organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Carb­­oxy-2,4-dihy­dr­oxy­anilinium chloride dihydrate

aInstitute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 4 January 2011; accepted 5 January 2011; online 8 January 2011)

In the title compound, C7H8NO4+·Cl·2H2O, the organic mol­ecule is almost planar with an r.m.s. deviation of 0.0164 Å for all non-H atoms. An S(6) ring motif is formed due to an intra­molecular O—H⋯O hydrogen bond. In the crystal, the mol­ecules are linked into a three-dimensional network by N—H⋯Cl, N—H⋯O, O—H⋯Cl and O—H⋯O hydrogen bonds.

Related literature

For a related structure, see: Naz et al. (2010[Naz, S. S., Islam, N. U. & Tahir, M. N. (2010). Acta Cryst. E66, o2372.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8NO4+·Cl·2H2O

  • Mr = 241.63

  • Triclinic, [P \overline 1]

  • a = 6.0285 (8) Å

  • b = 7.9597 (8) Å

  • c = 10.9570 (13) Å

  • α = 100.135 (5)°

  • β = 97.162 (4)°

  • γ = 92.921 (5)°

  • V = 512.10 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.28 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.965

  • 8850 measured reflections

  • 2548 independent reflections

  • 1853 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.03

  • 2548 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6 0.82 1.88 2.6945 (19) 171
O3—H3⋯O2 0.82 1.96 2.672 (2) 145
O4—H4A⋯Cl1i 0.82 2.21 3.0097 (15) 164
N1—H1A⋯O6ii 0.89 2.02 2.903 (2) 169
N1—H1B⋯O5iii 0.89 1.96 2.853 (2) 178
N1—H1C⋯Cl1iv 0.89 2.35 3.1950 (18) 157
O5—H5A⋯O2v 0.86 2.16 2.935 (2) 149
O5—H5B⋯Cl1 0.85 2.41 3.1494 (15) 146
O6—H6A⋯Cl1 0.88 2.27 3.1386 (16) 174
O6—H6B⋯O5vi 0.86 1.99 2.850 (2) 173
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x-1, y, z+1; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z; (vi) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Recently we have reported the crystal structure of 5-carboxy-2,4-dihydroxyanilinium chloride (Naz et al., 2010). The title compound (I, Fig. 1) has been prepared in a slightly different way.

In (I), the organic group (C1—C7/O1—O4/N1) is planar with r. m. s. deviation of 0.0164 Å. In the organic part, there exist a strong intramolecular H-bond of O—H···O type (Table 1, Fig. 1) completing an S(6) ring motif (Bernstein et al., 1995). In the title compound, the Cl- anion is penta coordinated due to H-bondings of N—H···Cl and O—H···Cl types (Table 1, Fig. 2). The NH3+ ion makes H-bonding with the both water molecules and the Cl- ion. Due to these strong H-bondings the molecules are stabilized in the form of three-dimensional polymeric network (Table 1, Fig. 2). There does not exist any π···π or C—H···π interaction.

Related literature top

For a related structure, see: Naz et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Concentrated nitric acid (2 mL, 67%) was added drop by drop to β-resorcylic acid (1 g, 97%, 6.3 mmol) in a round bottom flask. The mixture was protected from moisture by CaCl2 (anhydrous) tube and was allowed to stand for 12 h at room temperature. Then reaction mixture was diluted with water. The crude material was filtered and recrystallized from water to affoard the 5-nitro-β-resorcylic acid.

Then a mixture of 5-nitro-β-resorcylic acid (1.5 g, 7.5 mmol), tin (3 g, 25 mmol) and absolute ethanol (5 ml) were taken in a 100 ml round bottom flask and passed HCl gas under reflux with stirring for 1 h. The completion of reaction was monitored by TLC. The reaction mixture was filtered to remove any unreacted tin. Filtrate was kept for seven days to afford light brown needles of (I).

Refinement top

All H atoms attached to C atoms, N atom and hydroxyl O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (C), N—H = 0.89 Å and

O-H = 0.82Å with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N,O). H atoms of water molecules were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were treated as riding on their parent O atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The dotted line represents the intramolecular H-bonding.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form various ring motifs and molecules are interlinked through H-bondings to form three dimensional polymeric network.
5-Carboxy-2,4-dihydroxyanilinium chloride dihydrate top
Crystal data top
C7H8NO4+·Cl·2H2OZ = 2
Mr = 241.63F(000) = 252
Triclinic, P1Dx = 1.567 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0285 (8) ÅCell parameters from 1853 reflections
b = 7.9597 (8) Åθ = 1.9–28.4°
c = 10.9570 (13) ŵ = 0.38 mm1
α = 100.135 (5)°T = 296 K
β = 97.162 (4)°Needle, brown
γ = 92.921 (5)°0.28 × 0.15 × 0.10 mm
V = 512.10 (11) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2548 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 7.50 pixels mm-1θmax = 28.4°, θmin = 1.9°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 108
Tmin = 0.935, Tmax = 0.965l = 1414
8850 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.0225P]
where P = (Fo2 + 2Fc2)/3
2548 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C7H8NO4+·Cl·2H2Oγ = 92.921 (5)°
Mr = 241.63V = 512.10 (11) Å3
Triclinic, P1Z = 2
a = 6.0285 (8) ÅMo Kα radiation
b = 7.9597 (8) ŵ = 0.38 mm1
c = 10.9570 (13) ÅT = 296 K
α = 100.135 (5)°0.28 × 0.15 × 0.10 mm
β = 97.162 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2548 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1853 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.965Rint = 0.039
8850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
2548 reflectionsΔρmin = 0.27 e Å3
139 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2807 (3)0.0789 (2)0.38672 (13)0.0395 (4)
H10.31270.04530.31640.059*
O20.0155 (3)0.1663 (2)0.27792 (13)0.0454 (4)
O30.2957 (3)0.35281 (19)0.40596 (13)0.0401 (4)
H30.25010.30440.34240.060*
O40.1327 (3)0.4424 (2)0.84841 (13)0.0415 (4)
H4A0.23800.50330.84420.062*
N10.2345 (3)0.2711 (2)0.84317 (14)0.0306 (4)
H1A0.33020.19060.82940.046*
H1B0.14490.24390.89650.046*
H1C0.31040.37120.87550.046*
C10.0937 (4)0.1574 (2)0.37826 (18)0.0303 (5)
C20.0302 (3)0.2322 (2)0.50004 (17)0.0268 (4)
C30.1622 (4)0.3252 (2)0.50731 (18)0.0284 (4)
C40.2215 (3)0.3963 (2)0.62285 (18)0.0303 (5)
H40.34890.45700.62700.036*
C50.0912 (3)0.3766 (2)0.73114 (18)0.0286 (5)
C60.0990 (3)0.2839 (2)0.72445 (17)0.0248 (4)
C70.1595 (3)0.2145 (2)0.61147 (17)0.0259 (4)
H70.28790.15470.60860.031*
O50.9425 (3)0.17641 (17)0.00957 (13)0.0372 (4)
H5A0.99590.14880.07940.056*
H5B0.86410.26020.03030.056*
O60.4319 (3)0.02049 (19)0.16590 (14)0.0427 (4)
H6A0.46970.08180.15250.064*
H6B0.32360.06410.10780.064*
Cl10.53107 (9)0.35035 (6)0.11554 (5)0.03442 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0407 (10)0.0515 (9)0.0269 (8)0.0127 (7)0.0097 (7)0.0025 (7)
O20.0577 (11)0.0566 (10)0.0220 (8)0.0189 (8)0.0017 (7)0.0056 (7)
O30.0422 (10)0.0517 (9)0.0257 (8)0.0121 (7)0.0042 (7)0.0093 (7)
O40.0478 (10)0.0534 (10)0.0251 (8)0.0274 (8)0.0074 (7)0.0035 (7)
N10.0326 (10)0.0357 (9)0.0231 (9)0.0089 (7)0.0018 (7)0.0043 (7)
C10.0377 (13)0.0276 (10)0.0255 (11)0.0000 (9)0.0033 (9)0.0058 (8)
C20.0325 (12)0.0258 (9)0.0229 (10)0.0025 (8)0.0059 (9)0.0050 (8)
C30.0319 (12)0.0284 (10)0.0246 (11)0.0018 (8)0.0012 (9)0.0081 (8)
C40.0282 (11)0.0322 (10)0.0323 (12)0.0097 (8)0.0035 (9)0.0086 (9)
C50.0327 (12)0.0271 (10)0.0271 (11)0.0052 (8)0.0059 (9)0.0062 (8)
C60.0289 (11)0.0242 (9)0.0205 (10)0.0036 (8)0.0000 (8)0.0038 (8)
C70.0272 (11)0.0251 (9)0.0261 (11)0.0037 (8)0.0049 (8)0.0047 (8)
O50.0415 (9)0.0386 (8)0.0343 (8)0.0153 (7)0.0085 (7)0.0085 (7)
O60.0468 (10)0.0400 (8)0.0408 (9)0.0073 (7)0.0065 (8)0.0045 (7)
Cl10.0335 (3)0.0385 (3)0.0323 (3)0.0111 (2)0.0022 (2)0.0086 (2)
Geometric parameters (Å, º) top
O1—C11.317 (2)C2—C71.397 (3)
O1—H10.8200C2—C31.410 (3)
O2—C11.225 (2)C3—C41.390 (3)
O3—C31.346 (2)C4—C51.376 (3)
O3—H30.8199C4—H40.9300
O4—C51.358 (2)C5—C61.397 (3)
O4—H4A0.8200C6—C71.365 (3)
N1—C61.470 (2)C7—H70.9300
N1—H1A0.8900O5—H5A0.8616
N1—H1B0.8900O5—H5B0.8517
N1—H1C0.8900O6—H6A0.8764
C1—C21.467 (3)O6—H6B0.8647
C1—O1—H1109.5O3—C3—C2123.24 (18)
C3—O3—H3109.5C4—C3—C2120.50 (18)
C5—O4—H4A109.5C5—C4—C3119.87 (18)
C6—N1—H1A109.5C5—C4—H4120.1
C6—N1—H1B109.5C3—C4—H4120.1
H1A—N1—H1B109.5O4—C5—C4124.58 (17)
C6—N1—H1C109.5O4—C5—C6115.57 (17)
H1A—N1—H1C109.5C4—C5—C6119.85 (18)
H1B—N1—H1C109.5C7—C6—C5120.75 (18)
O2—C1—O1122.79 (18)C7—C6—N1121.88 (16)
O2—C1—C2123.65 (19)C5—C6—N1117.31 (16)
O1—C1—C2113.56 (17)C6—C7—C2120.62 (17)
C7—C2—C3118.40 (17)C6—C7—H7119.7
C7—C2—C1120.94 (18)C2—C7—H7119.7
C3—C2—C1120.67 (18)H5A—O5—H5B104.7
O3—C3—C4116.25 (17)H6A—O6—H6B106.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.821.882.6945 (19)171
O3—H3···O20.821.962.672 (2)145
O4—H4A···Cl1i0.822.213.0097 (15)164
N1—H1A···O6ii0.892.022.903 (2)169
N1—H1B···O5iii0.891.962.853 (2)178
N1—H1C···Cl1iv0.892.353.1950 (18)157
O5—H5A···O2v0.862.162.935 (2)149
O5—H5B···Cl10.852.413.1494 (15)146
O6—H6A···Cl10.882.273.1386 (16)174
O6—H6B···O5vi0.861.992.850 (2)173
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H8NO4+·Cl·2H2O
Mr241.63
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.0285 (8), 7.9597 (8), 10.9570 (13)
α, β, γ (°)100.135 (5), 97.162 (4), 92.921 (5)
V3)512.10 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.28 × 0.15 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.935, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
8850, 2548, 1853
Rint0.039
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.03
No. of reflections2548
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.821.882.6945 (19)171
O3—H3···O20.821.962.672 (2)145
O4—H4A···Cl1i0.822.213.0097 (15)164
N1—H1A···O6ii0.892.022.903 (2)169
N1—H1B···O5iii0.891.962.853 (2)178
N1—H1C···Cl1iv0.892.353.1950 (18)157
O5—H5A···O2v0.862.162.935 (2)149
O5—H5B···Cl10.852.413.1494 (15)146
O6—H6A···Cl10.882.273.1386 (16)174
O6—H6B···O5vi0.861.992.850 (2)173
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNaz, S. S., Islam, N. U. & Tahir, M. N. (2010). Acta Cryst. E66, o2372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds