metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[5,10,15,20-Tetrakis(4-methoxyphenyl)porphyrinato- $\kappa^4 N, N', N'', N'''$](trifluoromethanesulfonato- κO)iron(III)

Nan Xu, Douglas R. Powell and George B. Richter-Addo*

Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5251, USA Correspondence e-mail: grichteraddo@ou.edu

Received 9 December 2010; accepted 10 January 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.055; *wR* factor = 0.155; data-to-parameter ratio = 14.0.

The title compound, $[Fe(CF_3O_3S)(C_{48}H_{36}N_4O_4)]$, is a fivecoordinate iron(III) porphyrin complex with a trifluoromethanesulfonate anion as an axial ligand. The Fe^{III} atom is displaced by 0.40 (1) Å towards the trifluoromethanesulfonate anion from the 24-atom mean plane of the porphyrin. The average Fe-N_p distance is 2.044 (2) Å and the Fe-O distance is 2.001 (2) Å.

Related literature

For the structures of related porphyrin ('picket-fence', tetraphenylporphyrin, octaethylporphyrin) derivatives, see: González & Wilson (1994); Gismelseed *et al.* (1990); Xu *et al.* (2008).

Experimental

Crystal data

 $[Fe(CF_{3}O_{3}S)(C_{48}H_{36}N_{4}O_{4})]$ $M_{r} = 937.73$ Triclinic, $P\overline{1}$ a = 12.5265 (14) Å b = 13.2725 (16) Å c = 14.0220 (17) Å $\alpha = 90.080 (2)^{\circ}$ $\beta = 112.534 (2)^{\circ}$

Data collection

Bruker SMART APEX CCD23diffractometer83Absorption correction: multi-scan66(SADABS; Sheldrick, 2001)7 $T_{min} = 0.797, T_{max} = 0.913$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.155$ S = 1.008187 reflections $\gamma = 103.483 (3)^{\circ}$ $V = 2083.2 (4) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.49 \text{ mm}^{-1}$ T = 100 K $0.49 \times 0.38 \times 0.19 \text{ mm}$

25055 measured reflections 8187 independent reflections 6693 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.048$

586 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max} = 1.62 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min} = -0.83 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the National Institutes of Health (GM 064476 to GBR-A) and to the National Science Foundation (CHE-0911537 to GBR-A) for funds to conduct the research, and to the National Science Foundation (CHE-0130835) and the University of Oklahoma for funds to acquire the diffractometer and computers used in this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2171).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. & Weiss, R. (1990). *Inorg. Chem.* 29, 2741–2749.

González, J. A. & Wilson, L. J. (1994). Inorg. Chem. 33, 1543-1553.

Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xu, N., Powell, D. R. & Richter-Addo, G. B. (2008). Acta Cryst. E64, m1366.

supporting information

Acta Cryst. (2011). E67, m268 [doi:10.1107/S1600536811001395]

[5,10,15,20-Tetrakis(4-methoxyphenyl)porphyrinato- $\kappa^4 N, N', N'', N'''$](trifluoro-methanesulfonato- κO)iron(III)

Nan Xu, Douglas R. Powell and George B. Richter-Addo

S1. Comment

In this paper, we report the structure of the five-coordinate compound (5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato) (trifluoromethanesulfonato)iron(III). Other trifluoromethanesulfonato iron porphyrin derivatives have been reported previously: The (T_{piv}PP)Fe(OSO₂CF₃)(H₂O) compound is six-coordinate at Fe, and the (TPP)Fe(OSO₂CF₃) and (OEP)Fe(OSO₂CF₃) compounds are five-coordinate at Fe (González *et al.* 1994, Gismelseed *et al.* 1990, and Xu *et al.* 2008).

The molecular structure of (5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato)(trifluoromethanesulfonato)iron(III) is shown in Fig. 1. The porphyrin core of the compound is slightly saddle shaped. The iron atom is displaced by 0.40 (1) Å from the 24-atom mean porphyrin plane toward the trifluoromethanesulfonate anion. The trifluoromethanesulfonate anion binds to the iron center through one of its sulfonato oxygen atoms. The average Fe—N_p distance is 2.044 (2) Å and the Fe —O distance is 2.001 (2) Å. The bond angle of the Fe—O—S linkage is 137.11 (13)°.

S2. Experimental

To a toluene solution (20 ml) of (T(p-OMe)PP)FeCl (0.025 g, 0.030 mmol) was added silver trifluoromethanesulfonate (0.009 g, 0.033 mmol) (purchased from Aldrich Chemical Company and used as received) under N₂. After stirring for 2 h, the resulting mixture was filtered and dried under vacuum. A suitable purple prism-shaped crystal was grown by slow evaporation of a dichloromethane-hexane (1:1) solution of the complex at room temperature under N₂.

S3. Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å for aromatic carbons, 0.98 Å for methyl carbons and were refined using a riding model with $U_{iso} = 1.2 U_{eq}(C)$ for phenyl H atoms, $U_{iso} = 1.5 U_{eq}(C)$ for methyl H atoms.

Figure 1

The molecular structure of $(T(p-OMe)PP)Fe(OSO_2CF_3)$. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

[5,10,15,20-Tetrakis(4-methoxyphenyl)porphyrinato- $\kappa^4 N, N', N'', N'''$](trifluoromethanesulfonato- κO)iron(III)

Crystal data	
$[Fe(CF_{3}O_{3}S)(C_{48}H_{36}N_{4}O_{4})]$ $M_{r} = 937.73$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 12.5265 (14) Å b = 13.2725 (16) Å c = 14.0220 (17) Å $a = 90.080 (2)^{\circ}$ $\beta = 112.534 (2)^{\circ}$ $\gamma = 103.483 (3)^{\circ}$ $V = 2083.2 (4) \text{ Å}^{3}$	Z = 2 F(000) = 966 $D_x = 1.495 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5786 reflections $\theta = 2.4-28.2^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 100 K Prism, purple $0.49 \times 0.38 \times 0.19 \text{ mm}$
Data collection	
Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2001) $T_{\min} = 0.797, T_{\max} = 0.913$	25055 measured reflections 8187 independent reflections 6693 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 1.6^{\circ}$ $h = -15 \rightarrow 15$ $k = -16 \rightarrow 16$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.155$ S = 1.00 8187 reflections 586 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.082P)^2 + 3.420P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.62$ e Å ⁻³ $\Delta\rho_{min} = -0.83$ e Å ⁻³

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	0.42277 (4)	0.30132 (3)	0.34621 (3)	0.01581 (13)
S1	0.59702 (8)	0.21512 (7)	0.26618 (7)	0.0276 (2)
F1	0.6429 (3)	0.2189 (3)	0.1011 (2)	0.0762 (10)
F2	0.4999 (3)	0.2899 (3)	0.0886 (2)	0.0750 (9)
F3	0.4704 (2)	0.1228 (2)	0.0792 (2)	0.0661 (8)
01	0.7771 (2)	0.05917 (18)	0.96773 (17)	0.0244 (5)
O2	1.09252 (19)	0.81551 (17)	0.47718 (18)	0.0250 (5)
O3	0.0686 (2)	0.55562 (17)	-0.26646 (17)	0.0251 (5)
O4	-0.27784 (19)	-0.19225 (17)	0.18668 (18)	0.0257 (5)
05	0.4856 (2)	0.21102 (17)	0.27749 (17)	0.0240 (5)
O6	0.6331 (3)	0.1210 (2)	0.2908 (2)	0.0445 (7)
07	0.6838 (2)	0.3117 (2)	0.3069 (2)	0.0397 (7)
N1	0.3634 (2)	0.19301 (19)	0.42998 (18)	0.0146 (5)
N2	0.5656 (2)	0.36534 (19)	0.48099 (18)	0.0154 (5)
N3	0.4583 (2)	0.43788 (19)	0.28462 (19)	0.0166 (5)
N4	0.2496 (2)	0.27372 (19)	0.24044 (19)	0.0152 (5)
C1	0.2525 (2)	0.1225 (2)	0.3977 (2)	0.0157 (6)
C2	0.2513 (3)	0.0513 (2)	0.4738 (2)	0.0182 (6)
H2	0.1857	-0.0039	0.4703	0.022*
C3	0.3616 (3)	0.0774 (2)	0.5521 (2)	0.0177 (6)
Н3	0.3878	0.0429	0.6130	0.021*
C4	0.4310 (3)	0.1665 (2)	0.5259 (2)	0.0157 (6)
C5	0.5448 (2)	0.2237 (2)	0.5926 (2)	0.0150 (6)
C6	0.6047 (3)	0.3192 (2)	0.5722 (2)	0.0165 (6)
C7	0.7186 (3)	0.3820 (2)	0.6418 (2)	0.0216 (7)
H7	0.7639	0.3685	0.7101	0.026*
C8	0.7494 (3)	0.4639 (2)	0.5924 (2)	0.0225 (7)
H8	0.8206	0.5184	0.6196	0.027*
C9	0.6556 (3)	0.4539 (2)	0.4916 (2)	0.0181 (6)
C10	0.6606 (3)	0.5193 (2)	0.4154 (2)	0.0167 (6)
C11	0.5679 (3)	0.5114 (2)	0.3185 (2)	0.0168 (6)
C12	0.5725 (3)	0.5767 (2)	0.2385 (2)	0.0198 (6)
H12	0.6381	0.6319	0.2418	0.024*
C13	0.4656 (3)	0.5449 (2)	0.1569 (2)	0.0205 (7)
H13	0.4422	0.5741	0.0925	0.025*
C14	0.3944 (3)	0.4595 (2)	0.1855 (2)	0.0177 (6)
C15	0.2784 (3)	0.4063 (2)	0.1219 (2)	0.0170 (6)
C16	0.2111 (3)	0.3202 (2)	0.1490 (2)	0.0171 (6)
C17	0.0911 (3)	0.2663 (2)	0.0841 (2)	0.0197 (6)
H17	0.0449	0.2821	0.0171	0.024*
C18	0.0557 (3)	0.1886 (2)	0.1362 (2)	0.0193 (6)
H18	-0.0204	0.1403	0.1129	0.023*
C19	0.1546 (3)	0.1926 (2)	0.2334 (2)	0.0160 (6)
C20	0.1537 (3)	0.1212 (2)	0.3061 (2)	0.0162 (6)
C21	0.6062 (2)	0.1789 (2)	0.6907 (2)	0.0166 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C22	0.6269 (3)	0.0815 (2)	0.6880(2)	0.0175 (6)
H22	0.6016	0.0429	0.6227	0.021*
C23	0.6839 (3)	0.0380 (2)	0.7783 (2)	0.0187 (6)
H23	0.6977	-0.0290	0.7745	0.022*
C24	0.7202 (3)	0.0945 (2)	0.8742 (2)	0.0195 (6)
C25	0.6996 (3)	0.1914 (2)	0.8791 (2)	0.0197 (6)
H25	0.7243	0.2295	0.9446	0.024*
C26	0.6427 (3)	0.2337 (2)	0.7888(2)	0.0183 (6)
H26	0.6282	0.3004	0.7930	0.022*
C27	0.8137 (3)	-0.0341(3)	0.9644 (3)	0.0271 (7)
H27A	0.7433	-0.0918	0.9287	0.041*
H27B	0.8565	-0.0494	1.0353	0.041*
H27C	0.8666	-0.0252	0.9269	0.041*
C28	0.7758(3)	0.5982(2)	0.4346 (2)	0.0161 (6)
C29	0.8714(3)	0.5651(2)	0.4319(2)	0.0202(7)
H29	0.8638	0.4926	0.4216	0.0202 (7)
C30	0.9782(3)	0.6349(2)	0.4436(2)	0.0186 (6)
H30	1 0421	0.6105	0.4396	0.022*
C31	0.9904(3)	0.7403(2)	0.4613(2)	0.022
C32	0.9904(3)	0.7403(2) 0.7751(2)	0.4619(2) 0.4638(2)	0.0105(0)
H32	0.0001 (0)	0.8475	0.4050 (2)	0.0195 (0)
C33	0.7883 (3)	0.3475 0.7046 (2)	0.4790 0.4499(2)	0.025
U33	0.7885 (5)	0.7040 (2)	0.4499 (2)	0.0201(0) 0.024*
C34	0.7252 1 1835 (3)	0.7290 0.7814 (3)	0.4578(3)	0.024
U34	1.1655 (5)	0.7814 (5)	0.4378 (3)	0.0552 (8)
1134A 1124D	1.2115	0.7315	0.3000	0.050*
H24C	1.2505	0.0413	0.40/1	0.050*
П34C С25	1.1307 0.2212 (2)	0.7403 0.4458(2)	0.3800	0.030°
C35	0.2212(3) 0.2232(3)	0.4438(2) 0.4045(3)	-0.0703(2)	0.0177(0)
U30	0.2255 (5)	0.4043 (3)	-0.0703(3)	0.0207(7)
П30 С27	0.2003	0.3491	-0.00/3	0.032
U37	0.1721(3)	0.4426 (3)	-0.1642 (3)	0.0287 (8)
H3/	0.1745	0.4134	-0.2250	0.034*
C38	0.1172(3)	0.5235(2)	-0.1702(2)	0.0212(7)
0.39	0.1138 (3)	0.5647 (3)	-0.0813 (3)	0.0290 (8)
H39	0.0766	0.6200	-0.0843	0.035*
C40	0.1649 (3)	0.5252 (3)	0.0127 (3)	0.0278 (8)
H40	0.1610	0.5533	0.0733	0.033*
C41	0.0405 (3)	0.6529 (3)	-0.2709 (3)	0.0325 (8)
H4IA	-0.0270	0.6479	-0.2504	0.049*
H41B	0.0189	0.6728	-0.3418	0.049*
H41C	0.1100	0.7057	-0.2235	0.049*
C42	0.0408 (3)	0.0381 (2)	0.2828 (2)	0.0174 (6)
C43	0.0337 (3)	-0.0649 (2)	0.2547 (2)	0.0204 (7)
H43	0.1031	-0.0833	0.2560	0.024*
C44	-0.0729 (3)	-0.1404 (2)	0.2252 (2)	0.0211 (7)
H44	-0.0765	-0.2102	0.2062	0.025*
C45	-0.1751 (3)	-0.1142 (2)	0.2231 (2)	0.0193 (6)
C46	-0.1682 (3)	-0.0132 (3)	0.2556 (2)	0.0221 (7)

supporting information

H46	-0.2364	0.0047	0.2579	0.026*	
C47	-0.0604 (3)	0.0612 (2)	0.2847 (2)	0.0213 (7)	
H47	-0.0559	0.1303	0.3067	0.026*	
C48	-0.3848 (3)	-0.1651 (3)	0.1751 (3)	0.0298 (8)	
H48A	-0.3828	-0.1472	0.2437	0.045*	
H48B	-0.4533	-0.2242	0.1391	0.045*	
H48C	-0.3922	-0.1051	0.1346	0.045*	
C49	0.5495 (4)	0.2124 (4)	0.1254 (3)	0.0484 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
Fe1	0.0136 (2)	0.0161 (2)	0.0146 (2)	0.00055 (16)	0.00399 (17)	0.00446 (16)
S1	0.0271 (4)	0.0292 (5)	0.0285 (5)	0.0072 (4)	0.0128 (4)	0.0045 (4)
F1	0.0607 (17)	0.123 (3)	0.0529 (17)	-0.0032 (17)	0.0468 (15)	-0.0094 (17)
F2	0.102 (2)	0.091 (2)	0.0490 (17)	0.052 (2)	0.0317 (17)	0.0329 (16)
F3	0.0576 (16)	0.089 (2)	0.0392 (15)	-0.0046 (15)	0.0190 (13)	-0.0201 (14)
01	0.0278 (12)	0.0260 (12)	0.0162 (11)	0.0093 (10)	0.0036 (9)	0.0065 (9)
O2	0.0169 (11)	0.0203 (12)	0.0372 (14)	0.0004 (9)	0.0125 (10)	0.0049 (10)
O3	0.0341 (13)	0.0261 (12)	0.0159 (11)	0.0140 (10)	0.0071 (10)	0.0088 (9)
O4	0.0186 (11)	0.0220 (12)	0.0294 (13)	-0.0055 (9)	0.0081 (10)	0.0017 (10)
O5	0.0270 (12)	0.0186 (11)	0.0254 (12)	-0.0027 (9)	0.0144 (10)	-0.0034 (9)
O6	0.0469 (16)	0.0382 (16)	0.0567 (19)	0.0203 (13)	0.0239 (15)	0.0111 (14)
O7	0.0303 (13)	0.0364 (15)	0.0507 (17)	0.0001 (11)	0.0192 (13)	-0.0005 (13)
N1	0.0128 (11)	0.0153 (12)	0.0133 (12)	0.0018 (9)	0.0034 (10)	0.0032 (10)
N2	0.0127 (11)	0.0166 (12)	0.0148 (12)	0.0022 (10)	0.0043 (10)	0.0044 (10)
N3	0.0151 (12)	0.0152 (12)	0.0175 (13)	0.0028 (10)	0.0050 (10)	0.0056 (10)
N4	0.0138 (11)	0.0145 (12)	0.0157 (12)	0.0020 (10)	0.0049 (10)	0.0042 (10)
C1	0.0138 (13)	0.0144 (14)	0.0194 (15)	0.0027 (11)	0.0075 (12)	0.0024 (12)
C2	0.0170 (14)	0.0154 (15)	0.0188 (15)	-0.0001 (12)	0.0058 (12)	0.0031 (12)
C3	0.0207 (15)	0.0158 (15)	0.0169 (15)	0.0038 (12)	0.0082 (12)	0.0055 (12)
C4	0.0170 (14)	0.0152 (14)	0.0163 (15)	0.0039 (12)	0.0079 (12)	0.0023 (11)
C5	0.0145 (13)	0.0177 (15)	0.0143 (14)	0.0048 (11)	0.0067 (11)	0.0033 (11)
C6	0.0169 (14)	0.0162 (15)	0.0152 (15)	0.0024 (12)	0.0061 (12)	0.0032 (11)
C7	0.0177 (15)	0.0251 (17)	0.0170 (15)	0.0005 (13)	0.0044 (12)	0.0036 (13)
C8	0.0190 (15)	0.0227 (16)	0.0201 (16)	-0.0015 (13)	0.0057 (13)	0.0035 (13)
C9	0.0154 (14)	0.0205 (15)	0.0162 (15)	-0.0001 (12)	0.0066 (12)	-0.0020 (12)
C10	0.0165 (14)	0.0118 (14)	0.0191 (15)	0.0003 (11)	0.0061 (12)	0.0013 (11)
C11	0.0159 (14)	0.0145 (14)	0.0199 (15)	0.0029 (11)	0.0073 (12)	0.0033 (12)
C12	0.0186 (15)	0.0156 (15)	0.0244 (17)	0.0028 (12)	0.0084 (13)	0.0069 (12)
C13	0.0222 (15)	0.0200 (16)	0.0197 (16)	0.0059 (13)	0.0083 (13)	0.0084 (12)
C14	0.0199 (14)	0.0152 (14)	0.0184 (15)	0.0046 (12)	0.0080 (12)	0.0049 (12)
C15	0.0192 (14)	0.0166 (15)	0.0150 (15)	0.0060 (12)	0.0058 (12)	0.0042 (12)
C16	0.0170 (14)	0.0183 (15)	0.0155 (15)	0.0061 (12)	0.0051 (12)	0.0037 (12)
C17	0.0166 (14)	0.0224 (16)	0.0165 (15)	0.0042 (12)	0.0029 (12)	0.0044 (12)
C18	0.0135 (13)	0.0218 (16)	0.0184 (16)	0.0025 (12)	0.0028 (12)	0.0024 (12)
C19	0.0149 (14)	0.0149 (14)	0.0169 (15)	0.0032 (11)	0.0052 (12)	0.0015 (11)
C20	0.0142 (13)	0.0144 (14)	0.0191 (15)	0.0011 (11)	0.0070 (12)	0.0010 (12)

