metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-aqua-μ4-terephthalato-strontium]

aThe Department of Physics–Chemistry, Henan Polytechnic University, Jiao Zuo 454150, People's Republic of China, and bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: xcy78413@tom.com

(Received 17 December 2010; accepted 28 December 2010; online 29 January 2011)

In the title compound, [Sr(C8H4O4)(H2O)]n, the SrII atom exhibits coordination number eight, with six O atoms from four carboxylate groups (two bidentate and two monodentate) of terephthalate ligands and two water O atoms. The SrO8 polyhedra are linked into inorganic chains by sharing three coplanar O atoms. These inorganic chains are extended along the b axis to form layers in the ab plane by O—C—O linking. Parallel layers are connected by terephthalic groups, forming a three-dimensional framework. O—H⋯O hydrogen-bonding inter­actions are observed.

Related literature

For hybrid inorganic-organic framework materials, see: Férey et al. (2008[Férey, G. (2008). Chem. Soc. Rev. 37, 191-214.]); Zhang et al. (2009[Zhang, L., Zhao, J. L., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517-6525.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C8H4O4)(H2O)]

  • Mr = 269.75

  • Orthorhombic, P b c a

  • a = 11.8724 (3) Å

  • b = 7.1308 (1) Å

  • c = 20.0592 (4) Å

  • V = 1698.21 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.34 mm−1

  • T = 296 K

  • 0.24 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.238, Tmax = 0.300

  • 6767 measured reflections

  • 1523 independent reflections

  • 1205 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.062

  • S = 1.04

  • 1523 reflections

  • 133 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O3i 0.84 (3) 2.03 (4) 2.711 (3) 137 (3)
O5—H2⋯O2ii 0.84 (3) 1.92 (3) 2.761 (3) 178 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

Many researchers have focused their attention on the preparation and investigation of hybrid inorganic-organic framework materials because of their intriguing network structures, novel topologies, and potential applications, such as catalysis and optical materials. However the reports about hybrid inorganic-organic frameworks in lead coordination compounds are still less.n this paper, we described the synthesis and crystal structure of a novel hybrid inorganic-organic framework [Sr(C8H6O5)]n. Sr(II) atom in asymmetric unit are octahedrally coordinated(Fig1) which is coordinated by six oxygen atoms from terephthalate and two oxygen atoms from water. The Sr—O distances (Table 1) ranging from 2.475 (2) to 2.830 (2) Å, Sr polyhedra are linked into one-dimensional inorganic chain by sharing three coplanar O atoms shown as Fig. 2. The one-dimensional inorganic chains are extended along the b axis to form ab plane by O–C–O linking. The parallel layers are connected by terephthalic groups to form the three-dimensional framework, as shown in Fig. 3.

Related literature top

For related literature [on what subject?], see: Férey et al. (2008);Zhang et al. (2009).

Experimental top

The suspension of the admixture Sr(NO3)2 (1 mmol) and NaOH (0.02 g) in the water (5 ml) was slowly added into the solution of terephthalic acid (2 mmol) in ethanol (10 ml) in stirred. The resulting mixture was further stirred for 4 h at 120 °C. The filtrate pH was adjusted to 3 by hydrochloric acid. The final reaction mixture was heated in a sealed Teflon-lined steel autoclave at 180 °C for 7 days. After crystallization, the autoclave was cooled down to room temperature and the yellow block single crystals were filtered, washed by distilled water and dried in air.

Refinement top

Aromatic H atoms were refined as riding atoms,with C—H=0.93Å and H atoms were calculated as Uiso(H) = 1.2Ueq(carrier C). The H atoms of water were fixed in the refinements, with Uiso(H)=1.5Ueq(carrier O)

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of compound with thermal ellipsoids.Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Sr polyhedra extended along the b axis to form one-dimensional chain by sharing three co-planar O atoms
[Figure 3] Fig. 3. View of the structure along [0 0 1] direction, layers connected by terephthalic groups forming the three-dimensional framework
Poly[µ-aqua-µ4-terephthalato-strontium] top
Crystal data top
[Sr(C8H4O4)(H2O)]F(000) = 1056
Mr = 269.75Dx = 2.110 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1205 reflections
a = 11.8724 (3) Åθ = 2.7–25.2°
b = 7.1308 (1) ŵ = 6.34 mm1
c = 20.0592 (4) ÅT = 296 K
V = 1698.21 (6) Å3Block, yellow
Z = 80.24 × 0.21 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
1523 independent reflections
Radiation source: fine-focus sealed tube1205 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 25.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 148
Tmin = 0.238, Tmax = 0.300k = 88
6767 measured reflectionsl = 1623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.3991P]
where P = (Fo2 + 2Fc2)/3
1523 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Sr(C8H4O4)(H2O)]V = 1698.21 (6) Å3
Mr = 269.75Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.8724 (3) ŵ = 6.34 mm1
b = 7.1308 (1) ÅT = 296 K
c = 20.0592 (4) Å0.24 × 0.21 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
1523 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1205 reflections with I > 2σ(I)
Tmin = 0.238, Tmax = 0.300Rint = 0.043
6767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.36 e Å3
1523 reflectionsΔρmin = 0.50 e Å3
133 parameters
Special details top

Experimental. Aromatic H atoms were refined as riding atoms,with C—H=0.93Å and H atoms were calculated as Uiso(H) = 1.2Ueq(carrier C). The H atoms of water were fixed in the refinements, with Uiso(H)=1.5Ueq(carrier O)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.93510 (3)0.61190 (4)0.736154 (15)0.01731 (12)
O10.9182 (2)0.2855 (3)0.68486 (11)0.0220 (6)
O51.1323 (2)0.4455 (3)0.72230 (11)0.0244 (6)
C30.9508 (3)0.2525 (5)0.54589 (17)0.0211 (8)
H3A1.00680.31310.57010.025*
C70.7700 (3)0.1036 (4)0.54088 (16)0.0214 (8)
H7A0.70410.06510.56180.026*
C20.8539 (3)0.1900 (4)0.57787 (15)0.0157 (7)
C10.8405 (3)0.2083 (4)0.65225 (16)0.0174 (8)
C40.9639 (3)0.2244 (4)0.47790 (17)0.0240 (9)
H4A1.02850.26710.45660.029*
C60.7834 (3)0.0740 (4)0.47334 (15)0.0213 (8)
H6A0.72690.01470.44910.026*
C50.8814 (3)0.1331 (4)0.44164 (15)0.0177 (8)
C80.8981 (3)0.0856 (4)0.36917 (17)0.0209 (8)
O40.9836 (2)0.1481 (3)0.33885 (11)0.0287 (6)
O30.8280 (2)0.0220 (4)0.34186 (11)0.0306 (6)
O20.7543 (2)0.1373 (3)0.67879 (11)0.0244 (6)
H11.169 (2)0.446 (5)0.6868 (9)0.037*
H21.165 (3)0.505 (5)0.7530 (11)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01707 (19)0.01812 (17)0.0167 (2)0.00088 (15)0.00052 (14)0.00049 (13)
O10.0225 (16)0.0238 (13)0.0197 (14)0.0034 (11)0.0046 (11)0.0034 (10)
O50.0202 (15)0.0312 (13)0.0217 (15)0.0025 (12)0.0011 (11)0.0052 (11)
C30.018 (2)0.0254 (17)0.020 (2)0.0038 (16)0.0037 (16)0.0019 (14)
C70.018 (2)0.0235 (17)0.023 (2)0.0042 (17)0.0020 (15)0.0003 (14)
C20.019 (2)0.0128 (15)0.0153 (18)0.0005 (15)0.0006 (15)0.0004 (13)
C10.018 (2)0.0125 (16)0.021 (2)0.0061 (15)0.0018 (16)0.0023 (13)
C40.020 (2)0.028 (2)0.024 (2)0.0045 (16)0.0041 (16)0.0023 (16)
C60.022 (2)0.0232 (17)0.0189 (19)0.0050 (16)0.0033 (16)0.0031 (14)
C50.021 (2)0.0184 (17)0.0135 (18)0.0028 (16)0.0005 (15)0.0006 (13)
C80.025 (2)0.0207 (18)0.0173 (19)0.0105 (17)0.0007 (16)0.0036 (15)
O40.0312 (16)0.0344 (15)0.0207 (14)0.0004 (13)0.0055 (12)0.0060 (10)
O30.0283 (17)0.0438 (16)0.0197 (14)0.0007 (13)0.0025 (11)0.0107 (11)
O20.0207 (15)0.0352 (14)0.0172 (13)0.0034 (11)0.0028 (11)0.0004 (10)
Geometric parameters (Å, º) top
Sr1—O4i2.475 (2)C3—H3A0.9300
Sr1—O2ii2.533 (2)C7—C61.380 (4)
Sr1—O12.553 (2)C7—C21.386 (5)
Sr1—O3iii2.554 (2)C7—H7A0.9300
Sr1—O52.639 (3)C2—C11.506 (4)
Sr1—O5iv2.645 (2)C1—O21.259 (4)
Sr1—O1iv2.660 (2)C4—C51.383 (5)
Sr1—O4iii2.830 (2)C4—H4A0.9300
Sr1—C8iii3.049 (3)C6—C51.391 (5)
Sr1—Sr1iv3.9237 (3)C6—H6A0.9300
Sr1—Sr1v3.9237 (3)C5—C81.506 (4)
Sr1—H22.86 (3)C8—O31.257 (4)
O1—C11.258 (4)C8—O41.265 (4)
O1—Sr1v2.660 (2)C8—Sr1vi3.049 (3)
O5—Sr1v2.645 (2)O4—Sr1i2.475 (2)
O5—H10.84 (3)O4—Sr1vi2.830 (2)
O5—H20.84 (3)O3—Sr1vi2.554 (2)
C3—C41.387 (4)O2—Sr1vii2.533 (2)
C3—C21.391 (5)
O4i—Sr1—O2ii91.19 (8)Sr1iv—Sr1—Sr1v130.650 (17)
O4i—Sr1—O1114.60 (7)O4i—Sr1—H283.3 (7)
O2ii—Sr1—O179.18 (7)O2ii—Sr1—H2157.2 (3)
O4i—Sr1—O3iii150.75 (8)O1—Sr1—H283.1 (5)
O2ii—Sr1—O3iii87.30 (8)O3iii—Sr1—H2108.1 (6)
O1—Sr1—O3iii93.81 (8)O5—Sr1—H217.1 (3)
O4i—Sr1—O584.31 (8)O5iv—Sr1—H2119.5 (5)
O2ii—Sr1—O5140.53 (7)O1iv—Sr1—H255.1 (4)
O1—Sr1—O567.51 (7)O4iii—Sr1—H262.9 (7)
O3iii—Sr1—O5114.60 (8)C8iii—Sr1—H284.9 (6)
O4i—Sr1—O5iv71.78 (7)Sr1iv—Sr1—H281.4 (6)
O2ii—Sr1—O5iv79.06 (7)Sr1v—Sr1—H250.6 (6)
O1—Sr1—O5iv157.43 (8)C1—O1—Sr1131.8 (2)
O3iii—Sr1—O5iv79.26 (8)C1—O1—Sr1v125.89 (19)
O5—Sr1—O5iv134.90 (7)Sr1—O1—Sr1v97.63 (7)
O4i—Sr1—O1iv77.57 (8)Sr1—O5—Sr1v95.90 (8)
O2ii—Sr1—O1iv144.96 (7)Sr1—O5—H1124 (3)
O1—Sr1—O1iv135.71 (6)Sr1v—O5—H1116 (2)
O3iii—Sr1—O1iv87.05 (8)Sr1—O5—H296 (2)
O5—Sr1—O1iv72.00 (7)Sr1v—O5—H2111 (2)
O5iv—Sr1—O1iv65.91 (7)H1—O5—H2111.8 (18)
O4i—Sr1—O4iii144.69 (3)C4—C3—C2120.0 (3)
O2ii—Sr1—O4iii123.93 (8)C4—C3—H3A120.0
O1—Sr1—O4iii73.27 (7)C2—C3—H3A120.0
O3iii—Sr1—O4iii48.14 (8)C6—C7—C2120.7 (3)
O5—Sr1—O4iii66.54 (7)C6—C7—H7A119.6
O5iv—Sr1—O4iii114.92 (7)C2—C7—H7A119.6
O1iv—Sr1—O4iii74.82 (7)C7—C2—C3119.3 (3)
O4i—Sr1—C8iii155.18 (9)C7—C2—C1119.5 (3)
O2ii—Sr1—C8iii107.62 (9)C3—C2—C1121.1 (3)
O1—Sr1—C8iii85.42 (8)O1—C1—O2123.5 (3)
O3iii—Sr1—C8iii23.91 (9)O1—C1—C2118.4 (3)
O5—Sr1—C8iii90.71 (9)O2—C1—C2118.0 (3)
O5iv—Sr1—C8iii95.51 (8)C5—C4—C3120.4 (3)
O1iv—Sr1—C8iii77.77 (8)C5—C4—H4A119.8
O4iii—Sr1—C8iii24.48 (9)C3—C4—H4A119.8
O4i—Sr1—Sr1iv45.92 (5)C7—C6—C5119.9 (3)
O2ii—Sr1—Sr1iv110.37 (5)C7—C6—H6A120.1
O1—Sr1—Sr1iv156.42 (6)C5—C6—H6A120.1
O3iii—Sr1—Sr1iv107.83 (6)C4—C5—C6119.7 (3)
O5—Sr1—Sr1iv94.30 (5)C4—C5—C8121.3 (3)
O5iv—Sr1—Sr1iv42.00 (6)C6—C5—C8118.9 (3)
O1iv—Sr1—Sr1iv40.16 (5)O3—C8—O4122.5 (3)
O4iii—Sr1—Sr1iv114.35 (5)O3—C8—C5118.1 (3)
C8iii—Sr1—Sr1iv110.64 (6)O4—C8—C5119.4 (3)
O4i—Sr1—Sr1v124.15 (6)O3—C8—Sr1vi55.42 (17)
O2ii—Sr1—Sr1v118.56 (5)O4—C8—Sr1vi68.04 (18)
O1—Sr1—Sr1v42.22 (5)C5—C8—Sr1vi165.4 (2)
O3iii—Sr1—Sr1v81.37 (6)C8—O4—Sr1i148.1 (2)
O5—Sr1—Sr1v42.11 (5)C8—O4—Sr1vi87.5 (2)
O5iv—Sr1—Sr1v153.08 (5)Sr1i—O4—Sr1vi95.16 (7)
O1iv—Sr1—Sr1v94.67 (5)C8—O3—Sr1vi100.7 (2)
O4iii—Sr1—Sr1v38.92 (5)C1—O2—Sr1vii160.4 (2)
C8iii—Sr1—Sr1v60.86 (7)
O4i—Sr1—O1—C189.6 (3)C4—C3—C2—C1176.3 (3)
O2ii—Sr1—O1—C13.3 (3)Sr1—O1—C1—O280.0 (4)
O3iii—Sr1—O1—C183.2 (3)Sr1v—O1—C1—O270.1 (4)
O5—Sr1—O1—C1161.7 (3)Sr1—O1—C1—C2103.5 (3)
O5iv—Sr1—O1—C112.3 (4)Sr1v—O1—C1—C2106.4 (3)
O1iv—Sr1—O1—C1172.9 (3)C7—C2—C1—O1179.3 (3)
O4iii—Sr1—O1—C1127.3 (3)C3—C2—C1—O11.6 (5)
C8iii—Sr1—O1—C1105.6 (3)C7—C2—C1—O22.6 (4)
Sr1iv—Sr1—O1—C1119.9 (3)C3—C2—C1—O2175.2 (3)
Sr1v—Sr1—O1—C1155.9 (3)C2—C3—C4—C50.5 (5)
O4i—Sr1—O1—Sr1v114.47 (9)C2—C7—C6—C50.7 (5)
O2ii—Sr1—O1—Sr1v159.22 (9)C3—C4—C5—C61.8 (5)
O3iii—Sr1—O1—Sr1v72.71 (8)C3—C4—C5—C8174.5 (3)
O5—Sr1—O1—Sr1v42.38 (7)C7—C6—C5—C41.2 (5)
O5iv—Sr1—O1—Sr1v143.65 (15)C7—C6—C5—C8175.1 (3)
O1iv—Sr1—O1—Sr1v16.97 (6)C4—C5—C8—O3169.2 (3)
O4iii—Sr1—O1—Sr1v28.62 (7)C6—C5—C8—O37.0 (4)
C8iii—Sr1—O1—Sr1v50.29 (9)C4—C5—C8—O47.9 (5)
Sr1iv—Sr1—O1—Sr1v84.17 (13)C6—C5—C8—O4175.8 (3)
O4i—Sr1—O5—Sr1v162.10 (8)C4—C5—C8—Sr1vi109.6 (10)
O2ii—Sr1—O5—Sr1v77.17 (13)C6—C5—C8—Sr1vi66.7 (11)
O1—Sr1—O5—Sr1v42.49 (7)O3—C8—O4—Sr1i84.8 (5)
O3iii—Sr1—O5—Sr1v41.17 (9)C5—C8—O4—Sr1i98.2 (5)
O5iv—Sr1—O5—Sr1v140.77 (9)Sr1vi—C8—O4—Sr1i95.7 (4)
O1iv—Sr1—O5—Sr1v119.15 (8)O3—C8—O4—Sr1vi11.0 (3)
O4iii—Sr1—O5—Sr1v38.30 (6)C5—C8—O4—Sr1vi166.1 (3)
C8iii—Sr1—O5—Sr1v42.26 (8)O4—C8—O3—Sr1vi12.4 (4)
Sr1iv—Sr1—O5—Sr1v153.01 (5)C5—C8—O3—Sr1vi164.7 (2)
C6—C7—C2—C32.0 (5)O1—C1—O2—Sr1vii74.7 (7)
C6—C7—C2—C1175.8 (3)C2—C1—O2—Sr1vii108.7 (6)
C4—C3—C2—C71.4 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3/2, y+1/2, z; (iii) x, y+1/2, z+1/2; (iv) x+2, y+1/2, z+3/2; (v) x+2, y1/2, z+3/2; (vi) x, y+1/2, z1/2; (vii) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O3viii0.84 (3)2.03 (4)2.711 (3)137 (3)
O5—H2···O2iv0.84 (3)1.92 (3)2.761 (3)178 (3)
Symmetry codes: (iv) x+2, y+1/2, z+3/2; (viii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Sr(C8H4O4)(H2O)]
Mr269.75
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.8724 (3), 7.1308 (1), 20.0592 (4)
V3)1698.21 (6)
Z8
Radiation typeMo Kα
µ (mm1)6.34
Crystal size (mm)0.24 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.238, 0.300
No. of measured, independent and
observed [I > 2σ(I)] reflections
6767, 1523, 1205
Rint0.043
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.062, 1.04
No. of reflections1523
No. of parameters133
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.50

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O3i0.84 (3)2.03 (4)2.711 (3)137 (3)
O5—H2···O2ii0.84 (3)1.92 (3)2.761 (3)178 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

We would like to thank the National Science Fund for Young Scholars of China (No. 20901028/B0107) and the Open Research Fund of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (grant No. 2011–26).

References

First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFérey, G. (2008). Chem. Soc. Rev. 37, 191–214.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Zhao, J. L., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517–6525.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds