	106.7 (2)	С204—С205—Н205	120.3
C18—C17—H17	126.6	N201—C206—C205	124.8 (2)
C16—C17—H17	126.6	N201—C206—H206	117.6
C17—C18—C19	107.8 (2)	C205—C206—H206	117.6

Symmetry codes: (i) y, -x+1/2, -z+1/2; (ii) -y+1/2, x, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C7—H7…N151 ⁱⁱⁱ	0.95	2.65	3.583 (4)	167
C17—H17…N51 ^{iv}	0.95	2.66	3.583 (3)	165

Symmetry codes: (iii) x, y, z+1; (iv) x, y, z-1.