C21	0.0112 (13)	0.0206 (15)	0.0165 (15)	0.0007 (11)	0.0059 (11)	0.0055 (12)
C22	0.0152 (14)	0.0179 (15)	0.0177 (15)	0.0015 (12)	0.0060 (12)	0.0003 (12)
C23	0.0163 (14)	0.0180 (15)	0.0197 (16)	0.0033 (12)	0.0051 (12)	0.0042 (12)
C24	0.0148 (14)	0.0275 (17)	0.0151 (15)	0.0056 (12)	0.0045 (12)	0.0097 (13)
C25	0.0213 (15)	0.0218 (16)	0.0132 (15)	0.0005 (12)	0.0067 (12)	-0.0009 (12)
C26	0.0175 (14)	0.0179 (15)	0.0199 (16)	0.0041 (12)	0.0081 (12)	0.0022 (12)
C27	0.0313 (18)	0.0237 (17)	0.0212 (17)	0.0118 (14)	0.0022 (14)	0.0078 (14)
C28	0.0160 (14)	0.0170 (15)	0.0127 (14)	0.0004 (12)	0.0049 (11)	0.0036 (11)
C29	0.0216 (15)	0.0157 (15)	0.0211 (16)	0.0026 (12)	0.0074 (13)	0.0031 (12)
C30	0.0169 (14)	0.0170 (15)	0.0240 (16)	0.0075 (12)	0.0085 (12)	0.0053 (12)
C31	0.0168 (14)	0.0190 (15)	0.0183 (15)	0.0001 (12)	0.0068 (12)	0.0059 (12)
C32	0.0214 (15)	0.0131 (14)	0.0228 (16)	0.0029 (12)	0.0083 (13)	0.0009 (12)
C33	0.0203 (15)	0.0199 (16)	0.0214 (16)	0.0048 (12)	0.0098 (13)	0.0022 (12)
C34	0.0259 (17)	0.0298 (19)	0.048 (2)	0.0055 (15)	0.0195 (17)	0.0093 (16)
C35	0.0160 (14)	0.0154 (14)	0.0179 (15)	0.0001 (11)	0.0048 (12)	0.0038 (12)
C36	0.0357 (19)	0.0292 (18)	0.0211 (17)	0.0199 (15)	0.0108 (14)	0.0073 (14)
C37	0.041 (2)	0.0329 (19)	0.0177 (17)	0.0203 (16)	0.0114 (15)	0.0047 (14)
C38	0.0235 (15)	0.0219 (16)	0.0162 (15)	0.0056 (13)	0.0057 (13)	0.0072 (12)
C39	0.0392 (19)	0.0282 (18)	0.0219 (17)	0.0206 (16)	0.0074 (15)	0.0066 (14)
C40	0.041 (2)	0.0302 (18)	0.0161 (16)	0.0180 (16)	0.0099 (15)	0.0048 (14)
C41	0.044 (2)	0.0240 (18)	0.0218 (18)	0.0121 (16)	0.0031 (16)	0.0075 (14)
C42	0.0145 (13)	0.0190 (15)	0.0138 (14)	-0.0007 (12)	0.0031 (11)	0.0036 (12)
C43	0.0189 (15)	0.0219 (16)	0.0194 (16)	0.0050 (12)	0.0066 (12)	0.0065 (12)
C44	0.0216 (15)	0.0150 (15)	0.0212 (16)	0.0019 (12)	0.0043 (13)	0.0038 (12)
C45	0.0160 (14)	0.0200 (15)	0.0163 (15)	-0.0025 (12)	0.0045 (12)	0.0060 (12)
C46	0.0162 (14)	0.0267 (17)	0.0230 (16)	0.0027 (13)	0.0090 (13)	0.0028 (13)
C47	0.0206 (15)	0.0184 (15)	0.0234 (17)	0.0023 (12)	0.0087 (13)	0.0019 (13)
C48	0.0178 (15)	0.0306 (19)	0.0331 (19)	-0.0042 (14)	0.0074 (14)	-0.0001 (15)
C49	0.050 (3)	0.062 (3)	0.035 (2)	0.009 (2)	0.022 (2)	0.004 (2)

Geometric parameters (Å, °)

Fe1—O5	2.001 (2)	C18—C19	1.439 (4)	
Fe1—N3	2.038 (2)	C18—H18	0.9500	
Fe1—N1	2.043 (2)	C19—C20	1.394 (4)	
Fe1—N2	2.047 (2)	C20—C42	1.498 (4)	
Fe1—N4	2.049 (2)	C21—C22	1.381 (4)	
S1—O7	1.422 (3)	C21—C26	1.410 (4)	
S1—O6	1.424 (3)	C22—C23	1.395 (4)	
S1—O5	1.452 (2)	C22—H22	0.9500	
S1—C49	1.828 (4)	C23—C24	1.395 (4)	
F1—C49	1.324 (5)	С23—Н23	0.9500	
F2—C49	1.328 (6)	C24—C25	1.376 (5)	
F3—C49	1.331 (5)	C25—C26	1.387 (4)	
O1—C24	1.375 (4)	С25—Н25	0.9500	
O1—C27	1.423 (4)	C26—H26	0.9500	
O2—C31	1.366 (3)	C27—H27A	0.9800	
O2—C34	1.433 (4)	C27—H27B	0.9800	

O3—C38	1.367 (4)	C27—H27C	0.9800
O3—C41	1.411 (4)	C28—C29	1.381 (4)
O4—C45	1.365 (3)	C28—C33	1.390 (4)
O4—C48	1.418 (4)	C29—C30	1.389 (4)
N1—C4	1.384 (4)	C29—H29	0.9500
N1—C1	1.386 (3)	C30—C31	1.383 (4)
N2—C6	1.383 (4)	C30—H30	0.9500
N2—C9	1.388 (4)	C31—C32	1.389 (4)
N3-C14	1.382 (4)	C32-C33	1.385 (4)
N3-C11	1 391 (4)	C32—H32	0.9500
N4-C19	1.377(4)	C33—H33	0.9500
N4-C16	1.377(1) 1 388 (4)	C34—H34A	0.9800
C_1 C_20	1.308(4)	C34 H34B	0.9800
C1 - C20	1.398 (4)	C34 H34C	0.9800
$C_1 - C_2$	1.420(4)	$C_{35} = C_{40}$	1.382(5)
$C_2 = C_3$	1.339 (4)	C_{35} C_{40}	1.382(3)
$C_2 = H_2$	0.9300	C35 = C30	1.389 (4)
$C_3 = C_4$	1.434 (4)	C_{30}	1.380 (5)
С3—Н3	0.9500	C30—H30	0.9500
C4—C5	1.398 (4)	$C_{3}/-C_{38}$	1.390 (5)
C_{5}	1.405 (4)	C37—H37	0.9500
C5—C21	1.497 (4)	C38—C39	1.380 (5)
C6—C7	1.434 (4)	C39—C40	1.391 (5)
C7—C8	1.350 (4)	С39—Н39	0.9500
С7—Н7	0.9500	C40—H40	0.9500
C8—C9	1.431 (4)	C41—H41A	0.9800
С8—Н8	0.9500	C41—H41B	0.9800
C9—C10	1.388 (4)	C41—H41C	0.9800
C10—C11	1.393 (4)	C42—C47	1.381 (4)
C10—C28	1.500 (4)	C42—C43	1.395 (4)
C11—C12	1.430 (4)	C43—C44	1.382 (4)
C12—C13	1.357 (4)	C43—H43	0.9500
C12—H12	0.9500	C44—C45	1.392 (5)
C13—C14	1.430 (4)	C44—H44	0.9500
C13—H13	0.9500	C45—C46	1.388 (5)
C14—C15	1.390 (4)	C46—C47	1.385 (4)
C15—C16	1.399 (4)	C46—H46	0.9500
C15—C35	1.493 (4)	C47—H47	0.9500
C16—C17	1.431 (4)	C48—H48A	0.9800
C17—C18	1.354 (4)	C48—H48B	0.9800
С17—Н17	0.9500	C48—H48C	0.9800
	0.7000		019000
05—Fe1—N3	100 90 (10)	С23—С22—Н22	119.0
05—Fe1—N1	97.98 (9)	C_{22} C_{23} C_{24}	119.0 (3)
N3—Fe1—N1	161 10 (10)	C22_C23_H23	120.5
05—Fe1—N2	104.03 (10)	C24—C23—H23	120.5
N3_Fe1_N2	88 77 (10)	$01 - C^{24} - C^{25}$	116.0 (3)
N1 = Fe1 = N2	87.03 (0)	01 - C24 - C23	172 8 (2)
05 - Fe1 - N4	100 32 (10)	$C_{1} = C_{24} = C_{23}$	125.0(3) 120.2(3)
	100.52 (10)	023 - 027 - 023	120.2 (3)

N3—Fe1—N4	88.03 (10)	C24—C25—C26	120.2 (3)
N1—Fe1—N4	87.84 (9)	C24—C25—H25	119.9
N2—Fe1—N4	155.63 (10)	C26—C25—H25	119.9
O7—S1—O6	118.73 (17)	C25—C26—C21	120.8 (3)
07—S1—05	113.57 (15)	C25—C26—H26	119.6
06-81-05	111.28 (15)	C21—C26—H26	119.6
07-\$1-C49	105.08 (19)	01—C27—H27A	109.5
06-81-C49	104.7(2)	01 - C27 - H27B	109.5
05-51-C49	101.7(2)	H27A - C27 - H27B	109.5
$C_{24} = 01 = C_{27}$	101.20(10) 1170(2)	$01 - C^{27} + H^{27C}$	109.5
$C_{31} = 0^{2} = C_{34}$	117.0(2) 115.8(3)	H27A - C27 - H27C	109.5
$C_{38} = O_{3} = C_{41}$	115.0(3)	$H27B_{27} H27C$	109.5
$C_{45} = 04$ C_{48}	116.9(3)	$C_{20} C_{28} C_{33}$	109.5 118 5 (3)
S1 O5 Fe1	110.9(3) 137 11 (13)	$C_{29} = C_{28} = C_{33}$	110.3(3)
C_{4} N1 C1	107.11(13) 105.7(2)	$C_{23} = C_{26} = C_{10}$	119.2(3)
C4 = N1 = C1	103.7(2) 126.52(18)	$C_{28} = C_{20} = C_{20}$	122.3(3)
C4—NI—FeI	120.33(10)	$C_{28} = C_{29} = C_{30}$	121.9 (5)
CI-NI-Fei	127.30(19)	$C_{28} - C_{29} - H_{29}$	119.1
C6-N2-C9	106.1(2)	C_{30} $-C_{29}$ $-H_{29}$	119.1
C6—N2—Fel	126.95 (19)	C31—C30—C29	119.1 (3)
C9—N2—Fel	125.77 (19)	C31—C30—H30	120.5
C14—N3—C11	105.4 (2)	C29—C30—H30	120.5
C14—N3—Fe1	125.80 (19)	O2—C31—C30	124.1 (3)
C11—N3—Fe1	125.9 (2)	O2—C31—C32	116.1 (3)
C19—N4—C16	105.7 (2)	C30—C31—C32	119.8 (3)
C19—N4—Fe1	127.4 (2)	C33—C32—C31	120.3 (3)
C16—N4—Fe1	125.57 (18)	С33—С32—Н32	119.8
N1—C1—C20	126.1 (3)	C31—C32—H32	119.8
N1—C1—C2	110.1 (2)	C32—C33—C28	120.4 (3)
C20—C1—C2	123.8 (3)	С32—С33—Н33	119.8
C3—C2—C1	107.1 (3)	С28—С33—Н33	119.8
С3—С2—Н2	126.5	O2—C34—H34A	109.5
C1—C2—H2	126.5	O2—C34—H34B	109.5
C2—C3—C4	107.4 (3)	H34A—C34—H34B	109.5
С2—С3—Н3	126.3	O2—C34—H34C	109.5
С4—С3—Н3	126.3	H34A—C34—H34C	109.5
N1—C4—C5	125.6 (3)	H34B—C34—H34C	109.5
N1—C4—C3	109.6 (2)	C40—C35—C36	118.2 (3)
C5—C4—C3	124.5 (3)	C40—C35—C15	120.6 (3)
C4—C5—C6	123.9 (3)	C36—C35—C15	121.2 (3)
C4—C5—C21	117.4 (3)	C37—C36—C35	121.0(3)
C6—C5—C21	118.6 (3)	C37—C36—H36	119.5
N_{2} C6 C5	125 5 (3)	$C_{35} - C_{36} - H_{36}$	119.5
$N_2 - C_6 - C_7$	109.5(3)	$C_{36} - C_{37} - C_{38}$	1204(3)
$C_{5}-C_{6}-C_{7}$	125.0(2)	C36—C37—H37	119.8
C8-C7-C6	1073(3)	C_{38} C_{37} H_{37}	119.8
C8-C7-H7	126.3	03-038-039	124 7 (3)
C6-C7-H7	126.3	03 - 038 - 037	127.7(3) 116.2(3)
C7 - C8 - C9	107.8 (3)	C_{39} C_{38} C_{37}	110.2(3)
	101.0 (3)	$\overline{}$	11/11 (2)

С7—С8—Н8	126.1	C38—C39—C40	120.0 (3)
С9—С8—Н8	126.1	С38—С39—Н39	120.0
C10—C9—N2	126.5 (3)	С40—С39—Н39	120.0
C10—C9—C8	124.1 (3)	C35—C40—C39	121.3 (3)
N2—C9—C8	109.2 (3)	C35—C40—H40	119.3
C9-C10-C11	124.1 (3)	C39—C40—H40	119.3
C9—C10—C28	118.4 (3)	03—C41—H41A	109.5
C11—C10—C28	117.3 (3)	03—C41—H41B	109.5
N3-C11-C10	125.2 (3)	H41A—C41—H41B	109.5
N3-C11-C12	110.1 (3)	03—C41—H41C	109.5
C10-C11-C12	1247(3)	H41A - C41 - H41C	109.5
C_{13} C_{12} C_{11}	1070(3)	H41B— $C41$ — $H41C$	109.5
C_{13} C_{12} H_{12}	126.5	C47 C42 C43	109.5 118.0 (3)
C11_C12_H12	126.5	$C_{47} - C_{42} - C_{43}$	1214(3)
C_{12} C_{12} C_{13} C_{14}	107 5 (3)	$C_{47} = C_{42} = C_{20}$	121.4(3) 120.5(3)
$C_{12} = C_{13} = C_{14}$	107.5 (5)	$C_{43} = C_{42} = C_{20}$	120.3(3)
$C_{12} - C_{13} - H_{13}$	120.2	$C_{44} = C_{43} = C_{42}$	120.8 (3)
$V_{14} = C_{13} = H_{13}$	120.2	C44 - C43 - H43	119.0
$N_{3} - C_{14} - C_{13}$	123.0(3)	C42 - C43 - H43	119.0
N_{3} $-C_{14}$ $-C_{13}$	110.0(3)	$C_{43} = C_{44} = C_{43}$	120.1 (3)
C15 - C14 - C13	124.4 (3)	C43—C44—H44	120.0
C14 - C15 - C16	124.0 (3)	C45—C44—H44	120.0
C14—C15—C35	117.7 (3)	04	124.2 (3)
C16—C15—C35	118.2 (3)	04—C45—C44	116.0 (3)
N4—C16—C15	125.9 (3)	C46—C45—C44	119.8 (3)
N4—C16—C17	110.0 (2)	C47—C46—C45	119.0 (3)
C15—C16—C17	124.1 (3)	C47—C46—H46	120.5
C18—C17—C16	107.1 (3)	C45—C46—H46	120.5
C18—C17—H17	126.4	C42—C47—C46	122.2 (3)
C16—C17—H17	126.4	C42—C47—H47	118.9
C17—C18—C19	107.3 (3)	C46—C47—H47	118.9
C17—C18—H18	126.3	O4—C48—H48A	109.5
C19—C18—H18	126.3	O4—C48—H48B	109.5
N4—C19—C20	126.2 (3)	H48A—C48—H48B	109.5
N4—C19—C18	109.8 (2)	O4—C48—H48C	109.5
C20—C19—C18	124.0 (3)	H48A—C48—H48C	109.5
C19—C20—C1	123.5 (3)	H48B—C48—H48C	109.5
C19—C20—C42	117.6 (3)	F1—C49—F2	109.3 (4)
C1—C20—C42	118.9 (3)	F1—C49—F3	107.7 (4)
C22—C21—C26	117.8 (3)	F2—C49—F3	108.5 (4)
C22—C21—C5	120.9 (3)	F1—C49—S1	109.3 (3)
C26—C21—C5	121.4 (3)	F2—C49—S1	111.9 (3)
C21—C22—C23	122.0 (3)	F3—C49—S1	110.1 (3)
C21—C22—H22	119.0		
O7—S1—O5—Fe1	-6.4 (3)	C19—N4—C16—C15	-180.0 (3)
O6—S1—O5—Fe1	130.7 (2)	Fe1—N4—C16—C15	-12.1 (4)
C49—S1—O5—Fe1	-118.5 (2)	C19—N4—C16—C17	-0.7 (3)
N3—Fe1—O5—S1	54.0 (2)	Fe1—N4—C16—C17	167.1 (2)

N1—Fe1—O5—S1	-126.8 (2)	C14—C15—C16—N4	-1.7 (5)
N2—Fe1—O5—S1	-36.9 (2)	C35-C15-C16-N4	-179.8 (3)
N4—Fe1—O5—S1	144.0 (2)	C14—C15—C16—C17	179.1 (3)
O5—Fe1—N1—C4	84.0 (2)	C35—C15—C16—C17	1.1 (5)
N3—Fe1—N1—C4	-98.4 (4)	N4—C16—C17—C18	1.1 (4)
N2—Fe1—N1—C4	-19.9 (2)	C15—C16—C17—C18	-179.6 (3)
N4—Fe1—N1—C4	-175.9 (2)	C16—C17—C18—C19	-1.0 (4)
O5—Fe1—N1—C1	-87.3 (2)	C16—N4—C19—C20	177.3 (3)
N3—Fe1—N1—C1	90.3 (4)	Fe1—N4—C19—C20	9.8 (4)
N2—Fe1—N1—C1	168.8 (2)	C16—N4—C19—C18	0.1 (3)
N4—Fe1—N1—C1	12.8 (2)	Fe1—N4—C19—C18	-167.5 (2)
O5—Fe1—N2—C6	-81.0 (3)	C17—C18—C19—N4	0.6 (4)
N3—Fe1—N2—C6	178.2 (3)	C17—C18—C19—C20	-176.7(3)
N1—Fe1—N2—C6	16.7 (2)	N4—C19—C20—C1	-0.5 (5)
N4—Fe1—N2—C6	96.9 (3)	C18—C19—C20—C1	176.4 (3)
O5—Fe1—N2—C9	84.7 (3)	N4—C19—C20—C42	-179.5 (3)
N3—Fe1—N2—C9	-16.1(3)	C18—C19—C20—C42	-2.6(5)
N1—Fe1—N2—C9	-177.6(3)	N1—C1—C20—C19	0.2 (5)
N4—Fe1—N2—C9	-97.5 (3)	C2-C1-C20-C19	178.3 (3)
05 - Fe1 - N3 - C14	76.4 (3)	N1—C1—C20—C42	179.2 (3)
N1—Fe1—N3—C14	-101.2(4)	C2-C1-C20-C42	-2.7(5)
N2—Fe1—N3—C14	-179.6(3)	C4—C5—C21—C22	57.5 (4)
N4—Fe1—N3—C14	-23.7(2)	C6-C5-C21-C22	-121.8(3)
05 - Fe1 - N3 - C11	-81.4(2)	C4-C5-C21-C26	-121.4(3)
N1—Fe1—N3—C11	101.0(3)	C6-C5-C21-C26	59.4 (4)
N2—Fe1—N3—C11	22.6(2)	$C_{26} - C_{21} - C_{22} - C_{23}$	-1.1(4)
N4—Fe1—N3—C11	178.5 (2)	C_{5} C_{21} C_{22} C_{23}	180.0 (3)
05-Fe1-N4-C19	84.7 (3)	C_{21} C_{22} C_{23} C_{24}	0.4 (4)
N3—Fe1—N4—C19	-174.6(3)	C27-01-C24-C25	-171.8(3)
N1—Fe1—N4—C19	-13.1(3)	$C_{27} - 01 - C_{24} - C_{23}$	8.4 (4)
N2—Fe1—N4—C19	-93.2 (3)	C_{22} C_{23} C_{24} O_{1}	-180.0(3)
05—Fe1—N4—C16	-80.6(2)	C22—C23—C24—C25	0.2 (4)
N3—Fe1—N4—C16	20.2 (2)	Q1—C24—C25—C26	-180.0(3)
N1—Fe1—N4—C16	-178.3(2)	C23—C24—C25—C26	-0.2(4)
N2—Fe1—N4—C16	101.6 (3)	C24—C25—C26—C21	-0.6 (4)
C4—N1—C1—C20	178.0 (3)	C22—C21—C26—C25	1.2 (4)
Fe1—N1—C1—C20	-9.3 (4)	C5—C21—C26—C25	-179.9 (3)
C4—N1—C1—C2	-0.3 (3)	C9—C10—C28—C29	72.0 (4)
Fe1—N1—C1—C2	172.4 (2)	C11—C10—C28—C29	-103.4(3)
N1—C1—C2—C3	-0.6(4)	C9—C10—C28—C33	-111.3 (3)
C20—C1—C2—C3	-179.0(3)	C11—C10—C28—C33	73.3 (4)
C1—C2—C3—C4	1.2 (3)	C33—C28—C29—C30	-0.2(5)
C1—N1—C4—C5	-172.5 (3)	C10-C28-C29-C30	176.6 (3)
Fe1—N1—C4—C5	14.7 (4)	C28—C29—C30—C31	1.7 (5)
C1—N1—C4—C3	1.1 (3)	C34—O2—C31—C30	9.9 (4)
Fe1—N1—C4—C3	-171.7 (2)	C34—O2—C31—C32	-170.2 (3)
C2—C3—C4—N1	-1.5 (3)	C29—C30—C31—O2	177.9 (3)
C2—C3—C4—C5	172.2 (3)	C29—C30—C31—C32	-2.0 (5)

N1—C4—C5—C6	2.4 (5)	O2—C31—C32—C33	-179.1 (3)
C3—C4—C5—C6	-170.3 (3)	C30—C31—C32—C33	0.8 (5)
N1-C4-C5-C21	-176.8 (3)	C31—C32—C33—C28	0.7 (5)
C3—C4—C5—C21	10.5 (4)	C29—C28—C33—C32	-1.0 (4)
C9—N2—C6—C5	-175.7 (3)	C10—C28—C33—C32	-177.7 (3)
Fe1—N2—C6—C5	-7.8 (4)	C14—C15—C35—C40	-84.6 (4)
C9—N2—C6—C7	2.1 (3)	C16—C15—C35—C40	93.6 (4)
Fe1—N2—C6—C7	170.1 (2)	C14—C15—C35—C36	95.2 (4)
C4—C5—C6—N2	-6.0 (5)	C16—C15—C35—C36	-86.6 (4)
C21—C5—C6—N2	173.2 (3)	C40—C35—C36—C37	1.0 (5)
C4—C5—C6—C7	176.5 (3)	C15—C35—C36—C37	-178.8(3)
C21—C5—C6—C7	-4.4 (5)	C35—C36—C37—C38	-0.1 (5)
N2—C6—C7—C8	-1.5 (4)	C41—O3—C38—C39	16.7 (5)
C5—C6—C7—C8	176.4 (3)	C41—O3—C38—C37	-164.1 (3)
C6—C7—C8—C9	0.2 (4)	C36—C37—C38—O3	-179.7 (3)
C6—N2—C9—C10	173.3 (3)	C36—C37—C38—C39	-0.4 (5)
Fe1—N2—C9—C10	5.2 (5)	O3—C38—C39—C40	179.2 (3)
C6—N2—C9—C8	-2.0(3)	C37—C38—C39—C40	0.0 (5)
Fe1—N2—C9—C8	-170.1 (2)	C36—C35—C40—C39	-1.4 (5)
C7—C8—C9—C10	-174.3 (3)	C15—C35—C40—C39	178.4 (3)
C7—C8—C9—N2	1.1 (4)	C38—C39—C40—C35	1.0 (5)
N2-C9-C10-C11	7.3 (5)	C19—C20—C42—C47	-70.0 (4)
C8—C9—C10—C11	-178.1 (3)	C1—C20—C42—C47	110.9 (3)
N2-C9-C10-C28	-167.8 (3)	C19—C20—C42—C43	107.7 (3)
C8—C9—C10—C28	6.9 (5)	C1—C20—C42—C43	-71.4 (4)
C14—N3—C11—C10	179.4 (3)	C47—C42—C43—C44	3.0 (4)
Fe1—N3—C11—C10	-19.1 (4)	C20—C42—C43—C44	-174.8 (3)
C14—N3—C11—C12	-1.7 (3)	C42—C43—C44—C45	-0.1 (5)
Fe1—N3—C11—C12	159.8 (2)	C48—O4—C45—C46	4.5 (4)
C9-C10-C11-N3	0.0 (5)	C48—O4—C45—C44	-174.5 (3)
C28-C10-C11-N3	175.2 (3)	C43—C44—C45—O4	176.0 (3)
C9—C10—C11—C12	-178.7 (3)	C43—C44—C45—C46	-3.0 (5)
C28-C10-C11-C12	-3.6 (5)	O4—C45—C46—C47	-175.8 (3)
N3—C11—C12—C13	1.3 (4)	C44—C45—C46—C47	3.2 (5)
C10-C11-C12-C13	-179.8 (3)	C43—C42—C47—C46	-2.8 (5)
C11—C12—C13—C14	-0.4 (4)	C20—C42—C47—C46	174.9 (3)
C11—N3—C14—C15	-178.9 (3)	C45—C46—C47—C42	-0.2 (5)
Fe1—N3—C14—C15	19.6 (4)	O7—S1—C49—F1	59.7 (4)
C11—N3—C14—C13	1.4 (3)	O6—S1—C49—F1	-66.1 (4)
Fe1—N3—C14—C13	-160.1 (2)	O5—S1—C49—F1	178.1 (3)
C12—C13—C14—N3	-0.7 (4)	O7—S1—C49—F2	-61.5 (3)
C12—C13—C14—C15	179.7 (3)	O6—S1—C49—F2	172.7 (3)
N3—C14—C15—C16	-2.2 (5)	O5—S1—C49—F2	56.9 (3)
C13—C14—C15—C16	177.4 (3)	O7—S1—C49—F3	177.8 (3)
N3—C14—C15—C35	175.9 (3)	O6—S1—C49—F3	52.0 (4)
C13—C14—C15—C35	-4.5 (5)	O5—S1—C49—F3	-63.8 (4)