organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-(4-fluoro­phen­yl)-1-methyl-1,2,3,3a,4,9b-hexa­hydro­chromeno[4,3-b]pyrrole-3a-carboxyl­ate

aDepartment of Physics, Queen Mary's College (A), Chennai-4, Tamilnadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-25, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 9 December 2010; accepted 24 December 2010; online 12 January 2011)

In the title compound, C20H20FNO3, the pyrrolidine and benzopyran rings adopt half chair and twisted half chair conformations, respectively. The carboxyl­ate group is almost perpendicular to the pyran ring [89.4 (1)°].

Related literature

Chromanone derivatives are used as inter­mediates in the synthesis of natural products calonlide (A) and inophyllum (B) (Ellis et al., 1977[Ellis, G. P., Lockhart, I. M., Meeder-Nyez, D. & Schweizer, E. E. (1977). Chromenes, Chromanones and Chromones, edited by G. P. Ellis. New York: John Wiley and Sons, Inc.]), which have been suggested to have activity against anti-human immuno deficiency virus type 1 (HIV-1) (Hussain & Amir, 1986[Hussain, M. I. & Amir, M. (1986). J. Indian Chem. Soc. 63, 317-320.]). Chromanone derivatives dilate the heart and act as remedies for angina pectoris, see: Hasegnaida (1967[Hasegnaida, G. (1967). Chem. Abst. 69, 67221.]). Pyrrolidine derivatives possess anti-influenza (Stylianakis et al., 2003[Stylianakis, I., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & Declereq, E. (2003). Bioorg. Med. Chem. Lett. 10, 1699-1703.]) and anti-convulsant (Obniska et al., 2002[Obniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. 59, 209-213.]) activity. For related structures, see: Abdul Ajees et al. (2002[Abdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, o802-o804.]); Usha et al. (2003[Usha, G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Amalraj, A., Raghunathan, R., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o1572-o1574.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20FNO3

  • Mr = 341.37

  • Monoclinic, P 21 /c

  • a = 10.4519 (4) Å

  • b = 20.6778 (8) Å

  • c = 7.8508 (3) Å

  • β = 91.535 (2)°

  • V = 1696.12 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 16737 measured reflections

  • 4237 independent reflections

  • 2844 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.219

  • S = 0.81

  • 4237 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. BrukerAXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. BrukerAXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT. BrukerAXS Inc., Madison,Wisconsin, USA.]); program(s) used to solve structure: SHELXS97(Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromanone derivatives are used as a varsatile intermediate in the synthesis of natural products calonlide(A) and inophyllum(B), (Ellis et al., 1977) which have been suggested to have activity against anti-human immuno deficiency virus type1 (HIV-1) (Hussain et al., 1986). Chromanone derivatives dilate the heart and act as remedies for angina pectoris (Hasegnaida, 1967). Spiropyrrolidine derivatives are often used in the synthesis of biologically active compounds. Spiro ring system is also very interesting from a biogenetic point of view. Synthetic pyrrolidine derivatives have activity against the aldose reductase enzyme, which controls influenza. Pyrrolidine derivatives possess anti-influenza (Stylianakis et al., 2003) and anti- convulsant (Obniska et al., 2002) activity. We report here the crystal structure of the title compound, Fig.1. The C—C, N—C, C—O bond lengths in the structure are close to those found in the related structures (Usha et al., 2003; Abdul Ajees et al., 2002). The sum of the angle around atom N (332°) indicates sp3 hybridization. The carboxylate group is perpendicular to the pyran ring [89.4 (1)°].The pyran ring adopts twist-half chair conformation with lowest asymmetry parameters (Nardelli, 1983) of Δ (C9—C5) =0.033 (1) and the pyrrole ring adopts half chair conformation Δs(C8) = 0.008 (1). The molecular conformation is stabilizaed by two weak C—H···N and C—H···O intramolecular interactions, Table 1. The crystal packing is stabilized by van der Waals forces.

Related literature top

Chromanone derivatives are used as intermediates in the synthesis of natural products calonlide (A) and inophyllum (B) (Ellis et al., 1977), which have been suggested to have activity against anti-human immuno deficiency virus type 1 (HIV-1) (Hussain & Amir, 1986). Chromanone derivatives dilate the heart and act as remedies for angina pectoris, see: Hasegnaida (1967). Pyrrolidine derivatives possess anti-influenza (Stylianakis et al., 2003) and anti-convulsant (Obniska et al., 2002) activity. For related structures, see: Abdul Ajees et al. (2002); Usha et al. (2003). For related literature, see: Nardelli (1983).

Experimental top

A mixture of (E)-methyl2-((2-formylphenoxy) methyl)-3-(4-fluorophenyl)acrylate(2 mmol) and sarcosine (2 mmol) in acetonitrile (8 ml) was refluxed for 5h. After the completion of the reaction mixture was concentrated and the resulting crude mass was diluted with water (15 ml). The combined organic layer was washed with brine (2x10ml) and dried over anhydrous Na2SO4.The organic layer was concentrated and purified by column chromatographyon silica gel (Acme 100–200 mesh), using ethyl acetate-hexanes (1:9) to afford the pure title of the compound as a colourless solid in 65% yield.

Refinement top

The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic C—H = 0.93Å , methyl C-H = 0.96Å and methylene C—H = 0.97Å and with Uiso = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for the remaining H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97(Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
Methyl 3-(4-fluorophenyl)-1-methyl-1,2,3,3a,4,9b- hexahydrochromeno[4,3-b]pyrrole-3a-carboxylate top
Crystal data top
C20H20FNO3F(000) = 720
Mr = 341.37Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4237 reflections
a = 10.4519 (4) Åθ = 2–28°
b = 20.6778 (8) ŵ = 0.10 mm1
c = 7.8508 (3) ÅT = 293 K
β = 91.535 (2)°Block, colourless
V = 1696.12 (11) Å30.22 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2844 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 28.4°, θmin = 2.0°
ω and ϕ scanh = 1313
16737 measured reflectionsk = 2727
4237 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.219 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
4237 reflectionsΔρmax = 0.24 e Å3
227 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.013 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C20H20FNO3V = 1696.12 (11) Å3
Mr = 341.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4519 (4) ŵ = 0.10 mm1
b = 20.6778 (8) ÅT = 293 K
c = 7.8508 (3) Å0.22 × 0.20 × 0.19 mm
β = 91.535 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2844 reflections with I > 2σ(I)
16737 measured reflectionsRint = 0.035
4237 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 0.81Δρmax = 0.24 e Å3
4237 reflectionsΔρmin = 0.18 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C200.1861 (2)0.22098 (11)0.9717 (3)0.0645 (6)
H20A0.17030.26510.93890.097*
H20B0.23380.22011.07800.097*
H20C0.10600.19900.98450.097*
O10.53935 (13)0.05675 (7)0.87998 (17)0.0559 (4)
F0.01102 (13)0.15643 (6)0.7317 (2)0.0775 (5)
C10.63732 (18)0.20543 (10)0.6667 (2)0.0505 (5)
H10.60800.23520.58580.061*
C20.7536 (2)0.21569 (12)0.7493 (3)0.0655 (6)
H20.80250.25180.72360.079*
C30.7969 (2)0.17199 (14)0.8701 (3)0.0737 (7)
H30.87570.17850.92530.088*
C40.7248 (2)0.11893 (12)0.9099 (3)0.0640 (6)
H40.75450.08980.99220.077*
C50.60721 (17)0.10867 (9)0.8271 (2)0.0458 (4)
C60.42920 (17)0.03806 (8)0.7786 (2)0.0422 (4)
H6A0.37630.00940.84470.051*
H6B0.45690.01430.67960.051*
C70.35015 (15)0.09573 (8)0.72016 (18)0.0357 (4)
C80.43498 (15)0.14033 (8)0.61491 (19)0.0359 (4)
H80.39160.18180.59550.043*
C90.56300 (16)0.15160 (8)0.7018 (2)0.0398 (4)
C100.24295 (16)0.07657 (8)0.58563 (19)0.0383 (4)
H100.17760.11050.58840.046*
C110.30986 (18)0.08318 (10)0.4144 (2)0.0485 (5)
H11A0.31040.04200.35540.058*
H11B0.26570.11460.34250.058*
C120.17597 (15)0.01306 (8)0.62225 (18)0.0373 (4)
C130.06850 (16)0.01298 (9)0.7231 (2)0.0440 (4)
H130.03820.05200.76490.053*
C140.00570 (18)0.04361 (10)0.7628 (2)0.0515 (5)
H140.06500.04330.83230.062*
C150.05039 (18)0.09990 (9)0.6970 (2)0.0503 (5)
C160.1548 (2)0.10261 (9)0.5965 (3)0.0540 (5)
H160.18280.14180.55320.065*
C170.21785 (17)0.04557 (9)0.5604 (2)0.0475 (4)
H170.28980.04670.49320.057*
C180.49406 (18)0.14114 (10)0.3144 (2)0.0501 (5)
H18A0.49490.11460.21410.075*
H18B0.57990.15420.34440.075*
H18C0.44240.17880.29250.075*
C190.28728 (16)0.12722 (8)0.87041 (19)0.0397 (4)
N0.44108 (14)0.10458 (7)0.45389 (16)0.0395 (4)
O20.25895 (16)0.09942 (7)0.99746 (16)0.0637 (5)
O30.25839 (14)0.18923 (6)0.84246 (17)0.0556 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C200.0666 (14)0.0625 (13)0.0655 (13)0.0059 (10)0.0216 (11)0.0122 (10)
O10.0514 (8)0.0618 (8)0.0535 (8)0.0039 (6)0.0194 (6)0.0170 (6)
F0.0686 (9)0.0619 (8)0.1021 (11)0.0257 (6)0.0022 (8)0.0114 (7)
C10.0503 (10)0.0546 (11)0.0470 (10)0.0087 (8)0.0096 (8)0.0091 (8)
C20.0541 (12)0.0807 (15)0.0623 (13)0.0264 (11)0.0128 (10)0.0206 (11)
C30.0476 (12)0.111 (2)0.0623 (14)0.0190 (13)0.0064 (10)0.0203 (13)
C40.0501 (12)0.0916 (17)0.0497 (11)0.0018 (11)0.0114 (9)0.0022 (10)
C50.0411 (9)0.0571 (11)0.0391 (9)0.0006 (8)0.0026 (7)0.0023 (7)
C60.0451 (9)0.0424 (9)0.0387 (8)0.0015 (7)0.0065 (7)0.0064 (6)
C70.0374 (8)0.0414 (9)0.0281 (7)0.0010 (6)0.0008 (6)0.0035 (6)
C80.0375 (8)0.0386 (8)0.0316 (7)0.0014 (6)0.0028 (6)0.0048 (6)
C90.0382 (9)0.0447 (10)0.0364 (8)0.0022 (7)0.0028 (7)0.0052 (6)
C100.0396 (8)0.0442 (9)0.0309 (8)0.0015 (7)0.0031 (6)0.0040 (6)
C110.0512 (10)0.0646 (12)0.0294 (8)0.0137 (9)0.0015 (7)0.0043 (7)
C120.0343 (8)0.0473 (10)0.0300 (7)0.0023 (7)0.0021 (6)0.0005 (6)
C130.0386 (9)0.0537 (11)0.0398 (9)0.0001 (7)0.0023 (7)0.0068 (7)
C140.0385 (9)0.0679 (13)0.0481 (10)0.0096 (8)0.0047 (8)0.0005 (8)
C150.0448 (10)0.0505 (11)0.0554 (11)0.0122 (8)0.0055 (8)0.0064 (8)
C160.0533 (11)0.0453 (11)0.0632 (12)0.0009 (8)0.0009 (9)0.0061 (8)
C170.0401 (9)0.0540 (11)0.0486 (10)0.0000 (8)0.0077 (7)0.0046 (8)
C180.0481 (10)0.0679 (12)0.0345 (8)0.0039 (9)0.0060 (7)0.0094 (8)
C190.0403 (9)0.0481 (10)0.0305 (8)0.0058 (7)0.0014 (6)0.0015 (7)
N0.0420 (8)0.0486 (8)0.0280 (6)0.0016 (6)0.0018 (5)0.0029 (5)
O20.0889 (12)0.0667 (10)0.0364 (7)0.0026 (7)0.0172 (7)0.0078 (6)
O30.0688 (9)0.0489 (8)0.0502 (7)0.0061 (6)0.0222 (6)0.0000 (6)
Geometric parameters (Å, º) top
C20—O31.440 (2)C8—C91.504 (2)
C20—H20A0.9600C8—H80.9800
C20—H20B0.9600C10—C121.519 (2)
C20—H20C0.9600C10—C111.538 (2)
O1—C51.358 (2)C10—H100.9800
O1—C61.435 (2)C11—N1.466 (2)
F—C151.364 (2)C11—H11A0.9700
C1—C21.379 (3)C11—H11B0.9700
C1—C91.389 (2)C12—C171.382 (3)
C1—H10.9300C12—C131.392 (2)
C2—C31.378 (4)C13—C141.381 (3)
C2—H20.9300C13—H130.9300
C3—C41.371 (4)C14—C151.361 (3)
C3—H30.9300C14—H140.9300
C4—C51.391 (3)C15—C161.365 (3)
C4—H40.9300C16—C171.384 (3)
C5—C91.395 (3)C16—H160.9300
C6—C71.515 (2)C17—H170.9300
C6—H6A0.9700C18—N1.453 (2)
C6—H6B0.9700C18—H18A0.9600
C7—C191.513 (2)C18—H18B0.9600
C7—C81.536 (2)C18—H18C0.9600
C7—C101.570 (2)C19—O21.1953 (19)
C8—N1.467 (2)C19—O31.334 (2)
O3—C20—H20A109.5C12—C10—C11117.71 (14)
O3—C20—H20B109.5C12—C10—C7114.52 (12)
H20A—C20—H20B109.5C11—C10—C7103.45 (12)
O3—C20—H20C109.5C12—C10—H10106.8
H20A—C20—H20C109.5C11—C10—H10106.8
H20B—C20—H20C109.5C7—C10—H10106.8
C5—O1—C6117.45 (13)N—C11—C10106.67 (12)
C2—C1—C9121.4 (2)N—C11—H11A110.4
C2—C1—H1119.3C10—C11—H11A110.4
C9—C1—H1119.3N—C11—H11B110.4
C3—C2—C1119.4 (2)C10—C11—H11B110.4
C3—C2—H2120.3H11A—C11—H11B108.6
C1—C2—H2120.3C17—C12—C13117.85 (16)
C2—C3—C4120.6 (2)C17—C12—C10122.69 (15)
C2—C3—H3119.7C13—C12—C10119.46 (15)
C4—C3—H3119.7C14—C13—C12121.66 (17)
C3—C4—C5119.9 (2)C14—C13—H13119.2
C3—C4—H4120.0C12—C13—H13119.2
C5—C4—H4120.0C15—C14—C13117.96 (16)
O1—C5—C4116.08 (17)C15—C14—H14121.0
O1—C5—C9123.58 (16)C13—C14—H14121.0
C4—C5—C9120.30 (18)C14—C15—C16122.85 (17)
O1—C6—C7112.27 (14)C14—C15—F119.26 (17)
O1—C6—H6A109.1C16—C15—F117.89 (17)
C7—C6—H6A109.1C15—C16—C17118.42 (17)
O1—C6—H6B109.1C15—C16—H16120.8
C7—C6—H6B109.1C17—C16—H16120.8
H6A—C6—H6B107.9C12—C17—C16121.23 (17)
C19—C7—C6110.33 (13)C12—C17—H17119.4
C19—C7—C8115.48 (13)C16—C17—H17119.4
C6—C7—C8108.52 (13)N—C18—H18A109.5
C19—C7—C10108.43 (13)N—C18—H18B109.5
C6—C7—C10112.26 (13)H18A—C18—H18B109.5
C8—C7—C10101.62 (12)N—C18—H18C109.5
N—C8—C9114.21 (13)H18A—C18—H18C109.5
N—C8—C7101.54 (12)H18B—C18—H18C109.5
C9—C8—C7111.63 (13)O2—C19—O3122.65 (16)
N—C8—H8109.7O2—C19—C7124.48 (17)
C9—C8—H8109.7O3—C19—C7112.74 (13)
C7—C8—H8109.7C18—N—C8114.43 (14)
C1—C9—C5118.24 (16)C18—N—C11111.78 (13)
C1—C9—C8122.01 (16)C8—N—C11105.79 (13)
C5—C9—C8119.69 (15)C19—O3—C20116.29 (15)
C9—C1—C2—C30.5 (3)C8—C7—C10—C1126.42 (16)
C1—C2—C3—C40.6 (4)C12—C10—C11—N127.87 (15)
C2—C3—C4—C50.4 (4)C7—C10—C11—N0.45 (18)
C6—O1—C5—C4169.32 (16)C11—C10—C12—C1731.4 (2)
C6—O1—C5—C912.9 (3)C7—C10—C12—C1790.51 (19)
C3—C4—C5—O1176.91 (19)C11—C10—C12—C13149.15 (15)
C3—C4—C5—C91.0 (3)C7—C10—C12—C1388.96 (18)
C5—O1—C6—C742.6 (2)C17—C12—C13—C140.8 (2)
O1—C6—C7—C1968.27 (17)C10—C12—C13—C14178.74 (15)
O1—C6—C7—C859.16 (17)C12—C13—C14—C151.4 (3)
O1—C6—C7—C10170.67 (13)C13—C14—C15—C160.9 (3)
C19—C7—C8—N160.23 (13)C13—C14—C15—F178.91 (17)
C6—C7—C8—N75.34 (14)C14—C15—C16—C170.1 (3)
C10—C7—C8—N43.13 (15)F—C15—C16—C17179.98 (17)
C19—C7—C8—C977.68 (16)C13—C12—C17—C160.4 (3)
C6—C7—C8—C946.75 (17)C10—C12—C17—C16179.85 (16)
C10—C7—C8—C9165.22 (13)C15—C16—C17—C120.8 (3)
C2—C1—C9—C51.8 (3)C6—C7—C19—O228.0 (2)
C2—C1—C9—C8178.95 (16)C8—C7—C19—O2151.46 (17)
O1—C5—C9—C1175.64 (16)C10—C7—C19—O295.34 (19)
C4—C5—C9—C12.1 (3)C6—C7—C19—O3156.20 (14)
O1—C5—C9—C81.5 (3)C8—C7—C19—O332.72 (18)
C4—C5—C9—C8179.23 (16)C10—C7—C19—O380.49 (16)
N—C8—C9—C188.40 (19)C9—C8—N—C1871.69 (18)
C7—C8—C9—C1157.13 (15)C7—C8—N—C18168.03 (13)
N—C8—C9—C594.54 (18)C9—C8—N—C11164.82 (14)
C7—C8—C9—C519.9 (2)C7—C8—N—C1144.53 (15)
C19—C7—C10—C1282.09 (17)C10—C11—N—C18152.67 (15)
C6—C7—C10—C1240.05 (19)C10—C11—N—C827.52 (18)
C8—C7—C10—C12155.80 (13)O2—C19—O3—C202.3 (3)
C19—C7—C10—C11148.52 (14)C7—C19—O3—C20173.64 (16)
C6—C7—C10—C1189.33 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···N0.972.582.902 (2)100
C8—H8···O30.982.422.792 (2)102

Experimental details

Crystal data
Chemical formulaC20H20FNO3
Mr341.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.4519 (4), 20.6778 (8), 7.8508 (3)
β (°) 91.535 (2)
V3)1696.12 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16737, 4237, 2844
Rint0.035
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.219, 0.81
No. of reflections4237
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97(Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···N0.972.582.902 (2)100
C8—H8···O30.982.422.792 (2)102
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computing facilities.

References

First citationAbdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, o802–o804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. BrukerAXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationEllis, G. P., Lockhart, I. M., Meeder-Nyez, D. & Schweizer, E. E. (1977). Chromenes, Chromanones and Chromones, edited by G. P. Ellis. New York: John Wiley and Sons, Inc.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHasegnaida, G. (1967). Chem. Abst. 69, 67221.  Google Scholar
First citationHussain, M. I. & Amir, M. (1986). J. Indian Chem. Soc. 63, 317–320.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationObniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. 59, 209–213.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & Declereq, E. (2003). Bioorg. Med. Chem. Lett. 10, 1699–1703.  Web of Science CrossRef Google Scholar
First citationUsha, G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Amalraj, A., Raghunathan, R., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o1572–o1574.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds