

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1RS,6SR)-Ethyl 4-(2,4-dichlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate

Grzegorz Dutkiewicz,^a B. Narayana,^b K. Veena,^b H. S. Yathirajan^c and Maciej Kubicki^a*

^aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: mkubicki@amu.edu.pl

Received 5 January 2011; accepted 12 January 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.039; wR factor = 0.104; data-to-parameter ratio = 10.2.

There are two symmetry-independent molecules in the asymmetric unit of the title compound, C₂₁H₁₇Cl₂FO₃. Both these molecules are very similar: the normal probability plots for bond lengths, angles and even for torsion angles show that the differences are of a statistical nature. A pseudocentre of symmetry is located between the symmetry-independent molecules at [0.245 (1), 0.535 (19), 0.909 (1)]. The cyclohexene rings have slightly distorted sofa conformations in both molecules and the two benzene rings are inclined by dihedral angles of 61.33 (14) and 62.85 (14)°. In the crystal, relatively short intermolecular C-H···O interactions join molecules into homomolecular (i.e. $\cdots AAA \cdots$ and $\cdots BBB \cdots$) chains along the b axis. These chains are interconnected by further heteromolecular $C-H \cdots O$ interactions.

Related literature

For normal probability plots, see: Abrahams & Keve (1971). For asymmetry parameters, see: Duax & Norton (1975). For similar structures, see: Anuradha et al. (2009); Li et al. (2009); Fun et al. (2008, 2009, 2010); Badshah et al. (2009), Dutkiewicz et al. (2011a,b). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

$C_{21}H_{17}Cl_2FO_3$
$M_r = 407.25$
Orthorhombic, Pca2 ₁
a = 32.321 (5) Å
b = 5.437 (2) Å
c = 22.309(3) Å

Data collection

Oxford Diffraction Xcalibur Eos
diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\min} = 0.819, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$]
$wR(F^2) = 0.104$	
S = 1.01	
4968 reflections	
487 parameters	
1 restraint]

 $V = 3920.3 (17) \text{ Å}^3$ Z = 8Mo Ka radiation $\mu = 0.36 \text{ mm}^{-1}$ T = 295 K $0.35 \times 0.3 \times 0.2 \text{ mm}$

7901 measured reflections 4968 independent reflections 3654 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$

H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
623 Friedel pairs
Flack parameter: 0.03 (6)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1A - H1A \cdots O12A^{i}$	0.98	2.40	3.306 (4)	154
$C62A - H62A \cdots O12A^{i}$	0.93	2.55	3.442 (5)	162
$C1B - H1B \cdots O12B^{ii}$	0.98	2.39	3.292 (4)	153
$C62B - H62B \cdots O12B^{ii}$	0.93	2.47	3.358 (4)	161
$C14A - H14A \cdots Cl1^{iii}$	0.97	2.82	3.725 (6)	155
$C3A - H3A \cdots O2B$	0.93	2.54	3.360 (5)	148
$C3B-H3B\cdots O2A$	0.93	2.51	3.352 (5)	151

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z; (iii) $-x + \frac{1}{2}, y, z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

BN thanks the UGC and DST for financial assistance under the SAP and FIST programmes. HSY thanks the UOM for sabbatical leave.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2651).

References

- Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157-165.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Anuradha, N., Thiruvalluvar, A., Pandiarajan, K. & Yuvaraj, C. (2009). Acta Crvst. E65. 0191.
- Badshah, A., Hasan, A. & Barbarín, C. R. (2009). Acta Cryst. E65, 0467.
- Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, pp. 16-22. New York: Plenum.

- Dutkiewicz, G., Narajana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334–o335.
- Dutkiewicz, G., Narajana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, 0336.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, 0864–0865.
- Fun, H.-K., Jebas, S. R., Girish, K. S. & Kalluraya, B. (2009). Acta Cryst. E65, 01235.
- Fun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.
- Li, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, 01186.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o445-o446 [doi:10.1107/S160053681100184X]

(1*RS*,6*SR*)-Ethyl 4-(2,4-dichlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3ene-1-carboxylate

Grzegorz Dutkiewicz, B. Narayana, K. Veena, H. S. Yathirajan and Maciej Kubicki

S1. Comment

In the course of our studies on chalcone derivatives (Dutkiewicz *et al.*, 2011*a*,*b*), we have determined the crystal structure of ethyl 4-(2,4-dichlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate (**I**, Scheme 1).

There are two symmetry-independent molecules in the asymmetric part of the unit cell(Fig. 1). Interestingly enough, it is quite common among similar structures. Out of eight structures of 4,6-diaryl derivatives of 2-oxocyclohex-3-ene found in the CSD (Allen, 2002), 3 have Z'=2 (Fun *et al.*, 2008, 2009, 2010). In **I** the two independent molecules are very similar (Fig. 2); normal probability plot calculations (Abrahams & Keve, 1971) show very high correlation between experimental and theoretical normal distribution of the differences between bond lengths ($R^2=0.96$), bond angles ($R^2=0.98$) and even between the torsion angles ($R^2=0.96$). The pseudo-centre of symmetry can be found between the symmetry independent molecules. The sums of appropriate coordinates are similar and the esd's of such found point are quite good: $\langle x_iA+x_iB\rangle=0.245$ (1), $\langle y_iA+y_iB\rangle=0.535$ (19), $\langle z_iA+z_iC\rangle=0.909$ (1). Since these molecules are so similar, we will analyze one of them and the numeric values for the other will be given in square brackets.

The cyclohexene rings adopt slightly distorted sofa conformation (Fig. 2), the asymmetry parameter ΔC_s^3 (Duax & Norton, 1975) is 3.26° [3.60°]. In this ring five atoms C1 - C5 are almost coplanar, maximum deviation from the least-squares plane is 0.028 (3)Å [0.024 (3) Å], while the sixth atom, C6, is significantly out of this plane, by 0.672 (5)Å [0.685 (4) Å]. Similar conformation was found in related compound (Anuradha *et al.*, 2009; Li *et al.*, 2009; Fun *et al.*, 2008, 2009, 2010; Badshah *et al.*, 2009; Dutkiewicz *et al.*, 2011*a,b*).

The overall conformation of a molecule I (*cf.* Fig. 1) can be characterized by the dihedral angles between the phenyl rings, of 61.33 (14)° [62.85 (14)°}, and between these rings and the mean plane of the cyclohexene ring which are equal to 63.41 (13)° [64.00 (12)°] for the dichlorophenyl and 84.85 (12)° [85.07 (12)°] for fluorophenyl ring. In the crystal of the methyl analogue, methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex- 3-ene-1-carboxylate (Fun *et al.*, 2010) there are two symmetry independent molecules, but the overall conformation of both of them is similar to that of **I**. It might be noted that generally for similar structures the angles between the cyclohexene plane and phenyl ring at position 4 were smaller, not only because of the lack of the steric hindrance but even for the two *ortho*-substituted rings: in 3-(2-hydroxy-phenyl)-5-phenyl-6-ethoxycarbonylcyclohex-2-enone (refcode QESTEO) it is 18.1°, and the same value it has been fund in 3-(2-hydroxyphenyl)-5-(2-methylphenyl)-6-ethoxycarbonyl-2-cyclohexen-one (NAMKES).

In the crystal structure relatively short and directional C1—H1···O12(x, y + 1, z) and C62—H62···O12(x, y + 1, z) create homomolecular (*i.e.* ···AAA··· and ···BBB···) chains of molecules along *y*-directions (Fig. 3). These chains are interconnected by means of weaker but still directional C3—H3···O2 heteromolecular hydrogen bonds into three dimensional structure (Fig. 4).

S2. Experimental

A mixture of (2E)-1-(2,4-dichlorophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (0.01 mol) and ethyl acetoacetate (0.01 mol) were refluxed for 2 hr in 10–15 ml of ethanol in the presence of 0.8 ml 10% NaOH. The crystals were obtained by a slow evaporation from toluene/cyclohexenone solution. C₂₁H₁₇Cl₂FO₃, C: 61.88(61.93%); H: 4.18(4.21%); m.p 381 K.

S3. Refinement

Hydrogen atoms were located geometrically (C(methyl)-H 0.96 Å, C(CH₂)-H 0.97 Å, C(CH)—H 0.98 Å, C(arom)-H 0.93 Å) and refined as a riding model; the U_{iso} values of H atoms were set at 1.2 (1.5 for CH₃ group) times U_{eq} of their carrier atom.

Figure 1

Anisotropic ellipsoid representation of the molecules of I together with atom labelling scheme. The ellipsoids are drawn at 33% probability level, hydrogen atoms are depicted as spheres with arbitrary radii, weak C-H…O hydrogen bonds are shown as dashed lines.

Figure 2

The comparison of two symmetry-independent molecules of I. The cyclohexene rings were fitted onto each other.

Figure 3

The hydrogen-bonded homomolecular chains along *y*-direction. Hydrogen bonds are shown as dashed lines.

Figure 4

The crystal packing as seen along [010] direction; hydrogen bonds are shown as dashed lines. The symmetry-independent molecules are drawn with different colours.

(1RS,6SR)-Ethyl 4-(2,4-dichlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate

Crystal data	
$C_{21}H_{17}Cl_2FO_3$	F(000) = 1680
$M_r = 407.25$	$D_{\rm x} = 1.380 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $Pca2_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 3531 reflections
a = 32.321 (5) Å	$\theta = 2.8 - 26.9^{\circ}$
b = 5.437 (2) Å	$\mu = 0.36 \text{ mm}^{-1}$
c = 22.309 (3) Å	T = 295 K
$V = 3920.3 (17) Å^3$	Prism, colourless
Z = 8	$0.35 \times 0.3 \times 0.2 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur Eos	7901 measured reflections
diffractometer	4968 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3654 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
Detector resolution: 16.1544 pixels mm ⁻¹	$\theta_{\rm max} = 26.9^\circ, \theta_{\rm min} = 3.1^\circ$
ω scans	$h = -40 \rightarrow 26$
Absorption correction: multi-scan	$k = -6 \rightarrow 5$
(CrysAlis PRO; Oxford Diffraction, 2009)	$l = -10 \rightarrow 28$
$T_{\min} = 0.819, \ T_{\max} = 1.000$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.104$	$w = 1/[\sigma^2(F_o^2) + (0.0609P)^2 + 0.1808P]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
4968 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
487 parameters	$\Delta ho_{ m max} = 0.17 \ m e \ m \AA^{-3}$
1 restraint	$\Delta \rho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 623 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.03 (6)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	U_{iso}^*/U_{eq}	
$\overline{C1A}$	0 22407 (10)	0 3769 (5)	0 53563 (17)	0.0409 (9)	
H1A	0.2266	0.5312	0.5580	0.049*	
C11A	0.22528 (11)	0.1675 (6)	0.5794 (2)	0.0463 (9)	
012A	0.23719 (10)	-0.0345(5)	0.56771 (18)	0.0785 (11)	
013A	0.21037 (9)	0.2333 (5)	0.63242 (13)	0.0648 (8)	
C14A	0.20292 (17)	0.0368 (10)	0.6764 (3)	0.0859 (17)	
H14B	0.2234	-0.0916	0.6711	0.103*	
H14A	0.2060	0.1029	0.7165	0.103*	
C15A	0.1625 (2)	-0.0664 (13)	0.6699 (4)	0.136 (3)	
H15C	0.1587	-0.1952	0.6988	0.203*	
H15B	0.1594	-0.1324	0.6302	0.203*	
H15A	0.1421	0.0593	0.6763	0.203*	
C2A	0.18159 (11)	0.3711 (7)	0.5059 (2)	0.0497 (10)	
O2A	0.15239 (8)	0.2667 (7)	0.52946 (16)	0.0846 (10)	
C3A	0.17750 (12)	0.4878 (7)	0.4485 (2)	0.0516 (11)	
H3A	0.1513	0.4964	0.4313	0.062*	
C4A	0.20962 (11)	0.5856 (6)	0.41828 (19)	0.0447 (9)	
C41A	0.20272 (11)	0.7015 (7)	0.35944 (19)	0.0477 (9)	
C42A	0.22106 (12)	0.6212 (7)	0.3069 (2)	0.0540 (10)	
Cl1	0.25473 (4)	0.3717 (2)	0.30848 (6)	0.0799 (4)	
C43A	0.21185 (15)	0.7226 (9)	0.2522 (2)	0.0673 (12)	
H43A	0.2239	0.6621	0.2173	0.081*	
C44A	0.18395 (15)	0.9189 (10)	0.2500 (2)	0.0700 (13)	

C12	0.17416 (5)	1.0573 (3)	0.18186 (7)	0.1044 (5)
C45A	0.16521 (15)	1.0065 (8)	0.3010 (3)	0.0633 (13)
H45A	0.1469	1.1383	0.2991	0.076*
C46A	0.17414 (13)	0.8947 (7)	0.3547 (2)	0.0566 (11)
H46A	0.1607	0.9491	0.3891	0.068*
C5A	0.25213 (12)	0.5828 (7)	0.44552 (19)	0.0474 (10)
H5A2	0.2567	0.7363	0.4667	0.057*
H5A1	0.2725	0.5716	0.4138	0.057*
C6A	0.25821 (10)	0.3685 (6)	0.48896 (18)	0.0418 (9)
H6A	0.2546	0.2163	0.4660	0.050*
C61A	0.30183 (10)	0.3660 (6)	0.51423 (19)	0.0425 (9)
C62A	0.31576 (12)	0.5423 (7)	0.5529 (2)	0.0570 (12)
H62A	0.2978	0.6665	0.5651	0.068*
C63A	0.35596 (13)	0.5401 (8)	0.5743 (2)	0.0620 (13)
H63A	0.3649	0.6597	0.6012	0.074*
C64A	0.38220 (12)	0.3607 (8)	0.5556 (2)	0.0627(12)
F64A	0.30220(12) 0.42207(8)	0.3609(5)	0.57554(17)	0.0027(12) 0.0988(10)
C65A	0.37003(12)	0.1817(7)	0.5777(3)	0.0550(10)
H65A	0 3883	0.0587	0.5058	0.079*
C66A	0.32956 (12)	0.1856 (6)	0.4969(2)	0.079
H66A	0.3209	0.0637	0.4705	0.0504 (12)
CIB	0.02150 (9)	0.1586 (5)	0.4705 0.37208 (15)	0.0346 (8)
HIB	0.0196	0.0045	0.3495	0.0340(0)
CUB	0.01006 (11)	0.3600 (6)	0.32860 (18)	0.042
012B	0.01990(11) 0.00830(0)	0.5099(0)	0.32809(18) 0.34190(15)	0.0408(9)
012B	0.00850(9)	0.3711(4) 0.3002(4)	0.34190(13) 0.27537(12)	0.0023(3)
C14P	0.03490(8)	0.3092(4)	0.27337(12) 0.2334(2)	0.0324(7)
	0.04194 (15)	0.5095 (9)	0.2334 (2)	0.0734 (13)
	0.0204	0.0317	0.2383	0.088*
C15D	0.0402	0.4403	0.1928	0.088°
	0.08209 (10)	0.0232 (11)	0.2421(3)	0.100(2)
HIJF	0.0855	0.7570	0.2139	0.159*
HISE	0.1036	0.5058	0.2360	0.159*
HISD	0.0838	0.0891	0.2821	0.159*
C2B	0.06349 (11)	0.1693 (7)	0.40262 (19)	0.0467 (9)
O2B	0.09266 (8)	0.2748 (7)	0.37863 (15)	0.0812 (10)
C3B	0.06712 (12)	0.0550 (7)	0.4612 (2)	0.0485 (10)
H3B	0.0930	0.0522	0.4795	0.058*
C4B	0.03570 (11)	-0.0449 (6)	0.48991 (17)	0.0397 (9)
C41B	0.04318 (11)	-0.1577 (6)	0.54973 (17)	0.0433 (9)
C42B	0.02475 (12)	-0.0741 (7)	0.60187 (19)	0.0480 (9)
Cl3	-0.01039 (4)	0.1688 (2)	0.59999 (5)	0.0698 (3)
C43B	0.03397 (13)	-0.1748 (8)	0.65697 (19)	0.0594 (11)
H43B	0.0214	-0.1154	0.6916	0.071*
C44B	0.06171 (13)	-0.3624 (8)	0.65981 (19)	0.0614 (12)
Cl4	0.07341 (5)	-0.4881 (4)	0.72951 (7)	0.1039 (6)
C45B	0.08083 (14)	-0.4530 (8)	0.6099 (3)	0.0662 (14)
H45B	0.0996	-0.5819	0.6128	0.079*
C46B	0.07155 (13)	-0.3481 (7)	0.55472 (19)	0.0529 (10)

H46B	0.0846	-0.4067	0.5204	0.063*
C5B	-0.00690 (11)	-0.0492 (6)	0.46257 (18)	0.0399 (9)
H5B2	-0.0274	-0.0407	0.4942	0.048*
H5B1	-0.0108	-0.2034	0.4414	0.048*
C6B	-0.01359 (10)	0.1638 (6)	0.41921 (17)	0.0362 (8)
H6B	-0.0108	0.3168	0.4421	0.043*
C61B	-0.05667 (10)	0.1587 (5)	0.39310 (17)	0.0358 (8)
C62B	-0.06974 (12)	-0.0247 (7)	0.3548 (2)	0.0532 (12)
H62B	-0.0509	-0.1425	0.3419	0.064*
C63B	-0.11069 (13)	-0.0373 (8)	0.3350 (3)	0.0627 (14)
H63B	-0.1193	-0.1647	0.3102	0.075*
C64B	-0.13764 (11)	0.1402 (7)	0.3528 (2)	0.0561 (11)
F64B	-0.17754 (7)	0.1264 (5)	0.33395 (15)	0.0911 (10)
C65B	-0.12601 (12)	0.3256 (7)	0.3897 (2)	0.0640 (12)
H65B	-0.1449	0.4450	0.4015	0.077*
C66B	-0.08547 (11)	0.3338 (7)	0.4094 (2)	0.0525 (10)
H66B	-0.0774	0.4616	0.4345	0.063*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
C1A	0.0400 (19)	0.0308 (16)	0.052 (2)	-0.0004 (15)	0.0038 (19)	-0.0023 (16)
C11A	0.038 (2)	0.0391 (19)	0.062 (3)	-0.0008 (16)	0.000 (2)	-0.0020 (19)
012A	0.089 (2)	0.0401 (14)	0.107 (3)	0.0084 (15)	0.029 (2)	0.0090 (17)
013A	0.082 (2)	0.0605 (17)	0.0519 (19)	-0.0128 (16)	0.0012 (16)	0.0016 (15)
C14A	0.095 (4)	0.103 (4)	0.060 (4)	-0.021 (3)	-0.013 (3)	0.031 (3)
C15A	0.103 (5)	0.167 (6)	0.137 (7)	-0.047 (5)	0.005 (5)	0.077 (6)
C2A	0.0354 (19)	0.058 (2)	0.056 (3)	-0.0026 (18)	0.008 (2)	0.004 (2)
O2A	0.0455 (16)	0.135 (3)	0.074 (2)	-0.0228 (18)	0.0031 (17)	0.035 (2)
C3A	0.0313 (19)	0.066 (2)	0.057 (3)	-0.0032 (18)	0.005 (2)	0.002 (2)
C4A	0.040 (2)	0.0462 (19)	0.047 (3)	-0.0027 (17)	0.0054 (19)	-0.0025 (18)
C41A	0.042 (2)	0.055 (2)	0.047 (2)	-0.0127 (19)	0.0044 (19)	-0.0013 (19)
C42A	0.052 (2)	0.057 (2)	0.053 (3)	-0.017 (2)	0.003 (2)	-0.007(2)
C11	0.0790 (8)	0.0732 (7)	0.0875 (9)	0.0024 (6)	0.0178 (8)	-0.0225 (7)
C43A	0.070 (3)	0.076 (3)	0.056 (3)	-0.029 (3)	0.012 (2)	-0.011 (3)
C44A	0.068 (3)	0.089 (3)	0.054 (3)	-0.032 (3)	-0.011 (3)	0.018 (3)
C12	0.1222 (13)	0.1320 (11)	0.0591 (10)	-0.0232 (10)	-0.0130 (10)	0.0306 (9)
C45A	0.056 (3)	0.077 (3)	0.057 (3)	-0.003 (2)	-0.001 (3)	0.014 (2)
C46A	0.053 (2)	0.064 (2)	0.053 (3)	-0.003 (2)	0.006 (2)	0.004 (2)
C5A	0.0400 (19)	0.0478 (19)	0.054 (3)	-0.0066 (18)	0.002 (2)	0.0022 (19)
C6A	0.040 (2)	0.0335 (17)	0.051 (2)	-0.0023 (15)	0.0024 (18)	-0.0063 (17)
C61A	0.0406 (19)	0.0340 (17)	0.053 (2)	0.0003 (15)	0.0065 (19)	0.0057 (17)
C62A	0.048 (2)	0.0451 (19)	0.078 (4)	0.0075 (18)	-0.004 (3)	-0.006 (2)
C63A	0.056 (3)	0.061 (2)	0.069 (4)	0.004 (2)	-0.013 (3)	-0.005 (2)
C64A	0.035 (2)	0.066 (3)	0.087 (4)	0.005 (2)	-0.007 (2)	0.019 (3)
F64A	0.0455 (14)	0.114 (2)	0.137 (3)	0.0075 (15)	-0.0203 (17)	0.003 (2)
C65A	0.039 (2)	0.055 (2)	0.103 (4)	0.0128 (19)	0.012 (3)	0.005 (3)
C66A	0.049 (2)	0.0389 (19)	0.081 (3)	-0.0014 (18)	0.011 (2)	-0.009 (2)

C1B	0.0366 (18)	0.0299 (15)	0.037 (2)	0.0013 (14)	0.0045 (16)	-0.0012 (15)
C11B	0.042 (2)	0.0353 (18)	0.045 (2)	-0.0052 (16)	0.0034 (18)	0.0031 (16)
O12B	0.0744 (19)	0.0343 (14)	0.079 (2)	0.0055 (13)	0.0166 (18)	0.0016 (14)
O13B	0.0641 (17)	0.0537 (15)	0.0394 (15)	-0.0038 (14)	0.0094 (14)	0.0091 (13)
C14B	0.081 (3)	0.087 (3)	0.051 (3)	-0.009 (3)	0.011 (3)	0.031 (2)
C15B	0.080 (4)	0.129 (5)	0.109 (5)	-0.039 (4)	-0.002 (4)	0.047 (4)
C2B	0.036 (2)	0.055 (2)	0.049 (2)	-0.0001 (18)	0.0026 (19)	0.0060 (19)
O2B	0.0388 (15)	0.134 (3)	0.070 (2)	-0.0208 (18)	-0.0048 (15)	0.040 (2)
C3B	0.038 (2)	0.067 (2)	0.041 (3)	-0.0034 (19)	-0.0054 (19)	0.006 (2)
C4B	0.044 (2)	0.0414 (18)	0.034 (2)	-0.0045 (17)	-0.0003 (17)	-0.0007 (16)
C41B	0.044 (2)	0.0466 (18)	0.039 (2)	-0.0064 (17)	-0.0003 (18)	0.0050 (17)
C42B	0.050 (2)	0.0528 (19)	0.041 (2)	-0.0140 (19)	0.008 (2)	-0.003 (2)
C13	0.0777 (8)	0.0692 (6)	0.0624 (7)	0.0108 (6)	0.0090 (6)	-0.0134 (6)
C43B	0.059 (2)	0.084 (3)	0.035 (2)	-0.014 (2)	0.006 (2)	0.002 (2)
C44B	0.060 (3)	0.086 (3)	0.038 (3)	-0.011 (3)	-0.004 (2)	0.021 (2)
Cl4	0.0914 (10)	0.1618 (14)	0.0586 (10)	-0.0019 (10)	-0.0095 (8)	0.0507 (9)
C45B	0.058 (3)	0.073 (3)	0.068 (4)	0.005 (2)	-0.002 (3)	0.021 (3)
C46B	0.051 (2)	0.066 (2)	0.041 (2)	0.000 (2)	0.0036 (19)	0.009 (2)
C5B	0.0385 (19)	0.0465 (18)	0.035 (2)	-0.0061 (17)	0.0018 (17)	-0.0001 (17)
C6B	0.0351 (18)	0.0352 (16)	0.038 (2)	-0.0022 (15)	0.0057 (16)	-0.0082 (15)
C61B	0.0369 (17)	0.0279 (14)	0.042 (2)	0.0009 (14)	0.0040 (17)	0.0009 (15)
C62B	0.047 (2)	0.050 (2)	0.063 (3)	0.0185 (18)	-0.009 (2)	-0.019 (2)
C63B	0.049 (2)	0.063 (3)	0.076 (4)	0.000 (2)	-0.019 (3)	-0.023 (2)
C64B	0.037 (2)	0.063 (2)	0.069 (3)	0.006 (2)	-0.004 (2)	-0.001 (2)
F64B	0.0406 (13)	0.107 (2)	0.126 (3)	0.0133 (14)	-0.0186 (16)	-0.0152 (19)
C65B	0.042 (2)	0.053 (2)	0.097 (4)	0.0104 (19)	0.012 (3)	-0.007 (2)
C66B	0.040 (2)	0.0432 (19)	0.074 (3)	0.0001 (17)	0.013 (2)	-0.012 (2)

Geometric parameters (Å, °)

C1A—C11A	1.501 (5)	C1B—C11B	1.503 (4)
C1A—C6A	1.518 (5)	C1B—C2B	1.520 (5)
C1A—C2A	1.525 (5)	C1B—C6B	1.547 (5)
C1A—H1A	0.9800	C1B—H1B	0.9800
C11A—O12A	1.193 (4)	C11B—O12B	1.194 (4)
C11A—O13A	1.326 (5)	C11B—O13B	1.326 (4)
O13A—C14A	1.470 (5)	O13B—C14B	1.453 (5)
C14A—C15A	1.431 (7)	C14B—C15B	1.456 (6)
C14A—H14B	0.9700	C14B—H14D	0.9700
C14A—H14A	0.9700	C14B—H14C	0.9700
C15A—H15C	0.9600	C15B—H15F	0.9600
C15A—H15B	0.9600	C15B—H15E	0.9600
C15A—H15A	0.9600	C15B—H15D	0.9600
C2A—O2A	1.220 (4)	C2B—O2B	1.227 (4)
C2A—C3A	1.435 (6)	C2B—C3B	1.452 (6)
C3A—C4A	1.348 (5)	C3B—C4B	1.318 (5)
СЗА—НЗА	0.9300	СЗВ—НЗВ	0.9300
C4A—C41A	1.473 (6)	C4B—C41B	1.488 (5)

C4A—C5A	1.503 (5)	C4B—C5B	1.506 (5)
C41A—C42A	1.384 (6)	C41B—C42B	1.384 (5)
C41A - C46A	1 403 (5)	C41B - C46B	1.387(5)
C42A - C43A	1 373 (6)	C42B— $C43B$	1.378 (6)
C_{42A} C_{11}	1.375(0) 1 730(4)	C_{42B} C_{43B} C_{13}	1.370(0) 1.742(4)
$C_{42}A = C_{44}A$	1.759(4) 1.308(7)	$C_{42}D_{-}C_{13}D_{-}C_{14}D_{$	1.772(7) 1.350(6)
$C_{43}A = C_{44}A$	1.398 (7)	$C_{43D} = C_{44D}$	1.339(0)
C43A = C45A	0.9300	C43D = I143D	1 265 (6)
C44A = C43A	1.373(7)	C44D = C43B	1.303(0) 1.740(4)
C44A - C12	1.726 (5)	C44B - C14	1.740 (4)
C45A—C46A	1.374 (6)	C45B	1.390 (6)
C45A—H45A	0.9300	C45B—H45B	0.9300
C46A—H46A	0.9300	C46B—H46B	0.9300
C5A—C6A	1.528 (5)	C5B—C6B	1.525 (5)
С5А—Н5А2	0.9700	C5B—H5B2	0.9700
C5A—H5A1	0.9700	C5B—H5B1	0.9700
C6A—C61A	1.518 (5)	C6B—C61B	1.510 (5)
С6А—Н6А	0.9800	C6B—H6B	0.9800
C61A—C62A	1.367 (6)	C61B—C62B	1.379 (5)
C61A—C66A	1.384 (5)	C61B—C66B	1.381 (5)
C62A—C63A	1.384 (6)	C62B—C63B	1.397 (5)
C62A—H62A	0.9300	C62B—H62B	0.9300
C63A—C64A	1.359 (6)	C63B—C64B	1.359 (5)
С63А—Н63А	0.9300	C63B—H63B	0.9300
C64A—C65A	1.347 (6)	C64B—C65B	1.354 (6)
C64A—F64A	1.363 (5)	C64B—F64B	1.359 (4)
C65A—C66A	1.388 (5)	C65B—C66B	1.383 (5)
C65A—H65A	0.9300	C65B—H65B	0.9300
C66A—H66A	0.9300	C66B—H66B	0.9300
	0.7200	COOD MOD	0.9500
C11A—C1A—C6A	113.9 (3)	C11B—C1B—C2B	106.8 (3)
C11A—C1A—C2A	106.9 (3)	C11B—C1B—C6B	113.5 (3)
C6A—C1A—C2A	110.8 (3)	C2B—C1B—C6B	110.4 (3)
C11A—C1A—H1A	108.4	C11B—C1B—H1B	108.6
C6A—C1A—H1A	108.4	C2B—C1B—H1B	108.6
C2A—C1A—H1A	108.4	C6B—C1B—H1B	108.6
012A— $C11A$ — $013A$	124.1 (4)	O12B— $C11B$ — $O13B$	124.4(3)
012A $-C11A$ $-C1A$	1244(4)	O12B $O11B$ $O13D$	1235(4)
0134 $-C114$ $-C14$	1115(3)	O12B $O11B$ $O1B$	123.3(1) 112.1(3)
$C_{11A} = O_{13A} = C_{14A}$	117.3(3)	C11B O13B C14B	112.1(3) 1167(3)
C15A = C14A = C14A	117.5 (4)	O13B = C14B $C15B$	110.7(3) 112.2(4)
$C_{15A} = C_{14A} = O_{15A}$	100.2	O13D - C14D - C15D	112.2 (4)
C13A - C14A - H14B	109.5	$C_{15D} = C_{14D} = H_{14D}$	109.2
C15A - C14A - H14B	109.5	C13D - C14D - H14D	109.2
$\bigcirc 13A - \bigcirc 14A - \blacksquare 14A$	109.3	$\begin{array}{cccc} U13D \longrightarrow U14B \longrightarrow H14U \\ C15D \longrightarrow C14D \longrightarrow H14C \\ \end{array}$	109.2
UI3A—UI4A—HI4A	109.5		109.2
H14B—C14A—H14A	108.0	H14D— $C14B$ — $H14C$	107.9
C14A—C15A—H15C	109.5	C14B—C15B—H15F	109.5
C14A—C15A—H15B	109.5	C14B—C15B—H15E	109.5
H15C—C15A—H15B	109.5	H15F—C15B—H15E	109.5

C14A—C15A—H15A	109.5	C14B—C15B—H15D	109.5
H15C—C15A—H15A	109.5	H15F—C15B—H15D	109.5
H15B—C15A—H15A	109.5	H15E—C15B—H15D	109.5
O2A—C2A—C3A	121.2 (4)	O2B—C2B—C3B	122.0 (4)
O2A—C2A—C1A	121.3 (4)	O2B—C2B—C1B	120.6 (4)
C3A—C2A—C1A	117.5 (3)	C3B—C2B—C1B	117.4 (3)
C4A—C3A—C2A	123.4 (4)	C4B—C3B—C2B	123.5 (4)
С4А—С3А—НЗА	118.3	С4В—С3В—Н3В	118.3
С2А—С3А—НЗА	118.3	С2В—С3В—Н3В	118.3
C3A—C4A—C41A	119.9 (4)	C3B—C4B—C41B	118.7 (4)
C3A—C4A—C5A	119.9 (4)	C3B—C4B—C5B	120.9 (4)
C41A—C4A—C5A	120.2 (3)	C41B—C4B—C5B	120.3 (3)
C42A—C41A—C46A	117.0 (4)	C42B—C41B—C46B	117.5 (4)
C42A—C41A—C4A	123.7 (4)	C42B—C41B—C4B	123.3 (3)
C46A—C41A—C4A	119.2 (4)	C46B—C41B—C4B	119.1 (4)
C43A—C42A—C41A	122.3 (4)	C43B—C42B—C41B	121.8 (4)
C43A—C42A—C11	117.8 (4)	C43B—C42B—C13	117.6 (3)
C41A—C42A—C11	119.8 (3)	C41B—C42B—C13	120.6 (3)
C42A—C43A—C44A	118.5 (4)	C44B—C43B—C42B	118.8 (4)
C42A—C43A—H43A	120.8	C44B—C43B—H43B	120.6
C44A—C43A—H43A	120.8	C42B—C43B—H43B	120.6
C45A—C44A—C43A	121.4 (4)	C43B—C44B—C45B	122.1 (4)
C45A—C44A—Cl2	119.8 (4)	C43B—C44B—C14	118.7 (4)
C43A—C44A—Cl2	118.7 (4)	C45B—C44B—C14	119.2 (4)
C44A—C45A—C46A	118.4 (4)	C44B—C45B—C46B	118.5 (4)
C44A—C45A—H45A	120.8	C44B—C45B—H45B	120.8
C46A—C45A—H45A	120.8	C46B—C45B—H45B	120.8
C45A—C46A—C41A	122.4 (4)	C41B—C46B—C45B	121.3 (4)
C45A—C46A—H46A	118.8	C41B—C46B—H46B	119.3
C41A—C46A—H46A	118.8	C45B—C46B—H46B	119.3
C4A—C5A—C6A	112.4 (3)	C4B—C5B—C6B	112.0 (3)
C4A—C5A—H5A2	109.1	C4B—C5B—H5B2	109.2
C6A—C5A—H5A2	109.1	C6B—C5B—H5B2	109.2
C4A—C5A—H5A1	109.1	C4B—C5B—H5B1	109.2
C6A—C5A—H5A1	109.1	C6B—C5B—H5B1	109.2
H5A2—C5A—H5A1	107.8	H5B2—C5B—H5B1	107.9
C1A—C6A—C61A	114.9 (3)	C61B—C6B—C5B	111.2 (3)
C1A—C6A—C5A	108.6 (3)	C61B—C6B—C1B	114.4 (3)
C61A—C6A—C5A	111.2 (3)	C5B—C6B—C1B	108.3 (3)
С1А—С6А—Н6А	107.3	C61B—C6B—H6B	107.6
С61А—С6А—Н6А	107.3	С5В—С6В—Н6В	107.6
С5А—С6А—Н6А	107.3	C1B—C6B—H6B	107.6
C62A—C61A—C66A	117.4 (4)	C62B—C61B—C66B	117.1 (3)
C62A—C61A—C6A	122.3 (3)	C62B—C61B—C6B	122.3 (3)
C66A—C61A—C6A	120.2 (3)	C66B—C61B—C6B	120.5 (3)
C61A—C62A—C63A	121.4 (4)	C61B—C62B—C63B	121.4 (3)
C61A—C62A—H62A	119.3	C61B—C62B—H62B	119.3
С63А—С62А—Н62А	119.3	C63B—C62B—H62B	119.3

C64A—C63A—C62A	1191(4)	C64B—C63B—C62B	1187(4)
C64A - C63A - H63A	120.5	C64B - C63B - H63B	120.6
C62A - C63A - H63A	120.5	C62B— $C63B$ — $H63B$	120.6
C65A - C64A - C63A	122.0(4)	C65B-C64B-F64B	1195(4)
C65A - C64A - F64A	1122.0(1) 1188(4)	C65B - C64B - C63B	121 9 (4)
C63A - C64A - F64A	110.0(4) 119.3(4)	E64B_C64B_C63B	121.9(4) 1186(4)
C64A - C65A - C66A	119.3 (4)	C64B - C65B - C66B	118.0(4)
C64A $C65A$ $H65A$	120.0	C64B C65B H65B	120.6
C66A C65A H65A	120.9	C66B C65B H65B	120.0
C61A $C66A$ $C65A$	120.9 121.8(A)	C61B C66B C65B	120.0 122.2(4)
C61A = C66A = H66A	121.8 (4)	C61D C66D H66D	122.2 (4)
C65A $C66A$ $H66A$	119.1	C65P C66P H66P	118.9
C03A—C00A—H00A	119.1	Созв—Соов—ноов	118.9
C6A—C1A—C11A—O12A	-31.8 (5)	C2B—C1B—C11B—O12B	-88.3 (4)
C2A—C1A—C11A—O12A	90.9 (4)	C6B-C1B-C11B-O12B	33.7 (5)
C6A—C1A—C11A—O13A	149.9 (3)	C2B—C1B—C11B—O13B	88.6 (3)
C2A—C1A—C11A—O13A	-87.4 (4)	C6B—C1B—C11B—O13B	-149.4 (3)
O12A—C11A—O13A—C14A	-8.7 (6)	O12B—C11B—O13B—C14B	7.7 (6)
C1A—C11A—O13A—C14A	169.6 (3)	C1B—C11B—O13B—C14B	-169.1 (3)
C11A—O13A—C14A—C15A	-87.8 (6)	C11B—O13B—C14B—C15B	85.0 (5)
C11A—C1A—C2A—O2A	21.0 (5)	C11B—C1B—C2B—O2B	-22.8(5)
C6A—C1A—C2A—O2A	145.6 (4)	C6B—C1B—C2B—O2B	-146.7 (4)
C11A—C1A—C2A—C3A	-157.5 (3)	C11B—C1B—C2B—C3B	156.0 (3)
C6A—C1A—C2A—C3A	-32.9 (4)	C6B—C1B—C2B—C3B	32.1 (4)
O2A—C2A—C3A—C4A	-173.7 (4)	O2B—C2B—C3B—C4B	175.2 (4)
C1A—C2A—C3A—C4A	4.8 (6)	C1B—C2B—C3B—C4B	-3.5 (6)
C2A—C3A—C4A—C41A	179.8 (4)	C2B—C3B—C4B—C41B	179.8 (3)
C2A—C3A—C4A—C5A	-2.0(6)	C2B—C3B—C4B—C5B	0.8 (6)
C3A—C4A—C41A—C42A	-119.3(4)	C3B-C4B-C41B-C42B	117.8 (4)
C5A—C4A—C41A—C42A	62.6 (5)	C5B—C4B—C41B—C42B	-63.2(5)
C3A—C4A—C41A—C46A	56.6 (5)	C3B-C4B-C41B-C46B	-58.8(5)
C5A-C4A-C41A-C46A	-121.6(4)	C5B-C4B-C41B-C46B	120.2 (4)
C46A - C41A - C42A - C43A	-0.5 (6)	C46B-C41B-C42B-C43B	0.0 (6)
C4A - C41A - C42A - C43A	175.5 (4)	C4B - C41B - C42B - C43B	-176.6(3)
C46A - C41A - C42A - C11	-1766(3)	C46B-C41B-C42B-C13	178 6 (3)
C4A - C41A - C42A - C11	-0.6(5)	C4B— $C41B$ — $C42B$ — $C13$	1.9 (5)
C41A - C42A - C43A - C44A	2.1.(6)	C41B - C42B - C43B - C44B	-0.5(6)
C_{11} C_{42A} C_{43A} C_{44A}	1783(3)	C_{13} C_{428} C_{438} C_{448}	-1791(3)
C42A - C43A - C44A - C45A	-1.5(6)	C42B - C43B - C44B - C45B	04(6)
C42A— $C43A$ — $C44A$ — $C12$	176.8 (3)	C42B— $C43B$ — $C44B$ — $C14$	179.8 (3)
C43A - C44A - C45A - C46A	-0.7(7)	C43B— $C44B$ — $C45B$ — $C46B$	0.3(7)
C12-C44A-C45A-C46A	-1790(3)	C_{14} C_{44B} C_{45B} C_{46B}	-1791(3)
C44A - C45A - C46A - C41A	2 4 (6)	C42B— $C41B$ — $C46B$ — $C45B$	0.7(6)
C42A - C41A - C46A - C45A	-1.9(6)	C4B-C41B-C46B-C45B	177 4 (4)
C4A - C41A - C46A - C45A	-1780(4)	C44B - C45B - C46B - C41B	-0.8(6)
C_{3A} C_{4A} C_{5A} C_{6A}	27.7.(5)	C3B-C4B-C5B-C6B	-27.6(5)
C41A - C4A - C5A - C6A	-1541(3)	C41B - C4B - C5B - C6B	1534(3)
$C_{11A} = C_{1A} = C_{6A} = C_{61A}$	-57 8 (4)	C4B-C5B-C6B-C61B	-1790(3)
	27.0(1)		1, 2.0 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.3 (3) 177.1 (3) 56.5 (4) -54.5 (4) 178.2 (3) -55.0 (5) 68.8 (5) 127.1 (4) -109.1 (4) -0.5 (7) -178.4 (4) 1.1 (7) -1.4 (7) 178.6 (4) 1.1 (7) -178.9 (4) 0.1 (6)	$\begin{array}{ccccccc} C4B-C5B-C6B-C1B\\ C11B-C1B-C6B-C61B\\ C2B-C1B-C6B-C61B\\ C11B-C1B-C6B-C5B\\ C2B-C1B-C6B-C5B\\ C2B-C1B-C6B-C5B\\ C5B-C6B-C61B-C62B\\ C1B-C6B-C61B-C62B\\ C5B-C6B-C61B-C66B\\ C1B-C6B-C61B-C66B\\ C66B-C61B-C62B-C63B\\ C66B-C61B-C62B-C63B\\ C61B-C62B-C63B\\ C62B-C63B-C64B\\ C62B-C64B-C65B\\ C62B-C64B-C65B\\ C63B-C64B-C65B-C66B\\ C63B-C64B-C65B-C66B\\ C63B-C64B-C65B-C66B\\ C63B-C64B-C65B-C66B\\ C63B-C64B-C65B-C66B\\ C63B-C64B-C65B-C66B\\ C64B-C65B-C66B\\ C65B-C64B-C65B-C66B\\ C65B-C66B\\ C65B-C66B$	54.4 (4) 59.0 (4) 178.9 (3) -176.4 (3) -56.5 (3) -67.1 (5) 56.0 (5) 109.6 (4) -127.4 (3) -2.1 (7) 174.7 (4) 2.0 (8) -1.0 (8) -179.4 (5) 178.7 (4) 0.3 (7) 14.6 (5)
C62A—C61A—C66A—C65A C6A—C61A—C66A—C65A C64A—C65A—C66A—C65A	$\begin{array}{c} -1/8.9 (4) \\ 0.1 (6) \\ 178.1 (4) \\ -0.4 (7) \end{array}$	C62B—C61B—C66B—C65B C6B—C61B—C66B—C65B C64B—C65B—C66B—C65B	0.3 (7) 1.4 (6) -175.5 (4) -0.4 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
$C1A$ — $H1A$ ···O12 A^{i}	0.98	2.40	3.306 (4)	154
$C62A$ —H62 A ···O12 A^{i}	0.93	2.55	3.442 (5)	162
C1 <i>B</i> —H1 <i>B</i> ···O12 <i>B</i> ⁱⁱ	0.98	2.39	3.292 (4)	153
C62 <i>B</i> —H62 <i>B</i> ···O12 <i>B</i> ⁱⁱ	0.93	2.47	3.358 (4)	161
$C14A$ — $H14A$ ··· $C11^{iii}$	0.97	2.82	3.725 (6)	155
C3 <i>A</i> —H3 <i>A</i> ···O2 <i>B</i>	0.93	2.54	3.360 (5)	148
C3 <i>B</i> —H3 <i>B</i> ···O2 <i>A</i>	0.93	2.51	3.352 (5)	151

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*; (iii) –*x*+1/2, *y*, *z*+1/2.