organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o525-o526

2-Amino-3-carb­­oxy­pyrazin-1-ium nitrate monohydrate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria, cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and dCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr

(Received 18 January 2011; accepted 24 January 2011; online 29 January 2011)

In crystal structure of the title compound, C5H6N3O2+·NO3·H2O, inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds link the cations, anions and water mol­ecules into ribbons extending in [[\overline{1}]10]. Weak inter­molecular C—H⋯O hydrogen bonds further link these ribbons into sheets parallel to ([\overline{1}][\overline{1}]3).

Related literature

For similar compounds, see: Berrah et al. (2005a[Berrah, F., Benali-Cherif, N. & Lamraoui, H. (2005a). Acta Cryst. E61, o1517-o1519.],b[Berrah, F., Lamraoui, H. & Benali-Cherif, N. (2005b). Acta Cryst. E61, o210-o212.]); Bouacida et al. (2005,[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m1153-m1155.] 2009[Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628-o629.]); Dobson & Gerkin (1996[Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1512-1514.]). For hydrogen-bond graph-set motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N3O2+·NO3·H2O

  • Mr = 220.15

  • Triclinic, [P \overline 1]

  • a = 5.1277 (4) Å

  • b = 7.6368 (6) Å

  • c = 12.1571 (10) Å

  • α = 97.872 (3)°

  • β = 100.588 (3)°

  • γ = 106.194 (3)°

  • V = 440.37 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 150 K

  • 0.58 × 0.49 × 0.42 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.773, Tmax = 0.938

  • 5333 measured reflections

  • 1967 independent reflections

  • 1693 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.03

  • 1967 reflections

  • 143 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1Wi 0.84 1.69 2.5233 (17) 168
O1W—H1W⋯O5ii 0.80 (3) 1.93 (3) 2.7152 (18) 167 (3)
O1W—H2W⋯O1 0.88 (3) 2.39 (3) 2.8825 (19) 116 (2)
O1W—H2W⋯N4 0.88 (3) 1.99 (3) 2.8566 (18) 170 (2)
N2—H2A⋯O5 0.88 2.01 2.8549 (17) 161
N2—H2B⋯O2 0.88 2.08 2.7163 (17) 128
N2—H2B⋯O2iii 0.88 2.20 2.9125 (18) 137
N3—H3⋯O4 0.88 1.91 2.7825 (16) 174
C4—H4A⋯O4iv 0.95 2.24 3.1818 (17) 169
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y-1, z; (iii) -x, -y+2, -z+1; (iv) -x+2, -y+3, -z+2.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our search for new hybrid compounds based on protonated amines (Berrah et al. 2005a,b; Bouacida et al. 2005; 2009), we present the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one cation, one anion and one water molecule linked trough hydrogen bonds (Fig. 1). Bond distances and angles are similar to those encountered in analogous compounds (Berrah el al. 2005a,b; Dobson & Gerkin, 1996).

The crystal packing in the title structure can be described by considering sheets parallel to (-1-13) plane (Fig. 2). A sheet is an alternation of ribbons joined by a weak hyrogen bonds C4—H4···O4 and extended in direction [-110] (Fig. 2, Table 1). 3-Amino-pyrazinium 2-carboxylic acid cations, of the same ribbon, form centrosymetric dimers via N2—H2B···O2 hyrogen bonds. Each dimer is surrounded by two NO3- anions and four H2O molecules, and all its atoms (except C5) are involved in N—H···O, O—H···N and O—H···O H-bonds. While nitrate anions are only acceptor of H-bonds, water molecules are at the same time donor and acceptor (Table 1). The resulting 2D hydrogen-bonded network exhibit rings with R44(8), R24(10), R22(8), R33(10), R22(4) and R21(5) graph set motifs (Etter et al., 1990; Bernstein et al., 1995) (Fig. 2).

Related literature top

For similar compounds, see: Berrah et al. (2005a,b); Bouacida et al. (2005, 2009); Dobson & Gerkin (1996). For hydrogen-bond graph-set motifs, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The title compound was synthesized by reacting 3-amino-pyrazine 2- carboxylic acid with some excess of nitric acid in aqueous solution. Slow evaporation leads to well crystallized yellow needles.

Refinement top

H atoms of water molecule were located in difference Fourier map and included in the subsequent refinement with Uiso(H) = 1.5Ueq(O). The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms, with C—H = 0.95 Å, O—H = 0.84 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Ortep-3 (Farrugia, 1997) view of (I) showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. DIAMOND (Brandenburg & Berndt, 2001) view of a portion of hydrogen-bonded sheet in (I) showing the graph set motif notations. Hydrogen bonds are shown as dashed lines.
2-Amino-3-carboxypyrazin-1-ium nitrate monohydrate top
Crystal data top
C5H6N3O2+·NO3·H2OZ = 2
Mr = 220.15F(000) = 228
Triclinic, P1Dx = 1.66 Mg m3
a = 5.1277 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6368 (6) ÅCell parameters from 2815 reflections
c = 12.1571 (10) Åθ = 2.8–27.5°
α = 97.872 (3)°µ = 0.15 mm1
β = 100.588 (3)°T = 150 K
γ = 106.194 (3)°Prism, yellow
V = 440.37 (6) Å30.58 × 0.49 × 0.42 mm
Data collection top
Bruker APEXII
diffractometer
1693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 66
Tmin = 0.773, Tmax = 0.938k = 99
5333 measured reflectionsl = 1515
1967 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.1681P]
where P = (Fo2 + 2Fc2)/3
1967 reflections(Δ/σ)max < 0.001
143 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C5H6N3O2+·NO3·H2Oγ = 106.194 (3)°
Mr = 220.15V = 440.37 (6) Å3
Triclinic, P1Z = 2
a = 5.1277 (4) ÅMo Kα radiation
b = 7.6368 (6) ŵ = 0.15 mm1
c = 12.1571 (10) ÅT = 150 K
α = 97.872 (3)°0.58 × 0.49 × 0.42 mm
β = 100.588 (3)°
Data collection top
Bruker APEXII
diffractometer
1967 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1693 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.938Rint = 0.028
5333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.36 e Å3
1967 reflectionsΔρmin = 0.25 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3536 (3)0.81463 (18)0.56444 (11)0.0213 (3)
C20.5373 (3)0.93343 (17)0.67594 (11)0.0196 (3)
C30.5053 (3)1.11068 (18)0.71720 (11)0.0206 (3)
C40.8826 (3)1.14836 (19)0.87398 (11)0.0243 (3)
H4A1.00581.22180.94340.029*
C50.9034 (3)0.97938 (19)0.83049 (11)0.0239 (3)
H51.04200.93540.87020.029*
N10.4633 (3)1.60420 (16)0.88650 (10)0.0226 (3)
N20.3198 (3)1.18108 (16)0.66687 (11)0.0270 (3)
H2A0.31371.29050.69800.032*
H2B0.20191.11880.60210.032*
N30.6850 (2)1.20958 (15)0.81712 (10)0.0228 (3)
H30.67191.31810.84600.027*
N40.7294 (2)0.87393 (15)0.73168 (9)0.0219 (3)
O10.3992 (2)0.65591 (14)0.54062 (9)0.0303 (3)
H10.30040.59770.47590.045*
O20.1873 (2)0.86840 (14)0.50431 (9)0.0288 (3)
O30.4414 (2)1.75010 (14)0.93506 (9)0.0326 (3)
O40.6850 (2)1.56230 (14)0.91237 (9)0.0279 (3)
O50.2640 (2)1.49165 (15)0.80957 (9)0.0337 (3)
O1W0.8473 (3)0.53972 (18)0.65527 (11)0.0490 (4)
H1W0.979 (6)0.543 (4)0.704 (3)0.074*
H2W0.793 (6)0.637 (4)0.671 (2)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0231 (6)0.0211 (6)0.0170 (6)0.0071 (5)0.0009 (5)0.0001 (5)
C20.0215 (6)0.0196 (6)0.0156 (6)0.0051 (5)0.0021 (5)0.0017 (5)
C30.0209 (6)0.0205 (6)0.0174 (6)0.0035 (5)0.0043 (5)0.0001 (5)
C40.0246 (7)0.0254 (7)0.0157 (6)0.0011 (5)0.0002 (5)0.0009 (5)
C50.0236 (7)0.0255 (7)0.0178 (6)0.0050 (5)0.0014 (5)0.0029 (5)
N10.0265 (6)0.0208 (5)0.0185 (6)0.0066 (5)0.0036 (5)0.0014 (4)
N20.0284 (6)0.0234 (6)0.0255 (6)0.0119 (5)0.0023 (5)0.0038 (5)
N30.0253 (6)0.0195 (5)0.0189 (6)0.0049 (5)0.0017 (5)0.0029 (4)
N40.0242 (6)0.0212 (5)0.0173 (6)0.0055 (5)0.0011 (4)0.0023 (4)
O10.0380 (6)0.0252 (5)0.0214 (5)0.0159 (4)0.0088 (4)0.0075 (4)
O20.0300 (5)0.0276 (5)0.0243 (5)0.0135 (4)0.0071 (4)0.0016 (4)
O30.0406 (6)0.0231 (5)0.0337 (6)0.0116 (5)0.0108 (5)0.0023 (4)
O40.0256 (5)0.0275 (5)0.0250 (5)0.0093 (4)0.0031 (4)0.0030 (4)
O1W0.0619 (9)0.0472 (7)0.0308 (6)0.0396 (7)0.0220 (6)0.0188 (5)
O50.0284 (6)0.0316 (6)0.0316 (6)0.0109 (4)0.0085 (4)0.0070 (4)
Geometric parameters (Å, º) top
C1—O21.2162 (17)C5—H50.9500
C1—O11.3017 (16)N1—O31.2314 (14)
C1—C21.5050 (18)N1—O41.2621 (15)
C2—N41.3132 (17)N1—O51.2635 (15)
C2—C31.4420 (17)N2—H2A0.8800
C3—N21.3150 (18)N2—H2B0.8800
C3—N31.3580 (17)N3—H30.8800
C4—N31.3488 (18)O1—H10.8400
C4—C51.3663 (19)O1W—H1W0.81 (3)
C4—H4A0.9500O1W—H2W0.88 (3)
C5—N41.3520 (17)
O2—C1—O1125.51 (12)C4—C5—H5119.6
O2—C1—C2121.65 (11)O3—N1—O4121.00 (12)
O1—C1—C2112.82 (12)O3—N1—O5120.97 (12)
N4—C2—C3121.68 (12)O4—N1—O5118.02 (11)
N4—C2—C1118.46 (11)C3—N2—H2A120.0
C3—C2—C1119.83 (12)C3—N2—H2B120.0
N2—C3—N3118.84 (12)H2A—N2—H2B120.0
N2—C3—C2125.70 (12)C4—N3—C3122.72 (11)
N3—C3—C2115.46 (12)C4—N3—H3118.6
N3—C4—C5119.16 (12)C3—N3—H3118.6
N3—C4—H4A120.4C2—N4—C5120.09 (11)
C5—C4—H4A120.4C1—O1—H1109.5
N4—C5—C4120.89 (13)H1W—O1W—H2W110 (3)
N4—C5—H5119.6
O2—C1—C2—N4174.02 (13)N3—C4—C5—N40.1 (2)
O1—C1—C2—N44.43 (18)C5—C4—N3—C30.5 (2)
O2—C1—C2—C34.1 (2)N2—C3—N3—C4179.55 (13)
O1—C1—C2—C3177.47 (12)C2—C3—N3—C40.68 (19)
N4—C2—C3—N2179.80 (13)C3—C2—N4—C50.1 (2)
C1—C2—C3—N21.8 (2)C1—C2—N4—C5178.13 (12)
N4—C2—C3—N30.45 (19)C4—C5—N4—C20.1 (2)
C1—C2—C3—N3178.48 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Wi0.841.692.5233 (17)168
O1W—H1W···O5ii0.80 (3)1.93 (3)2.7152 (18)167 (3)
O1W—H2W···O10.88 (3)2.39 (3)2.8825 (19)116 (2)
O1W—H2W···N40.88 (3)1.99 (3)2.8566 (18)170 (2)
N2—H2A···O50.882.012.8549 (17)161
N2—H2B···O20.882.082.7163 (17)128
N2—H2B···O2iii0.882.202.9125 (18)137
N3—H3···O40.881.912.7825 (16)174
C4—H4A···O4iv0.952.243.1818 (17)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z; (iii) x, y+2, z+1; (iv) x+2, y+3, z+2.

Experimental details

Crystal data
Chemical formulaC5H6N3O2+·NO3·H2O
Mr220.15
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.1277 (4), 7.6368 (6), 12.1571 (10)
α, β, γ (°)97.872 (3), 100.588 (3), 106.194 (3)
V3)440.37 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.58 × 0.49 × 0.42
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.773, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
5333, 1967, 1693
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.03
No. of reflections1967
No. of parameters143
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.25

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick,2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Wi0.841.692.5233 (17)168
O1W—H1W···O5ii0.80 (3)1.93 (3)2.7152 (18)167 (3)
O1W—H2W···O10.88 (3)2.39 (3)2.8825 (19)116 (2)
O1W—H2W···N40.88 (3)1.99 (3)2.8566 (18)170 (2)
N2—H2A···O50.882.012.8549 (17)161
N2—H2B···O20.882.082.7163 (17)128
N2—H2B···O2iii0.882.202.9125 (18)137
N3—H3···O40.881.912.7825 (16)174
C4—H4A···O4iv0.952.243.1818 (17)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z; (iii) x, y+2, z+1; (iv) x+2, y+3, z+2.
 

Acknowledgements

We are grateful to the LCATM Laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBerrah, F., Benali-Cherif, N. & Lamraoui, H. (2005a). Acta Cryst. E61, o1517–o1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Lamraoui, H. & Benali-Cherif, N. (2005b). Acta Cryst. E61, o210–o212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m1153–m1155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1512–1514.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o525-o526
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds