metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­[3,5-bis­­(4-pyrid­yl)-1H-1,2,4-triazole-κN3](pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)nickel(II)

aKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry & Chemical Engineering of Guangxi Normal University, Guilin 541004, People's Republic of China, and bPetrochemical Research Institute of PetroChina Co. Ltd, Beijing 100195, People's Republic of China
*Correspondence e-mail: ycliugxnu@yahoo.cn

(Received 9 December 2010; accepted 21 December 2010; online 8 January 2011)

In the title compound, [Ni(C7H3NO4)(C12H9N5)(H2O)2], the NiII atom is coordinated in a distorted octa­hedral geometry by one N and two O atoms from a pyridine-2,6-dicarboxyl­ate ligand, one N atom from a 3,5-bis­(4-pyrid­yl)-1H-1,2,4-triazole ligand in equatorial positions and two water mol­ecules in axial positions. The crystal packing is consolidated by inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For synthesis of the 1H-3,5-bis­(4-pyrid­yl)-1,2,4-triazole (BPT) ligand, see: Liu et al. (2004[Liu, H. B., Gao, J. M., Maynard, L., Saito, Y. D. & Kool, E. T. (2004). J. Am. Chem. Soc. 126, 1102-1109.]). For BPT–metal complexes, see: Huang et al. (2010a[Huang, F.-P., Tian, J.-L., Li, D.-D., Chen, G.-J., Gu, W., Yan, S.-P., Liu, X., Liao, D.-Z. & Cheng, P. (2010a). CrystEngComm, 12, 395-400.],b[Huang, F.-P., Tian, J.-L., Li, D.-D., Chen, G.-J., Gu, W., Yan, S.-P., Liu, X., Liao, D.-Z. & Cheng, P. (2010b). Inorg. Chem. 49, 2525-2529.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H3NO4)(C12H9N5)(H2O)2]

  • Mr = 483.07

  • Monoclinic, C 2/c

  • a = 26.434 (5) Å

  • b = 6.0190 (12) Å

  • c = 26.170 (5) Å

  • β = 105.69 (3)°

  • V = 4008.7 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.32 × 0.21 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.768, Tmax = 0.910

  • 10662 measured reflections

  • 3534 independent reflections

  • 2669 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.104

  • S = 1.11

  • 3534 reflections

  • 310 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O4i 0.88 (4) 1.81 (4) 2.685 (5) 179 (7)
O5—H5B⋯O1ii 0.86 (4) 1.87 (4) 2.718 (5) 168 (5)
O5—H5C⋯O2iii 0.86 (4) 1.89 (4) 2.705 (5) 160 (4)
O6—H6B⋯N6iv 0.87 (4) 1.93 (4) 2.781 (5) 167 (6)
O6—H6C⋯O3v 0.86 (4) 2.39 (4) 3.246 (5) 169 (8)
O6—H6C⋯O4v 0.86 (4) 2.41 (7) 3.081 (5) 135 (6)
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) x, y-1, z; (iv) [-x+1, y+1, -z+{\script{1\over 2}}]; (v) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a contribution to structural studies of coordination abilities of 1H-3,5-bis(4-pyridyl)-1,2,4-triazole (BPT) ligand (Huang et al., 2010a,b), we present here the crystal structure of the title compound (Fig. 1)- a new nickel(II) complex with the BPT and pyridine-2,6-dicarboxylate(PDC) ligands.

Within the title compound, the nickel(II) center is six-coordinated respectively by two carboxylic O atoms [Ni1—O1 2.112 (3) Å, Ni1—O3 2.103 (3) Å,] and one N atom of PDC [Ni1—N1 1.989 (3) Å], as well as one N atom of BPT ligand [Ni1—N2 2.054 (3) Å], from the equatorial orientation, while two O atoms of two H2O occupy the axial positions. Nickel(II) center shows a distorted octahedral coordination geometries, with bond angles of N1—Ni1—N2 175.31 (14)°, O1—Ni1—O3 156.12 (10) ° and O5—Ni1—O6 176.93 (14)°, respectively. Viewed from the whole crystal structure, each complex is linked together by intermolecular O—H···O hydrogen bonds from H2O and carboxyl of PDC to form a supramolecular structure.

Related literature top

For synthesis of the 1H-3,5-bis(4-pyridyl)-1,2,4-triazole (BPT) ligand, see: Liu et al. (2004). For BPT–metal complexes, see: Huang et al. (2010a,b).

Experimental top

1H-3,5-bis(4-pyridyl)-1,2,4-triazole (BPT) was prepared according to the literature (Liu et al., 2004). A mixture of pyridine-2,6-dicarboxylic acid (0.084 g, 0.5 mmol), Ni(NO3)2.6H2O (0.145 g, 0.5 mmol), NaOH (0.040 g, 1 mmol), BPT (0.112 g, 0.5 mmol), ethanol (0.1 ml), and H2O (10 ml) was enclosed in a Teflon-lined autoclave under autogenous pressure at 383 K for 4 days after stirring. Red block crystals were then obtained with yield of 47% (based on NiII). Single crystals fit for X-ray diffraction analysis was picked out for measurement. Elemental analysis calculated for C19H16N6NiO6: C, 47.20; H, 3.31; N, 17.39. Found: C, 46.97; H, 3.51; N, 17.21.

Refinement top

C-bound H atoms were geometrically positioned (C—H 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). N– and O-bound H atoms were located on a difference map and refined isotropically with restraints (O—H = 0.85 (4) Å; N—H = 0.90 (4) Å).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Diaqua[3,5-bis(4-pyridyl)-1H-1,2,4-triazole-κN3](pyridine- 2,6-dicarboxylato-κ3O2,N,O6)nickel(II) top
Crystal data top
[Ni(C7H3NO4)(C12H9N5)(H2O)2]F(000) = 1984
Mr = 483.07Dx = 1.601 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.434 (5) Åθ = 1.5–25.1°
b = 6.0190 (12) ŵ = 1.02 mm1
c = 26.170 (5) ÅT = 293 K
β = 105.69 (3)°Block, green
V = 4008.7 (13) Å30.32 × 0.21 × 0.11 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3534 independent reflections
Radiation source: fine-focus sealed tube2669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
phi and ω scansθmax = 25.1°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3131
Tmin = 0.768, Tmax = 0.910k = 67
10662 measured reflectionsl = 3130
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0251P)2 + 7.5822P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3534 reflectionsΔρmax = 0.33 e Å3
310 parametersΔρmin = 0.33 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00023 (7)
Crystal data top
[Ni(C7H3NO4)(C12H9N5)(H2O)2]V = 4008.7 (13) Å3
Mr = 483.07Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.434 (5) ŵ = 1.02 mm1
b = 6.0190 (12) ÅT = 293 K
c = 26.170 (5) Å0.32 × 0.21 × 0.11 mm
β = 105.69 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3534 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2669 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.910Rint = 0.071
10662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0637 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.33 e Å3
3534 reflectionsΔρmin = 0.33 e Å3
310 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.226457 (19)0.64878 (9)0.08540 (2)0.02533 (18)
C10.16122 (16)0.9930 (7)0.02297 (17)0.0284 (10)
C20.12404 (14)0.8314 (7)0.03879 (16)0.0246 (9)
C30.06954 (15)0.8470 (7)0.02545 (18)0.0350 (11)
H3A0.05210.96240.00430.042*
C40.04206 (16)0.6862 (8)0.04454 (19)0.0412 (12)
H4A0.00560.69290.03630.049*
C50.06859 (15)0.5162 (7)0.07569 (18)0.0341 (11)
H5A0.05040.40750.08870.041*
C60.12286 (14)0.5098 (7)0.08726 (16)0.0240 (10)
C70.16017 (15)0.3376 (7)0.11997 (16)0.0277 (10)
C80.34025 (16)0.7559 (7)0.09586 (18)0.0354 (11)
H8A0.32700.89090.08070.042*
C90.39403 (16)0.7200 (7)0.10786 (18)0.0334 (11)
H9A0.41610.82940.10090.040*
C100.41453 (15)0.5203 (7)0.13023 (17)0.0296 (10)
C110.37953 (15)0.3656 (7)0.13924 (18)0.0364 (11)
H11A0.39160.22910.15430.044*
C120.32645 (16)0.4132 (7)0.12595 (19)0.0361 (12)
H12A0.30360.30520.13200.043*
C130.47160 (15)0.4758 (7)0.14512 (17)0.0299 (10)
C140.54546 (15)0.3328 (8)0.17986 (16)0.0302 (10)
C150.58930 (16)0.1971 (7)0.21043 (17)0.0318 (11)
C160.64134 (17)0.2613 (8)0.2184 (2)0.0485 (14)
H16A0.64970.39180.20350.058*
C170.68063 (18)0.1269 (9)0.2492 (2)0.0579 (16)
H17A0.71530.17260.25440.070*
C180.62206 (18)0.1208 (8)0.26260 (19)0.0441 (13)
H18A0.61490.25350.27740.053*
C190.57996 (17)0.0004 (8)0.23279 (18)0.0388 (12)
H19A0.54580.05070.22800.047*
N10.14859 (11)0.6669 (5)0.06894 (13)0.0231 (8)
N20.30646 (12)0.6050 (6)0.10502 (14)0.0282 (9)
N30.49458 (12)0.3023 (6)0.17511 (14)0.0329 (9)
N40.50503 (12)0.6110 (6)0.13012 (15)0.0363 (10)
N50.55201 (13)0.5164 (6)0.15348 (15)0.0352 (10)
N60.67239 (15)0.0606 (7)0.27162 (16)0.0473 (11)
O10.20996 (10)0.9403 (4)0.03895 (11)0.0304 (7)
O20.14263 (11)1.1605 (5)0.00256 (12)0.0382 (8)
O30.20889 (10)0.3681 (5)0.12533 (11)0.0312 (7)
O40.14157 (11)0.1758 (5)0.13800 (13)0.0427 (8)
O50.21976 (13)0.4697 (5)0.01727 (13)0.0394 (8)
O60.23372 (12)0.8463 (6)0.15262 (13)0.0394 (8)
H5C0.1995 (14)0.360 (5)0.0075 (17)0.055 (16)*
H6B0.2635 (11)0.861 (8)0.1761 (15)0.070 (19)*
H5B0.2419 (14)0.479 (7)0.0008 (16)0.060 (17)*
H50.5810 (13)0.575 (8)0.147 (2)0.076 (19)*
H6C0.222 (2)0.977 (5)0.145 (3)0.17 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0181 (3)0.0257 (3)0.0334 (3)0.0014 (3)0.0092 (2)0.0005 (3)
C10.030 (3)0.029 (3)0.024 (3)0.004 (2)0.004 (2)0.003 (2)
C20.024 (2)0.023 (2)0.027 (2)0.0006 (19)0.0068 (19)0.001 (2)
C30.026 (2)0.029 (2)0.046 (3)0.003 (2)0.003 (2)0.007 (2)
C40.020 (2)0.044 (3)0.059 (3)0.001 (2)0.010 (2)0.007 (3)
C50.024 (2)0.033 (3)0.048 (3)0.006 (2)0.013 (2)0.010 (2)
C60.021 (2)0.025 (2)0.027 (2)0.0019 (18)0.0075 (19)0.001 (2)
C70.028 (2)0.027 (2)0.030 (2)0.002 (2)0.011 (2)0.001 (2)
C80.027 (2)0.032 (3)0.045 (3)0.002 (2)0.005 (2)0.009 (2)
C90.027 (2)0.029 (3)0.046 (3)0.0044 (19)0.013 (2)0.007 (2)
C100.023 (2)0.032 (3)0.034 (3)0.0009 (19)0.008 (2)0.000 (2)
C110.026 (2)0.030 (3)0.056 (3)0.003 (2)0.014 (2)0.012 (2)
C120.023 (2)0.033 (3)0.054 (3)0.001 (2)0.012 (2)0.010 (2)
C130.020 (2)0.038 (3)0.032 (3)0.002 (2)0.007 (2)0.008 (2)
C140.022 (2)0.037 (3)0.032 (3)0.003 (2)0.007 (2)0.010 (2)
C150.027 (2)0.040 (3)0.029 (3)0.003 (2)0.009 (2)0.007 (2)
C160.026 (3)0.055 (3)0.064 (4)0.005 (2)0.013 (3)0.034 (3)
C170.027 (3)0.072 (4)0.073 (4)0.007 (3)0.011 (3)0.033 (3)
C180.044 (3)0.042 (3)0.044 (3)0.004 (2)0.009 (3)0.012 (3)
C190.030 (3)0.044 (3)0.041 (3)0.001 (2)0.006 (2)0.007 (2)
N10.0214 (18)0.0195 (18)0.0280 (19)0.0029 (16)0.0057 (16)0.0002 (17)
N20.0193 (18)0.031 (2)0.033 (2)0.0017 (16)0.0054 (16)0.0002 (17)
N30.0222 (19)0.038 (2)0.040 (2)0.0020 (17)0.0104 (18)0.0104 (19)
N40.0206 (19)0.038 (2)0.052 (3)0.0041 (17)0.0113 (18)0.015 (2)
N50.017 (2)0.039 (2)0.049 (3)0.0041 (17)0.0074 (19)0.014 (2)
N60.035 (2)0.057 (3)0.047 (3)0.012 (2)0.005 (2)0.021 (2)
O10.0237 (16)0.0296 (17)0.0403 (19)0.0028 (13)0.0129 (14)0.0045 (15)
O20.0390 (18)0.0273 (17)0.0454 (19)0.0032 (15)0.0063 (15)0.0097 (17)
O30.0206 (15)0.0348 (17)0.0394 (18)0.0019 (14)0.0103 (14)0.0095 (15)
O40.0305 (17)0.0379 (19)0.061 (2)0.0006 (15)0.0153 (16)0.0213 (18)
O50.044 (2)0.036 (2)0.046 (2)0.0169 (17)0.0237 (18)0.0124 (17)
O60.0326 (19)0.044 (2)0.036 (2)0.0048 (17)0.0016 (16)0.0132 (18)
Geometric parameters (Å, º) top
Ni1—N11.989 (3)C10—C131.477 (5)
Ni1—O52.050 (3)C11—C121.381 (5)
Ni1—N22.054 (3)C11—H11A0.9300
Ni1—O62.088 (3)C12—N21.325 (5)
Ni1—O32.103 (3)C12—H12A0.9300
Ni1—O12.112 (3)C13—N41.336 (5)
C1—O21.236 (5)C13—N31.348 (5)
C1—O11.282 (4)C14—N31.330 (5)
C1—C21.518 (5)C14—N51.339 (5)
C2—N11.322 (5)C14—C151.466 (6)
C2—C31.391 (5)C15—C191.372 (6)
C3—C41.382 (6)C15—C161.389 (6)
C3—H3A0.9300C16—C171.389 (6)
C4—C51.376 (6)C16—H16A0.9300
C4—H4A0.9300C17—N61.317 (6)
C5—C61.384 (5)C17—H17A0.9300
C5—H5A0.9300C18—N61.337 (5)
C6—N11.328 (5)C18—C191.382 (6)
C6—C71.524 (6)C18—H18A0.9300
C7—O41.241 (5)C19—H19A0.9300
C7—O31.271 (4)N4—N51.352 (4)
C8—N21.340 (5)N5—H50.901 (19)
C8—C91.387 (5)O5—H5C0.842 (18)
C8—H8A0.9300O5—H5B0.848 (18)
C9—C101.382 (6)O6—H6B0.861 (19)
C9—H9A0.9300O6—H6C0.854 (19)
C10—C111.377 (5)
N1—Ni1—O589.97 (13)C10—C11—H11A120.0
N1—Ni1—N2175.33 (14)C12—C11—H11A120.0
O5—Ni1—N289.48 (14)N2—C12—C11123.3 (4)
N1—Ni1—O690.30 (13)N2—C12—H12A118.3
O5—Ni1—O6177.00 (14)C11—C12—H12A118.3
N2—Ni1—O690.49 (13)N4—C13—N3114.4 (3)
N1—Ni1—O378.29 (12)N4—C13—C10121.4 (4)
O5—Ni1—O391.78 (12)N3—C13—C10124.2 (4)
N2—Ni1—O397.09 (12)N3—C14—N5109.5 (4)
O6—Ni1—O391.20 (13)N3—C14—C15127.2 (4)
N1—Ni1—O177.83 (12)N5—C14—C15123.2 (4)
O5—Ni1—O188.88 (13)C19—C15—C16117.4 (4)
N2—Ni1—O1106.79 (12)C19—C15—C14120.4 (4)
O6—Ni1—O188.25 (13)C16—C15—C14122.1 (4)
O3—Ni1—O1156.11 (10)C15—C16—C17118.7 (4)
O2—C1—O1126.6 (4)C15—C16—H16A120.7
O2—C1—C2118.6 (4)C17—C16—H16A120.7
O1—C1—C2114.9 (4)N6—C17—C16124.7 (4)
N1—C2—C3120.6 (4)N6—C17—H17A117.6
N1—C2—C1113.2 (3)C16—C17—H17A117.6
C3—C2—C1126.3 (4)N6—C18—C19124.6 (5)
C4—C3—C2118.2 (4)N6—C18—H18A117.7
C4—C3—H3A120.9C19—C18—H18A117.7
C2—C3—H3A120.9C15—C19—C18119.1 (4)
C5—C4—C3120.1 (4)C15—C19—H19A120.5
C5—C4—H4A120.0C18—C19—H19A120.5
C3—C4—H4A120.0C2—N1—C6122.2 (3)
C4—C5—C6118.8 (4)C2—N1—Ni1118.9 (3)
C4—C5—H5A120.6C6—N1—Ni1118.9 (3)
C6—C5—H5A120.6C12—N2—C8117.0 (3)
N1—C6—C5120.2 (4)C12—N2—Ni1118.9 (3)
N1—C6—C7111.7 (3)C8—N2—Ni1124.0 (3)
C5—C6—C7128.1 (4)C14—N3—C13103.5 (3)
O4—C7—O3124.5 (4)C13—N4—N5102.2 (3)
O4—C7—C6119.0 (3)C14—N5—N4110.5 (3)
O3—C7—C6116.5 (4)C14—N5—H5131 (3)
N2—C8—C9123.1 (4)N4—N5—H5118 (3)
N2—C8—H8A118.5C17—N6—C18115.5 (4)
C9—C8—H8A118.5C1—O1—Ni1115.2 (2)
C10—C9—C8119.5 (4)C7—O3—Ni1114.5 (3)
C10—C9—H9A120.3Ni1—O5—H5C125 (3)
C8—C9—H9A120.3Ni1—O5—H5B123 (3)
C11—C10—C9117.1 (4)H5C—O5—H5B111 (3)
C11—C10—C13121.2 (4)Ni1—O6—H6B121 (3)
C9—C10—C13121.7 (4)Ni1—O6—H6C112 (5)
C10—C11—C12120.0 (4)H6B—O6—H6C107 (3)
O2—C1—C2—N1175.7 (4)O1—Ni1—N1—C21.3 (3)
O1—C1—C2—N13.1 (5)O5—Ni1—N1—C690.5 (3)
O2—C1—C2—C32.9 (6)N2—Ni1—N1—C67.3 (19)
O1—C1—C2—C3178.3 (4)O6—Ni1—N1—C692.5 (3)
N1—C2—C3—C40.0 (6)O3—Ni1—N1—C61.3 (3)
C1—C2—C3—C4178.5 (4)O1—Ni1—N1—C6179.4 (3)
C2—C3—C4—C50.2 (7)C11—C12—N2—C81.2 (7)
C3—C4—C5—C60.1 (7)C11—C12—N2—Ni1178.3 (3)
C4—C5—C6—N10.7 (6)C9—C8—N2—C120.8 (7)
C4—C5—C6—C7179.1 (4)C9—C8—N2—Ni1177.8 (3)
N1—C6—C7—O4177.3 (4)N1—Ni1—N2—C124.0 (19)
C5—C6—C7—O42.5 (7)O5—Ni1—N2—C1279.3 (3)
N1—C6—C7—O30.5 (5)O6—Ni1—N2—C12103.7 (3)
C5—C6—C7—O3179.7 (4)O3—Ni1—N2—C1212.5 (3)
N2—C8—C9—C100.1 (7)O1—Ni1—N2—C12167.9 (3)
C8—C9—C10—C110.2 (7)N1—Ni1—N2—C8179 (100)
C8—C9—C10—C13178.3 (4)O5—Ni1—N2—C897.7 (4)
C9—C10—C11—C120.1 (7)O6—Ni1—N2—C879.3 (4)
C13—C10—C11—C12178.6 (4)O3—Ni1—N2—C8170.6 (3)
C10—C11—C12—N20.8 (7)O1—Ni1—N2—C89.0 (4)
C11—C10—C13—N4170.7 (4)N5—C14—N3—C130.3 (5)
C9—C10—C13—N410.8 (7)C15—C14—N3—C13177.4 (4)
C11—C10—C13—N310.5 (7)N4—C13—N3—C141.0 (5)
C9—C10—C13—N3168.0 (4)C10—C13—N3—C14177.8 (4)
N3—C14—C15—C198.3 (7)N3—C13—N4—N51.3 (5)
N5—C14—C15—C19174.3 (4)C10—C13—N4—N5177.6 (4)
N3—C14—C15—C16171.1 (5)N3—C14—N5—N40.5 (5)
N5—C14—C15—C166.3 (7)C15—C14—N5—N4178.4 (4)
C19—C15—C16—C171.3 (7)C13—N4—N5—C141.1 (5)
C14—C15—C16—C17178.1 (5)C16—C17—N6—C180.8 (8)
C15—C16—C17—N60.3 (9)C19—C18—N6—C170.9 (7)
C16—C15—C19—C181.1 (7)O2—C1—O1—Ni1176.6 (3)
C14—C15—C19—C18178.2 (4)C2—C1—O1—Ni12.0 (4)
N6—C18—C19—C150.1 (7)N1—Ni1—O1—C10.5 (3)
C3—C2—N1—C60.6 (6)O5—Ni1—O1—C190.7 (3)
C1—C2—N1—C6179.3 (3)N2—Ni1—O1—C1179.9 (3)
C3—C2—N1—Ni1178.6 (3)O6—Ni1—O1—C190.2 (3)
C1—C2—N1—Ni12.7 (4)O3—Ni1—O1—C11.1 (5)
C5—C6—N1—C21.0 (6)O4—C7—O3—Ni1176.1 (3)
C7—C6—N1—C2178.8 (3)C6—C7—O3—Ni11.6 (4)
C5—C6—N1—Ni1178.9 (3)N1—Ni1—O3—C71.6 (3)
C7—C6—N1—Ni10.9 (4)O5—Ni1—O3—C788.0 (3)
O5—Ni1—N1—C287.5 (3)N2—Ni1—O3—C7177.7 (3)
N2—Ni1—N1—C2170.7 (16)O6—Ni1—O3—C791.6 (3)
O6—Ni1—N1—C289.5 (3)O1—Ni1—O3—C73.2 (5)
O3—Ni1—N1—C2179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O4i0.88 (4)1.81 (4)2.685 (5)179 (7)
O5—H5B···O1ii0.86 (4)1.87 (4)2.718 (5)168 (5)
O5—H5C···O2iii0.86 (4)1.89 (4)2.705 (5)160 (4)
O6—H6B···N6iv0.87 (4)1.93 (4)2.781 (5)167 (6)
O6—H6C···O3v0.86 (4)2.39 (4)3.246 (5)169 (8)
O6—H6C···O4v0.86 (4)2.41 (7)3.081 (5)135 (6)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+3/2, z; (iii) x, y1, z; (iv) x+1, y+1, z+1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C7H3NO4)(C12H9N5)(H2O)2]
Mr483.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)26.434 (5), 6.0190 (12), 26.170 (5)
β (°) 105.69 (3)
V3)4008.7 (13)
Z8
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.32 × 0.21 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
10662, 3534, 2669
Rint0.071
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.104, 1.11
No. of reflections3534
No. of parameters310
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O4i0.88 (4)1.81 (4)2.685 (5)179 (7)
O5—H5B···O1ii0.86 (4)1.87 (4)2.718 (5)168 (5)
O5—H5C···O2iii0.86 (4)1.89 (4)2.705 (5)160 (4)
O6—H6B···N6iv0.87 (4)1.93 (4)2.781 (5)167 (6)
O6—H6C···O3v0.86 (4)2.39 (4)3.246 (5)169 (8)
O6—H6C···O4v0.86 (4)2.41 (7)3.081 (5)135 (6)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+3/2, z; (iii) x, y1, z; (iv) x+1, y+1, z+1/2; (v) x, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20861002), the Natural Science Foundation of Guangxi Province (grant Nos. 0991012Z, 0991003), the Education Department Foundation of Guangxi Province (grant No. 200807MS014), as well as the Key Laboratory Open Fund of the Ministry of Education and the Doctoral Fund of Guangxi Normal University for financial support. We also thank Dr F.-P. Huang for assistance with the crystallographic analysis.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, F.-P., Tian, J.-L., Li, D.-D., Chen, G.-J., Gu, W., Yan, S.-P., Liu, X., Liao, D.-Z. & Cheng, P. (2010a). CrystEngComm, 12, 395–400.  Web of Science CSD CrossRef Google Scholar
First citationHuang, F.-P., Tian, J.-L., Li, D.-D., Chen, G.-J., Gu, W., Yan, S.-P., Liu, X., Liao, D.-Z. & Cheng, P. (2010b). Inorg. Chem. 49, 2525–2529.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, H. B., Gao, J. M., Maynard, L., Saito, Y. D. & Kool, E. T. (2004). J. Am. Chem. Soc. 126, 1102–1109.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds