organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(tosyl­oxymeth­yl)pyridine

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and bResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 23 December 2010; accepted 5 January 2011; online 8 January 2011)

The title compound, C21H21NO6S2, is organized around a twofold axis parallel to the crystallographic c axis and containing the N atom and a C atom of the pyridine ring. The tosyl moiety and the pyridine ring are both essentially planar [maximum deviations 0.028 (2) and 0.020 (3) Å, respectively]; their mean planes form a dihedral angle of 33.0 (2)°.

Related literature

For related structures, see: Sellmann et al. (1999[Sellmann, D., Utz, J. & Heinemann, F. W. (1999). Inorg. Chem. 38, 5314-5322.]); Teixidor et al. (1999[Teixidor, F., Angèlis, P., Vinas, C., Kivekäs, R. & Sillanpää, R. (1999). Inorg. Chem. 38, 1642-1644.], 2001[Teixidor, F., Angèlis, P., Vinas, C., Kivekäs, R. & Sillanpää, R. (2001). Inorg. Chem. 40, 4010-4015.]); Smit et al. (2004[Smit, T. M., Tomov, A. K., Gibson, V. C., Whit, A. J. P. & Williams, D. J. (2004). Inorg. Chem. 43, 6511-6512.]); Gilbert et al. (2000[Gilbert, J. G., Addison, A. W. & Butcher, R. J. (2000). Inorg. Chim. Acta, 308, 22-30.]). For the synthesis of the title compound, see: Reger et al. (2005[Reger, D. L., Semeniuc, R. F. & Smith, M. D. (2005). Cryst. Growth Des. 5, 1181-1190.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21NO6S2

  • Mr = 447.51

  • Orthorhombic, P b c n

  • a = 21.032 (3) Å

  • b = 6.2243 (10) Å

  • c = 15.405 (2) Å

  • V = 2016.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.16 × 0.13 × 0.04 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.988

  • 41584 measured reflections

  • 2528 independent reflections

  • 1905 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 0.96

  • 2528 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I), is commonly used as a very convenient precursor for the synthesis of a variety of pyridine containing compounds some of which have been highlighted by Reger et al., 2005. Our investigation of the use of this compound as a precursor to the synthesis of tridentate pyridine containing SNS ligands has lead to the determination of its crystal structure contained in this report.

The compound is organized around a two fold axis containing the N1 and C11 atoms. The two tosyl groups are nearly orthogonal about the pyridyl moiety with an N1—C9—C8—O3 torsion angle of 77.3° and in addition the tosyl moiety was found to be planar with C5 and S1 deviating the most from the plane by 0.023 (3) Å and 0.028 (2) Å respectively. The five atoms of the pyridine ring lie on a plane with atom C10 showing the most deviation of 0.020 (3) Å from this plane. The axes of the planes of the two moieties (tosyl and pyridyl) intersect at a very acute angle of 33.0°.

Related literature top

For related structures, see: Sellmann et al. (1999); Teixidor et al. (1999, 2001); Smit et al. (2004); Gilbert et al. (2000). For the synthesis of the title compound, see: Reger et al. (2005).

Experimental top

The title compound, 2,6-bis(tosylmethyl)pyridne (I) was synthesized by the adaptation of a modified literature method (Reger et al., 2005). To a 500 ml round bottom flask NaOH (8.0 g, 0.20 mol) and pyridine dimethanol (2.78 g, 0.20 mol) was dissolved in 150 ml THF/water (1:1). To this stirred solution a solution of p-toluenesulfonyl chloride in THF (75 ml) (7.61 g, 0.040 mol) was added at 0 °C and the reaction mixture was left to stir for about 15 min at 0 °C and then at room temperature for a total time of 4 h. The mixture was then poured into 200 ml of water and extracted with dichloromethane (4 x 75 ml). The organic phase was washed with a saturated solution of NaCl and dried using Na2SO4 and the solvent was removed in vacuo to produce the resulting product as a white crystalline solid (7.12 g, 80%). Single crystals were obtained by dissolving the product, (I), in THF and ethanol and allowing the solvents to evaporate slowly at room temperature in air. Spectroscopic data: 1H NMR (400 MHz, CDCl3, δ. p.p.m.): = 2.4 (s, 6H), 5.1 (s, 4H), 7.3 (d, 6H), 7.7 (t, 1H), 7.8 (d, 4H). FT—IR (cm-1): 3068(w), (C=C), 2958(w), (CH3,CH2), 1596(m), (ar), 1167(s), (C—O), 1028(m), (S=O).

Refinement top

All H-atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry code: (i) -x, y, -z + 3/2].
2,6-Bis(tosyloxymethyl)pyridine top
Crystal data top
C21H21NO6S2F(000) = 936
Mr = 447.51Dx = 1.474 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 45194 reflections
a = 21.032 (3) Åθ = 1.9–28.4°
b = 6.2243 (10) ŵ = 0.30 mm1
c = 15.405 (2) ÅT = 100 K
V = 2016.6 (5) Å3Plate, colourless
Z = 40.16 × 0.13 × 0.04 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
2528 independent reflections
Radiation source: fine-focus sealed tube1905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
ϕ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2828
Tmin = 0.953, Tmax = 0.988k = 88
41584 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0723P)2 + 3.1627P]
where P = (Fo2 + 2Fc2)/3
2528 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C21H21NO6S2V = 2016.6 (5) Å3
Mr = 447.51Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 21.032 (3) ŵ = 0.30 mm1
b = 6.2243 (10) ÅT = 100 K
c = 15.405 (2) Å0.16 × 0.13 × 0.04 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
2528 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1905 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.988Rint = 0.097
41584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.96Δρmax = 0.63 e Å3
2528 reflectionsΔρmin = 0.43 e Å3
138 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex 4 K CCD diffractometer using an exposure time of 20 sec/per frame. A total of 2647 frames were collected with a frame width of 0.5° covering upto θ = 28.38° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18962 (13)0.4605 (4)0.24649 (17)0.0264 (5)
H1A0.22420.52240.21200.040*
H1B0.15170.44550.21010.040*
H1C0.20240.31900.26820.040*
C20.17507 (11)0.6057 (4)0.32188 (16)0.0197 (5)
C30.14727 (11)0.8063 (4)0.30711 (15)0.0202 (5)
H30.13830.85050.24940.024*
C40.13258 (11)0.9415 (4)0.37560 (15)0.0187 (5)
H40.11291.07640.36520.022*
C50.14700 (11)0.8778 (4)0.45964 (15)0.0174 (4)
C60.17551 (11)0.6802 (4)0.47619 (16)0.0198 (5)
H60.18540.63780.53390.024*
C70.18916 (11)0.5467 (4)0.40679 (16)0.0212 (5)
H70.20860.41150.41740.025*
C80.03481 (11)0.8393 (4)0.60090 (16)0.0217 (5)
H8A0.03300.75040.54770.026*
H8B0.00610.96400.59360.026*
C90.01580 (10)0.7094 (4)0.67889 (15)0.0169 (5)
C100.01592 (12)0.4865 (4)0.67603 (18)0.0238 (5)
H100.02680.41280.62410.029*
C110.00000.3742 (6)0.75000.0283 (8)
H110.00000.22160.75000.034*
N10.00000.8211 (4)0.75000.0162 (5)
O10.08679 (8)1.2125 (3)0.51596 (12)0.0240 (4)
O20.18953 (9)1.1249 (3)0.58438 (12)0.0272 (4)
O30.09992 (8)0.9111 (3)0.61752 (11)0.0207 (4)
S10.13181 (3)1.05596 (9)0.54528 (4)0.01895 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0318 (13)0.0197 (12)0.0277 (14)0.0030 (10)0.0001 (11)0.0062 (10)
C20.0197 (11)0.0173 (11)0.0220 (12)0.0019 (8)0.0010 (9)0.0011 (9)
C30.0255 (11)0.0210 (11)0.0142 (11)0.0015 (9)0.0002 (9)0.0022 (9)
C40.0228 (11)0.0167 (10)0.0166 (11)0.0027 (9)0.0012 (9)0.0022 (9)
C50.0190 (10)0.0173 (10)0.0158 (11)0.0014 (8)0.0029 (8)0.0010 (8)
C60.0222 (11)0.0195 (11)0.0176 (11)0.0007 (9)0.0006 (9)0.0049 (9)
C70.0213 (11)0.0166 (11)0.0256 (13)0.0014 (9)0.0009 (9)0.0028 (9)
C80.0205 (11)0.0274 (12)0.0172 (12)0.0062 (9)0.0008 (9)0.0005 (9)
C90.0174 (10)0.0156 (10)0.0176 (11)0.0009 (8)0.0018 (8)0.0011 (8)
C100.0249 (12)0.0155 (11)0.0310 (14)0.0006 (9)0.0021 (10)0.0084 (9)
C110.0277 (18)0.0107 (14)0.046 (2)0.0000.0005 (16)0.000
N10.0215 (13)0.0095 (12)0.0175 (13)0.0000.0019 (11)0.000
O10.0306 (9)0.0174 (8)0.0242 (9)0.0013 (7)0.0062 (7)0.0012 (7)
O20.0273 (9)0.0335 (10)0.0208 (9)0.0112 (8)0.0030 (7)0.0054 (8)
O30.0213 (8)0.0260 (9)0.0147 (8)0.0065 (7)0.0019 (6)0.0018 (7)
S10.0225 (3)0.0192 (3)0.0152 (3)0.0044 (2)0.0036 (2)0.0017 (2)
Geometric parameters (Å, º) top
C1—C21.503 (3)C8—O31.463 (3)
C1—H1A0.9800C8—C91.502 (3)
C1—H1B0.9800C8—H8A0.9900
C1—H1C0.9800C8—H8B0.9900
C2—C71.391 (3)C9—N11.339 (3)
C2—C31.397 (3)C9—C101.388 (3)
C3—C41.385 (3)C10—C111.378 (3)
C3—H30.9500C10—H100.9500
C4—C51.388 (3)C11—C10i1.378 (3)
C4—H40.9500C11—H110.9500
C5—C61.392 (3)N1—C9i1.339 (3)
C5—S11.753 (2)O1—S11.4315 (18)
C6—C71.384 (3)O2—S11.4217 (19)
C6—H60.9500O3—S11.5816 (17)
C7—H70.9500
C2—C1—H1A109.5O3—C8—C9105.87 (18)
C2—C1—H1B109.5O3—C8—H8A110.6
H1A—C1—H1B109.5C9—C8—H8A110.6
C2—C1—H1C109.5O3—C8—H8B110.6
H1A—C1—H1C109.5C9—C8—H8B110.6
H1B—C1—H1C109.5H8A—C8—H8B108.7
C7—C2—C3118.6 (2)N1—C9—C10123.0 (2)
C7—C2—C1121.6 (2)N1—C9—C8116.1 (2)
C3—C2—C1119.8 (2)C10—C9—C8120.8 (2)
C4—C3—C2120.8 (2)C11—C10—C9118.7 (2)
C4—C3—H3119.6C11—C10—H10120.6
C2—C3—H3119.6C9—C10—H10120.6
C3—C4—C5119.2 (2)C10—C11—C10i119.0 (3)
C3—C4—H4120.4C10—C11—H11120.5
C5—C4—H4120.4C10i—C11—H11120.5
C4—C5—C6121.2 (2)C9—N1—C9i117.4 (3)
C4—C5—S1118.78 (18)C8—O3—S1116.61 (15)
C6—C5—S1119.99 (18)O2—S1—O1119.53 (11)
C7—C6—C5118.6 (2)O2—S1—O3103.66 (10)
C7—C6—H6120.7O1—S1—O3109.24 (10)
C5—C6—H6120.7O2—S1—C5110.76 (11)
C6—C7—C2121.6 (2)O1—S1—C5108.28 (11)
C6—C7—H7119.2O3—S1—C5104.25 (10)
C2—C7—H7119.2
C7—C2—C3—C41.6 (4)C9—C10—C11—C10i0.47 (16)
C1—C2—C3—C4179.0 (2)C10—C9—N1—C9i0.52 (17)
C2—C3—C4—C51.3 (4)C8—C9—N1—C9i178.6 (2)
C3—C4—C5—C60.4 (4)C9—C8—O3—S1179.17 (15)
C3—C4—C5—S1176.85 (18)C8—O3—S1—O2171.80 (17)
C4—C5—C6—C70.2 (3)C8—O3—S1—O143.33 (19)
S1—C5—C6—C7177.48 (18)C8—O3—S1—C572.23 (18)
C5—C6—C7—C20.0 (4)C4—C5—S1—O2113.4 (2)
C3—C2—C7—C60.9 (4)C6—C5—S1—O264.0 (2)
C1—C2—C7—C6179.7 (2)C4—C5—S1—O119.5 (2)
O3—C8—C9—N177.3 (2)C6—C5—S1—O1163.18 (18)
O3—C8—C9—C10101.8 (3)C4—C5—S1—O3135.74 (19)
N1—C9—C10—C111.0 (3)C6—C5—S1—O347.0 (2)
C8—C9—C10—C11178.03 (18)
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H21NO6S2
Mr447.51
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)21.032 (3), 6.2243 (10), 15.405 (2)
V3)2016.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.16 × 0.13 × 0.04
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.953, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
41584, 2528, 1905
Rint0.097
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 0.96
No. of reflections2528
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.43

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We wish to thank the NRF, C* Change and the University of KwaZulu-Natal for resources and financial support.

References

First citationBruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGilbert, J. G., Addison, A. W. & Butcher, R. J. (2000). Inorg. Chim. Acta, 308, 22–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationReger, D. L., Semeniuc, R. F. & Smith, M. D. (2005). Cryst. Growth Des. 5, 1181–1190.  Web of Science CSD CrossRef CAS Google Scholar
First citationSellmann, D., Utz, J. & Heinemann, F. W. (1999). Inorg. Chem. 38, 5314–5322.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmit, T. M., Tomov, A. K., Gibson, V. C., Whit, A. J. P. & Williams, D. J. (2004). Inorg. Chem. 43, 6511–6512.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTeixidor, F., Angèlis, P., Vinas, C., Kivekäs, R. & Sillanpää, R. (1999). Inorg. Chem. 38, 1642–1644.  Web of Science CSD CrossRef CAS Google Scholar
First citationTeixidor, F., Angèlis, P., Vinas, C., Kivekäs, R. & Sillanpää, R. (2001). Inorg. Chem. 40, 4010–4015.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds