organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o445-o446

(1RS,6SR)-Ethyl 4-(2,4-di­chloro­phen­yl)-6-(4-fluoro­phen­yl)-2-oxo­cyclo­hex-3-ene-1-carboxyl­ate

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 5 January 2011; accepted 12 January 2011; online 22 January 2011)

There are two symmetry-independent mol­ecules in the asymmetric unit of the title compound, C21H17Cl2FO3. Both these mol­ecules are very similar: the normal probability plots for bond lengths, angles and even for torsion angles show that the differences are of a statistical nature. A pseudocentre of symmetry is located between the symmetry-independent mol­ecules at [0.245 (1), 0.535 (19), 0.909 (1)]. The cyclo­hexene rings have slightly distorted sofa conformations in both mol­ecules and the two benzene rings are inclined by dihedral angles of 61.33 (14) and 62.85 (14)°. In the crystal, relatively short inter­molecular C—H⋯O inter­actions join mol­ecules into homomolecular (i.e.AAA⋯ and ⋯BBB⋯) chains along the b axis. These chains are inter­connected by further heteromolecular C—H⋯O inter­actions.

Related literature

For normal probability plots, see: Abrahams & Keve (1971[Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157-165.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, pp. 16-22. New York: Plenum.]). For similar structures, see: Anuradha et al. (2009[Anuradha, N., Thiruvalluvar, A., Pandiarajan, K. & Yuvaraj, C. (2009). Acta Cryst. E65, o191.]); Li et al. (2009[Li, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1186.]); Fun et al. (2008[Fun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.], 2009[Fun, H.-K., Jebas, S. R., Girish, K. S. & Kalluraya, B. (2009). Acta Cryst. E65, o1235.], 2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]); Badshah et al. (2009[Badshah, A., Hasan, A. & Barbarín, C. R. (2009). Acta Cryst. E65, o467.]), Dutkiewicz et al. (2011a[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334-o335.],b[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, o336.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17Cl2FO3

  • Mr = 407.25

  • Orthorhombic, P c a 21

  • a = 32.321 (5) Å

  • b = 5.437 (2) Å

  • c = 22.309 (3) Å

  • V = 3920.3 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 295 K

  • 0.35 × 0.3 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.819, Tmax = 1.000

  • 7901 measured reflections

  • 4968 independent reflections

  • 3654 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.01

  • 4968 reflections

  • 487 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 623 Friedel pairs

  • Flack parameter: 0.03 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A⋯O12Ai 0.98 2.40 3.306 (4) 154
C62A—H62A⋯O12Ai 0.93 2.55 3.442 (5) 162
C1B—H1B⋯O12Bii 0.98 2.39 3.292 (4) 153
C62B—H62B⋯O12Bii 0.93 2.47 3.358 (4) 161
C14A—H14A⋯Cl1iii 0.97 2.82 3.725 (6) 155
C3A—H3A⋯O2B 0.93 2.54 3.360 (5) 148
C3B—H3B⋯O2A 0.93 2.51 3.352 (5) 151
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies on chalcone derivatives (Dutkiewicz et al., 2011a,b), we have determined the crystal structure of ethyl 4-(2,4-dichlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate (I, Scheme 1).

There are two symmetry-independent molecules in the asymmetric part of the unit cell(Fig. 1). Interestingly enough, it is quite common among similar structures. Out of eight structures of 4,6-diaryl derivatives of 2-oxocyclohex-3-ene found in the CSD (Allen, 2002), 3 have Z'=2 (Fun et al., 2008, 2009, 2010). In I the two independent molecules are very similar (Fig. 2); normal probability plot calculations (Abrahams & Keve, 1971) show very high correlation between experimental and theoretical normal distribution of the differences between bond lengths (R2=0.96), bond angles (R2=0.98) and even between the torsion angles (R2=0.96). The pseudo-centre of symmetry can be found between the symmetry independent molecules. The sums of appropriate coordinates are similar and the esd's of such found point are quite good: <xiA+xiB>=0.245 (1), <yiA+yiB>=0.535 (19), <ziA+ziC>=0.909 (1). Since these molecules are so similar, we will analyze one of them and the numeric values for the other will be given in square brackets.

The cyclohexene rings adopt slightly distorted sofa conformation (Fig. 2), the asymmetry parameter ΔCs3 (Duax & Norton, 1975) is 3.26° [3.60°]. In this ring five atoms C1 - C5 are almost coplanar, maximum deviation from the least-squares plane is 0.028 (3)Å [0.024 (3) Å], while the sixth atom, C6, is significantly out of this plane, by 0.672 (5)Å [0.685 (4) Å]. Similar conformation was found in related compound (Anuradha et al., 2009; Li et al., 2009; Fun et al., 2008, 2009, 2010; Badshah et al., 2009; Dutkiewicz et al., 2011a,b).

The overall conformation of a molecule I (cf. Fig. 1) can be characterized by the dihedral angles between the phenyl rings, of 61.33 (14)° [62.85 (14)°}, and between these rings and the mean plane of the cyclohexene ring which are equal to 63.41 (13)° [64.00 (12)°] for the dichlorophenyl and 84.85 (12)° [85.07 (12)°] for fluorophenyl ring. In the crystal of the methyl analogue, methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex- 3-ene-1-carboxylate (Fun et al., 2010) there are two symmetry independent molecules, but the overall conformation of both of them is similar to that of I. It might be noted that generally for similar structures the angles between the cyclohexene plane and phenyl ring at position 4 were smaller, not only because of the lack of the steric hindrance but even for the two ortho-substituted rings: in 3-(2-hydroxyphenyl)-5-phenyl-6-ethoxycarbonylcyclohex-2-enone (refcode QESTEO) it is 18.1°, and the same value it has been fund in 3-(2-hydroxyphenyl)-5-(2-methylphenyl)-6-ethoxycarbonyl-2-cyclohexen-one (NAMKES).

In the crystal structure relatively short and directional C1—H1···O12(x,y + 1,z) and C62—H62···O12(x,y + 1,z) create homomolecular (i.e. ···AAA··· and ···BBB···) chains of molecules along y-directions (Fig. 3). These chains are interconnected by means of weaker but still directional C3—H3···O2 heteromolecular hydrogen bonds into three dimensional structure (Fig. 4).

Related literature top

For normal probability plots, see: Abrahams & Keve (1971). For asymmetry parameters, see: Duax & Norton (1975). For similar structures, see: Anuradha et al. (2009); Li et al. (2009); Fun et al. (2008, 2009, 2010); Badshah et al. (2009), Dutkiewicz et al. (2011a,b). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of (2E)-1-(2,4-dichlorophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (0.01 mol) and ethyl acetoacetate (0.01 mol) were refluxed for 2 hr in 10–15 ml of ethanol in the presence of 0.8 ml 10% NaOH. The crystals were obtained by a slow evaporation from toluene/cyclohexenone solution. C21H17Cl2FO3, C: 61.88(61.93%); H: 4.18(4.21%); m.p 381 K.

Refinement top

Hydrogen atoms were located geometrically (C(methyl)-H 0.96 Å, C(CH2)-H 0.97 Å, C(CH)—H 0.98 Å, C(arom)-H 0.93 Å) and refined as a riding model; the Uiso values of H atoms were set at 1.2 (1.5 for CH3 group) times Ueq of their carrier atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the molecules of I together with atom labelling scheme. The ellipsoids are drawn at 33% probability level, hydrogen atoms are depicted as spheres with arbitrary radii, weak C-H···O hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The comparison of two symmetry-independent molecules of I. The cyclohexene rings were fitted onto each other.
[Figure 3] Fig. 3. The hydrogen-bonded homomolecular chains along y-direction. Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. The crystal packing as seen along [010] direction; hydrogen bonds are shown as dashed lines. The symmetry-independent molecules are drawn with different colours.
(1RS,6SR)-Ethyl 4-(2,4-dichlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate top
Crystal data top
C21H17Cl2FO3F(000) = 1680
Mr = 407.25Dx = 1.380 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3531 reflections
a = 32.321 (5) Åθ = 2.8–26.9°
b = 5.437 (2) ŵ = 0.36 mm1
c = 22.309 (3) ÅT = 295 K
V = 3920.3 (17) Å3Prism, colourless
Z = 80.35 × 0.3 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4968 independent reflections
Radiation source: Enhance (Mo) X-ray Source3654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.1544 pixels mm-1θmax = 26.9°, θmin = 3.1°
ω scansh = 4026
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 65
Tmin = 0.819, Tmax = 1.000l = 1028
7901 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.1808P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4968 reflectionsΔρmax = 0.17 e Å3
487 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 623 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C21H17Cl2FO3V = 3920.3 (17) Å3
Mr = 407.25Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 32.321 (5) ŵ = 0.36 mm1
b = 5.437 (2) ÅT = 295 K
c = 22.309 (3) Å0.35 × 0.3 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4968 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3654 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 1.000Rint = 0.022
7901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.17 e Å3
S = 1.01Δρmin = 0.22 e Å3
4968 reflectionsAbsolute structure: Flack (1983), 623 Friedel pairs
487 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.22407 (10)0.3769 (5)0.53563 (17)0.0409 (9)
H1A0.22660.53120.55800.049*
C11A0.22528 (11)0.1675 (6)0.5794 (2)0.0463 (9)
O12A0.23719 (10)0.0345 (5)0.56771 (18)0.0785 (11)
O13A0.21037 (9)0.2333 (5)0.63242 (13)0.0648 (8)
C14A0.20292 (17)0.0368 (10)0.6764 (3)0.0859 (17)
H14B0.22340.09160.67110.103*
H14A0.20600.10290.71650.103*
C15A0.1625 (2)0.0664 (13)0.6699 (4)0.136 (3)
H15C0.15870.19520.69880.203*
H15B0.15940.13240.63020.203*
H15A0.14210.05930.67630.203*
C2A0.18159 (11)0.3711 (7)0.5059 (2)0.0497 (10)
O2A0.15239 (8)0.2667 (7)0.52946 (16)0.0846 (10)
C3A0.17750 (12)0.4878 (7)0.4485 (2)0.0516 (11)
H3A0.15130.49640.43130.062*
C4A0.20962 (11)0.5856 (6)0.41828 (19)0.0447 (9)
C41A0.20272 (11)0.7015 (7)0.35944 (19)0.0477 (9)
C42A0.22106 (12)0.6212 (7)0.3069 (2)0.0540 (10)
Cl10.25473 (4)0.3717 (2)0.30848 (6)0.0799 (4)
C43A0.21185 (15)0.7226 (9)0.2522 (2)0.0673 (12)
H43A0.22390.66210.21730.081*
C44A0.18395 (15)0.9189 (10)0.2500 (2)0.0700 (13)
Cl20.17416 (5)1.0573 (3)0.18186 (7)0.1044 (5)
C45A0.16521 (15)1.0065 (8)0.3010 (3)0.0633 (13)
H45A0.14691.13830.29910.076*
C46A0.17414 (13)0.8947 (7)0.3547 (2)0.0566 (11)
H46A0.16070.94910.38910.068*
C5A0.25213 (12)0.5828 (7)0.44552 (19)0.0474 (10)
H5A20.25670.73630.46670.057*
H5A10.27250.57160.41380.057*
C6A0.25821 (10)0.3685 (6)0.48896 (18)0.0418 (9)
H6A0.25460.21630.46600.050*
C61A0.30183 (10)0.3660 (6)0.51423 (19)0.0425 (9)
C62A0.31576 (12)0.5423 (7)0.5529 (2)0.0570 (12)
H62A0.29780.66650.56510.068*
C63A0.35596 (13)0.5401 (8)0.5743 (2)0.0620 (13)
H63A0.36490.65970.60120.074*
C64A0.38220 (12)0.3607 (8)0.5556 (2)0.0627 (12)
F64A0.42207 (8)0.3609 (5)0.57554 (17)0.0988 (10)
C65A0.37003 (12)0.1817 (7)0.5177 (3)0.0659 (13)
H65A0.38830.05870.50580.079*
C66A0.32956 (12)0.1856 (6)0.4969 (2)0.0564 (12)
H66A0.32090.06370.47050.068*
C1B0.02150 (9)0.1586 (5)0.37208 (15)0.0346 (8)
H1B0.01960.00450.34950.042*
C11B0.01996 (11)0.3699 (6)0.32869 (18)0.0408 (9)
O12B0.00830 (9)0.5711 (4)0.34190 (15)0.0625 (8)
O13B0.03490 (8)0.3092 (4)0.27537 (12)0.0524 (7)
C14B0.04194 (15)0.5093 (9)0.2334 (2)0.0734 (15)
H14D0.02040.63170.23830.088*
H14C0.04020.44630.19280.088*
C15B0.08209 (16)0.6252 (11)0.2421 (3)0.106 (2)
H15F0.08530.75700.21390.159*
H15E0.10360.50580.23600.159*
H15D0.08380.68910.28210.159*
C2B0.06349 (11)0.1693 (7)0.40262 (19)0.0467 (9)
O2B0.09266 (8)0.2748 (7)0.37863 (15)0.0812 (10)
C3B0.06712 (12)0.0550 (7)0.4612 (2)0.0485 (10)
H3B0.09300.05220.47950.058*
C4B0.03570 (11)0.0449 (6)0.48991 (17)0.0397 (9)
C41B0.04318 (11)0.1577 (6)0.54973 (17)0.0433 (9)
C42B0.02475 (12)0.0741 (7)0.60187 (19)0.0480 (9)
Cl30.01039 (4)0.1688 (2)0.59999 (5)0.0698 (3)
C43B0.03397 (13)0.1748 (8)0.65697 (19)0.0594 (11)
H43B0.02140.11540.69160.071*
C44B0.06171 (13)0.3624 (8)0.65981 (19)0.0614 (12)
Cl40.07341 (5)0.4881 (4)0.72951 (7)0.1039 (6)
C45B0.08083 (14)0.4530 (8)0.6099 (3)0.0662 (14)
H45B0.09960.58190.61280.079*
C46B0.07155 (13)0.3481 (7)0.55472 (19)0.0529 (10)
H46B0.08460.40670.52040.063*
C5B0.00690 (11)0.0492 (6)0.46257 (18)0.0399 (9)
H5B20.02740.04070.49420.048*
H5B10.01080.20340.44140.048*
C6B0.01359 (10)0.1638 (6)0.41921 (17)0.0362 (8)
H6B0.01080.31680.44210.043*
C61B0.05667 (10)0.1587 (5)0.39310 (17)0.0358 (8)
C62B0.06974 (12)0.0247 (7)0.3548 (2)0.0532 (12)
H62B0.05090.14250.34190.064*
C63B0.11069 (13)0.0373 (8)0.3350 (3)0.0627 (14)
H63B0.11930.16470.31020.075*
C64B0.13764 (11)0.1402 (7)0.3528 (2)0.0561 (11)
F64B0.17754 (7)0.1264 (5)0.33395 (15)0.0911 (10)
C65B0.12601 (12)0.3256 (7)0.3897 (2)0.0640 (12)
H65B0.14490.44500.40150.077*
C66B0.08547 (11)0.3338 (7)0.4094 (2)0.0525 (10)
H66B0.07740.46160.43450.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0400 (19)0.0308 (16)0.052 (2)0.0004 (15)0.0038 (19)0.0023 (16)
C11A0.038 (2)0.0391 (19)0.062 (3)0.0008 (16)0.000 (2)0.0020 (19)
O12A0.089 (2)0.0401 (14)0.107 (3)0.0084 (15)0.029 (2)0.0090 (17)
O13A0.082 (2)0.0605 (17)0.0519 (19)0.0128 (16)0.0012 (16)0.0016 (15)
C14A0.095 (4)0.103 (4)0.060 (4)0.021 (3)0.013 (3)0.031 (3)
C15A0.103 (5)0.167 (6)0.137 (7)0.047 (5)0.005 (5)0.077 (6)
C2A0.0354 (19)0.058 (2)0.056 (3)0.0026 (18)0.008 (2)0.004 (2)
O2A0.0455 (16)0.135 (3)0.074 (2)0.0228 (18)0.0031 (17)0.035 (2)
C3A0.0313 (19)0.066 (2)0.057 (3)0.0032 (18)0.005 (2)0.002 (2)
C4A0.040 (2)0.0462 (19)0.047 (3)0.0027 (17)0.0054 (19)0.0025 (18)
C41A0.042 (2)0.055 (2)0.047 (2)0.0127 (19)0.0044 (19)0.0013 (19)
C42A0.052 (2)0.057 (2)0.053 (3)0.017 (2)0.003 (2)0.007 (2)
Cl10.0790 (8)0.0732 (7)0.0875 (9)0.0024 (6)0.0178 (8)0.0225 (7)
C43A0.070 (3)0.076 (3)0.056 (3)0.029 (3)0.012 (2)0.011 (3)
C44A0.068 (3)0.089 (3)0.054 (3)0.032 (3)0.011 (3)0.018 (3)
Cl20.1222 (13)0.1320 (11)0.0591 (10)0.0232 (10)0.0130 (10)0.0306 (9)
C45A0.056 (3)0.077 (3)0.057 (3)0.003 (2)0.001 (3)0.014 (2)
C46A0.053 (2)0.064 (2)0.053 (3)0.003 (2)0.006 (2)0.004 (2)
C5A0.0400 (19)0.0478 (19)0.054 (3)0.0066 (18)0.002 (2)0.0022 (19)
C6A0.040 (2)0.0335 (17)0.051 (2)0.0023 (15)0.0024 (18)0.0063 (17)
C61A0.0406 (19)0.0340 (17)0.053 (2)0.0003 (15)0.0065 (19)0.0057 (17)
C62A0.048 (2)0.0451 (19)0.078 (4)0.0075 (18)0.004 (3)0.006 (2)
C63A0.056 (3)0.061 (2)0.069 (4)0.004 (2)0.013 (3)0.005 (2)
C64A0.035 (2)0.066 (3)0.087 (4)0.005 (2)0.007 (2)0.019 (3)
F64A0.0455 (14)0.114 (2)0.137 (3)0.0075 (15)0.0203 (17)0.003 (2)
C65A0.039 (2)0.055 (2)0.103 (4)0.0128 (19)0.012 (3)0.005 (3)
C66A0.049 (2)0.0389 (19)0.081 (3)0.0014 (18)0.011 (2)0.009 (2)
C1B0.0366 (18)0.0299 (15)0.037 (2)0.0013 (14)0.0045 (16)0.0012 (15)
C11B0.042 (2)0.0353 (18)0.045 (2)0.0052 (16)0.0034 (18)0.0031 (16)
O12B0.0744 (19)0.0343 (14)0.079 (2)0.0055 (13)0.0166 (18)0.0016 (14)
O13B0.0641 (17)0.0537 (15)0.0394 (15)0.0038 (14)0.0094 (14)0.0091 (13)
C14B0.081 (3)0.087 (3)0.051 (3)0.009 (3)0.011 (3)0.031 (2)
C15B0.080 (4)0.129 (5)0.109 (5)0.039 (4)0.002 (4)0.047 (4)
C2B0.036 (2)0.055 (2)0.049 (2)0.0001 (18)0.0026 (19)0.0060 (19)
O2B0.0388 (15)0.134 (3)0.070 (2)0.0208 (18)0.0048 (15)0.040 (2)
C3B0.038 (2)0.067 (2)0.041 (3)0.0034 (19)0.0054 (19)0.006 (2)
C4B0.044 (2)0.0414 (18)0.034 (2)0.0045 (17)0.0003 (17)0.0007 (16)
C41B0.044 (2)0.0466 (18)0.039 (2)0.0064 (17)0.0003 (18)0.0050 (17)
C42B0.050 (2)0.0528 (19)0.041 (2)0.0140 (19)0.008 (2)0.003 (2)
Cl30.0777 (8)0.0692 (6)0.0624 (7)0.0108 (6)0.0090 (6)0.0134 (6)
C43B0.059 (2)0.084 (3)0.035 (2)0.014 (2)0.006 (2)0.002 (2)
C44B0.060 (3)0.086 (3)0.038 (3)0.011 (3)0.004 (2)0.021 (2)
Cl40.0914 (10)0.1618 (14)0.0586 (10)0.0019 (10)0.0095 (8)0.0507 (9)
C45B0.058 (3)0.073 (3)0.068 (4)0.005 (2)0.002 (3)0.021 (3)
C46B0.051 (2)0.066 (2)0.041 (2)0.000 (2)0.0036 (19)0.009 (2)
C5B0.0385 (19)0.0465 (18)0.035 (2)0.0061 (17)0.0018 (17)0.0001 (17)
C6B0.0351 (18)0.0352 (16)0.038 (2)0.0022 (15)0.0057 (16)0.0082 (15)
C61B0.0369 (17)0.0279 (14)0.042 (2)0.0009 (14)0.0040 (17)0.0009 (15)
C62B0.047 (2)0.050 (2)0.063 (3)0.0185 (18)0.009 (2)0.019 (2)
C63B0.049 (2)0.063 (3)0.076 (4)0.000 (2)0.019 (3)0.023 (2)
C64B0.037 (2)0.063 (2)0.069 (3)0.006 (2)0.004 (2)0.001 (2)
F64B0.0406 (13)0.107 (2)0.126 (3)0.0133 (14)0.0186 (16)0.0152 (19)
C65B0.042 (2)0.053 (2)0.097 (4)0.0104 (19)0.012 (3)0.007 (2)
C66B0.040 (2)0.0432 (19)0.074 (3)0.0001 (17)0.013 (2)0.012 (2)
Geometric parameters (Å, º) top
C1A—C11A1.501 (5)C1B—C11B1.503 (4)
C1A—C6A1.518 (5)C1B—C2B1.520 (5)
C1A—C2A1.525 (5)C1B—C6B1.547 (5)
C1A—H1A0.9800C1B—H1B0.9800
C11A—O12A1.193 (4)C11B—O12B1.194 (4)
C11A—O13A1.326 (5)C11B—O13B1.326 (4)
O13A—C14A1.470 (5)O13B—C14B1.453 (5)
C14A—C15A1.431 (7)C14B—C15B1.456 (6)
C14A—H14B0.9700C14B—H14D0.9700
C14A—H14A0.9700C14B—H14C0.9700
C15A—H15C0.9600C15B—H15F0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15A0.9600C15B—H15D0.9600
C2A—O2A1.220 (4)C2B—O2B1.227 (4)
C2A—C3A1.435 (6)C2B—C3B1.452 (6)
C3A—C4A1.348 (5)C3B—C4B1.318 (5)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C41A1.473 (6)C4B—C41B1.488 (5)
C4A—C5A1.503 (5)C4B—C5B1.506 (5)
C41A—C42A1.384 (6)C41B—C42B1.384 (5)
C41A—C46A1.403 (5)C41B—C46B1.387 (5)
C42A—C43A1.373 (6)C42B—C43B1.378 (6)
C42A—Cl11.739 (4)C42B—Cl31.742 (4)
C43A—C44A1.398 (7)C43B—C44B1.359 (6)
C43A—H43A0.9300C43B—H43B0.9300
C44A—C45A1.373 (7)C44B—C45B1.365 (6)
C44A—Cl21.726 (5)C44B—Cl41.740 (4)
C45A—C46A1.374 (6)C45B—C46B1.390 (6)
C45A—H45A0.9300C45B—H45B0.9300
C46A—H46A0.9300C46B—H46B0.9300
C5A—C6A1.528 (5)C5B—C6B1.525 (5)
C5A—H5A20.9700C5B—H5B20.9700
C5A—H5A10.9700C5B—H5B10.9700
C6A—C61A1.518 (5)C6B—C61B1.510 (5)
C6A—H6A0.9800C6B—H6B0.9800
C61A—C62A1.367 (6)C61B—C62B1.379 (5)
C61A—C66A1.384 (5)C61B—C66B1.381 (5)
C62A—C63A1.384 (6)C62B—C63B1.397 (5)
C62A—H62A0.9300C62B—H62B0.9300
C63A—C64A1.359 (6)C63B—C64B1.359 (5)
C63A—H63A0.9300C63B—H63B0.9300
C64A—C65A1.347 (6)C64B—C65B1.354 (6)
C64A—F64A1.363 (5)C64B—F64B1.359 (4)
C65A—C66A1.388 (5)C65B—C66B1.383 (5)
C65A—H65A0.9300C65B—H65B0.9300
C66A—H66A0.9300C66B—H66B0.9300
C11A—C1A—C6A113.9 (3)C11B—C1B—C2B106.8 (3)
C11A—C1A—C2A106.9 (3)C11B—C1B—C6B113.5 (3)
C6A—C1A—C2A110.8 (3)C2B—C1B—C6B110.4 (3)
C11A—C1A—H1A108.4C11B—C1B—H1B108.6
C6A—C1A—H1A108.4C2B—C1B—H1B108.6
C2A—C1A—H1A108.4C6B—C1B—H1B108.6
O12A—C11A—O13A124.1 (4)O12B—C11B—O13B124.4 (3)
O12A—C11A—C1A124.4 (4)O12B—C11B—C1B123.5 (4)
O13A—C11A—C1A111.5 (3)O13B—C11B—C1B112.1 (3)
C11A—O13A—C14A117.3 (4)C11B—O13B—C14B116.7 (3)
C15A—C14A—O13A111.6 (5)O13B—C14B—C15B112.2 (4)
C15A—C14A—H14B109.3O13B—C14B—H14D109.2
O13A—C14A—H14B109.3C15B—C14B—H14D109.2
C15A—C14A—H14A109.3O13B—C14B—H14C109.2
O13A—C14A—H14A109.3C15B—C14B—H14C109.2
H14B—C14A—H14A108.0H14D—C14B—H14C107.9
C14A—C15A—H15C109.5C14B—C15B—H15F109.5
C14A—C15A—H15B109.5C14B—C15B—H15E109.5
H15C—C15A—H15B109.5H15F—C15B—H15E109.5
C14A—C15A—H15A109.5C14B—C15B—H15D109.5
H15C—C15A—H15A109.5H15F—C15B—H15D109.5
H15B—C15A—H15A109.5H15E—C15B—H15D109.5
O2A—C2A—C3A121.2 (4)O2B—C2B—C3B122.0 (4)
O2A—C2A—C1A121.3 (4)O2B—C2B—C1B120.6 (4)
C3A—C2A—C1A117.5 (3)C3B—C2B—C1B117.4 (3)
C4A—C3A—C2A123.4 (4)C4B—C3B—C2B123.5 (4)
C4A—C3A—H3A118.3C4B—C3B—H3B118.3
C2A—C3A—H3A118.3C2B—C3B—H3B118.3
C3A—C4A—C41A119.9 (4)C3B—C4B—C41B118.7 (4)
C3A—C4A—C5A119.9 (4)C3B—C4B—C5B120.9 (4)
C41A—C4A—C5A120.2 (3)C41B—C4B—C5B120.3 (3)
C42A—C41A—C46A117.0 (4)C42B—C41B—C46B117.5 (4)
C42A—C41A—C4A123.7 (4)C42B—C41B—C4B123.3 (3)
C46A—C41A—C4A119.2 (4)C46B—C41B—C4B119.1 (4)
C43A—C42A—C41A122.3 (4)C43B—C42B—C41B121.8 (4)
C43A—C42A—Cl1117.8 (4)C43B—C42B—Cl3117.6 (3)
C41A—C42A—Cl1119.8 (3)C41B—C42B—Cl3120.6 (3)
C42A—C43A—C44A118.5 (4)C44B—C43B—C42B118.8 (4)
C42A—C43A—H43A120.8C44B—C43B—H43B120.6
C44A—C43A—H43A120.8C42B—C43B—H43B120.6
C45A—C44A—C43A121.4 (4)C43B—C44B—C45B122.1 (4)
C45A—C44A—Cl2119.8 (4)C43B—C44B—Cl4118.7 (4)
C43A—C44A—Cl2118.7 (4)C45B—C44B—Cl4119.2 (4)
C44A—C45A—C46A118.4 (4)C44B—C45B—C46B118.5 (4)
C44A—C45A—H45A120.8C44B—C45B—H45B120.8
C46A—C45A—H45A120.8C46B—C45B—H45B120.8
C45A—C46A—C41A122.4 (4)C41B—C46B—C45B121.3 (4)
C45A—C46A—H46A118.8C41B—C46B—H46B119.3
C41A—C46A—H46A118.8C45B—C46B—H46B119.3
C4A—C5A—C6A112.4 (3)C4B—C5B—C6B112.0 (3)
C4A—C5A—H5A2109.1C4B—C5B—H5B2109.2
C6A—C5A—H5A2109.1C6B—C5B—H5B2109.2
C4A—C5A—H5A1109.1C4B—C5B—H5B1109.2
C6A—C5A—H5A1109.1C6B—C5B—H5B1109.2
H5A2—C5A—H5A1107.8H5B2—C5B—H5B1107.9
C1A—C6A—C61A114.9 (3)C61B—C6B—C5B111.2 (3)
C1A—C6A—C5A108.6 (3)C61B—C6B—C1B114.4 (3)
C61A—C6A—C5A111.2 (3)C5B—C6B—C1B108.3 (3)
C1A—C6A—H6A107.3C61B—C6B—H6B107.6
C61A—C6A—H6A107.3C5B—C6B—H6B107.6
C5A—C6A—H6A107.3C1B—C6B—H6B107.6
C62A—C61A—C66A117.4 (4)C62B—C61B—C66B117.1 (3)
C62A—C61A—C6A122.3 (3)C62B—C61B—C6B122.3 (3)
C66A—C61A—C6A120.2 (3)C66B—C61B—C6B120.5 (3)
C61A—C62A—C63A121.4 (4)C61B—C62B—C63B121.4 (3)
C61A—C62A—H62A119.3C61B—C62B—H62B119.3
C63A—C62A—H62A119.3C63B—C62B—H62B119.3
C64A—C63A—C62A119.1 (4)C64B—C63B—C62B118.7 (4)
C64A—C63A—H63A120.5C64B—C63B—H63B120.6
C62A—C63A—H63A120.5C62B—C63B—H63B120.6
C65A—C64A—C63A122.0 (4)C65B—C64B—F64B119.5 (4)
C65A—C64A—F64A118.8 (4)C65B—C64B—C63B121.9 (4)
C63A—C64A—F64A119.3 (4)F64B—C64B—C63B118.6 (4)
C64A—C65A—C66A118.3 (4)C64B—C65B—C66B118.7 (4)
C64A—C65A—H65A120.9C64B—C65B—H65B120.6
C66A—C65A—H65A120.9C66B—C65B—H65B120.6
C61A—C66A—C65A121.8 (4)C61B—C66B—C65B122.2 (4)
C61A—C66A—H66A119.1C61B—C66B—H66B118.9
C65A—C66A—H66A119.1C65B—C66B—H66B118.9
C6A—C1A—C11A—O12A31.8 (5)C2B—C1B—C11B—O12B88.3 (4)
C2A—C1A—C11A—O12A90.9 (4)C6B—C1B—C11B—O12B33.7 (5)
C6A—C1A—C11A—O13A149.9 (3)C2B—C1B—C11B—O13B88.6 (3)
C2A—C1A—C11A—O13A87.4 (4)C6B—C1B—C11B—O13B149.4 (3)
O12A—C11A—O13A—C14A8.7 (6)O12B—C11B—O13B—C14B7.7 (6)
C1A—C11A—O13A—C14A169.6 (3)C1B—C11B—O13B—C14B169.1 (3)
C11A—O13A—C14A—C15A87.8 (6)C11B—O13B—C14B—C15B85.0 (5)
C11A—C1A—C2A—O2A21.0 (5)C11B—C1B—C2B—O2B22.8 (5)
C6A—C1A—C2A—O2A145.6 (4)C6B—C1B—C2B—O2B146.7 (4)
C11A—C1A—C2A—C3A157.5 (3)C11B—C1B—C2B—C3B156.0 (3)
C6A—C1A—C2A—C3A32.9 (4)C6B—C1B—C2B—C3B32.1 (4)
O2A—C2A—C3A—C4A173.7 (4)O2B—C2B—C3B—C4B175.2 (4)
C1A—C2A—C3A—C4A4.8 (6)C1B—C2B—C3B—C4B3.5 (6)
C2A—C3A—C4A—C41A179.8 (4)C2B—C3B—C4B—C41B179.8 (3)
C2A—C3A—C4A—C5A2.0 (6)C2B—C3B—C4B—C5B0.8 (6)
C3A—C4A—C41A—C42A119.3 (4)C3B—C4B—C41B—C42B117.8 (4)
C5A—C4A—C41A—C42A62.6 (5)C5B—C4B—C41B—C42B63.2 (5)
C3A—C4A—C41A—C46A56.6 (5)C3B—C4B—C41B—C46B58.8 (5)
C5A—C4A—C41A—C46A121.6 (4)C5B—C4B—C41B—C46B120.2 (4)
C46A—C41A—C42A—C43A0.5 (6)C46B—C41B—C42B—C43B0.0 (6)
C4A—C41A—C42A—C43A175.5 (4)C4B—C41B—C42B—C43B176.6 (3)
C46A—C41A—C42A—Cl1176.6 (3)C46B—C41B—C42B—Cl3178.6 (3)
C4A—C41A—C42A—Cl10.6 (5)C4B—C41B—C42B—Cl31.9 (5)
C41A—C42A—C43A—C44A2.1 (6)C41B—C42B—C43B—C44B0.5 (6)
Cl1—C42A—C43A—C44A178.3 (3)Cl3—C42B—C43B—C44B179.1 (3)
C42A—C43A—C44A—C45A1.5 (6)C42B—C43B—C44B—C45B0.4 (6)
C42A—C43A—C44A—Cl2176.8 (3)C42B—C43B—C44B—Cl4179.8 (3)
C43A—C44A—C45A—C46A0.7 (7)C43B—C44B—C45B—C46B0.3 (7)
Cl2—C44A—C45A—C46A179.0 (3)Cl4—C44B—C45B—C46B179.1 (3)
C44A—C45A—C46A—C41A2.4 (6)C42B—C41B—C46B—C45B0.7 (6)
C42A—C41A—C46A—C45A1.9 (6)C4B—C41B—C46B—C45B177.4 (4)
C4A—C41A—C46A—C45A178.0 (4)C44B—C45B—C46B—C41B0.8 (6)
C3A—C4A—C5A—C6A27.7 (5)C3B—C4B—C5B—C6B27.6 (5)
C41A—C4A—C5A—C6A154.1 (3)C41B—C4B—C5B—C6B153.4 (3)
C11A—C1A—C6A—C61A57.8 (4)C4B—C5B—C6B—C61B179.0 (3)
C2A—C1A—C6A—C61A178.3 (3)C4B—C5B—C6B—C1B54.4 (4)
C11A—C1A—C6A—C5A177.1 (3)C11B—C1B—C6B—C61B59.0 (4)
C2A—C1A—C6A—C5A56.5 (4)C2B—C1B—C6B—C61B178.9 (3)
C4A—C5A—C6A—C1A54.5 (4)C11B—C1B—C6B—C5B176.4 (3)
C4A—C5A—C6A—C61A178.2 (3)C2B—C1B—C6B—C5B56.5 (3)
C1A—C6A—C61A—C62A55.0 (5)C5B—C6B—C61B—C62B67.1 (5)
C5A—C6A—C61A—C62A68.8 (5)C1B—C6B—C61B—C62B56.0 (5)
C1A—C6A—C61A—C66A127.1 (4)C5B—C6B—C61B—C66B109.6 (4)
C5A—C6A—C61A—C66A109.1 (4)C1B—C6B—C61B—C66B127.4 (3)
C66A—C61A—C62A—C63A0.5 (7)C66B—C61B—C62B—C63B2.1 (7)
C6A—C61A—C62A—C63A178.4 (4)C6B—C61B—C62B—C63B174.7 (4)
C61A—C62A—C63A—C64A1.1 (7)C61B—C62B—C63B—C64B2.0 (8)
C62A—C63A—C64A—C65A1.4 (7)C62B—C63B—C64B—C65B1.0 (8)
C62A—C63A—C64A—F64A178.6 (4)C62B—C63B—C64B—F64B179.4 (5)
C63A—C64A—C65A—C66A1.1 (7)F64B—C64B—C65B—C66B178.7 (4)
F64A—C64A—C65A—C66A178.9 (4)C63B—C64B—C65B—C66B0.3 (7)
C62A—C61A—C66A—C65A0.1 (6)C62B—C61B—C66B—C65B1.4 (6)
C6A—C61A—C66A—C65A178.1 (4)C6B—C61B—C66B—C65B175.5 (4)
C64A—C65A—C66A—C61A0.4 (7)C64B—C65B—C66B—C61B0.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···O12Ai0.982.403.306 (4)154
C62A—H62A···O12Ai0.932.553.442 (5)162
C1B—H1B···O12Bii0.982.393.292 (4)153
C62B—H62B···O12Bii0.932.473.358 (4)161
C14A—H14A···Cl1iii0.972.823.725 (6)155
C3A—H3A···O2B0.932.543.360 (5)148
C3B—H3B···O2A0.932.513.352 (5)151
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H17Cl2FO3
Mr407.25
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)32.321 (5), 5.437 (2), 22.309 (3)
V3)3920.3 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.35 × 0.3 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.819, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7901, 4968, 3654
Rint0.022
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.01
No. of reflections4968
No. of parameters487
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.22
Absolute structureFlack (1983), 623 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···O12Ai0.982.403.306 (4)154
C62A—H62A···O12Ai0.932.553.442 (5)162
C1B—H1B···O12Bii0.982.393.292 (4)153
C62B—H62B···O12Bii0.932.473.358 (4)161
C14A—H14A···Cl1iii0.972.823.725 (6)155
C3A—H3A···O2B0.932.543.360 (5)148
C3B—H3B···O2A0.932.513.352 (5)151
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y, z+1/2.
 

Acknowledgements

BN thanks the UGC and DST for financial assistance under the SAP and FIST programmes. HSY thanks the UOM for sabbatical leave.

References

First citationAbrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157–165.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnuradha, N., Thiruvalluvar, A., Pandiarajan, K. & Yuvaraj, C. (2009). Acta Cryst. E65, o191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBadshah, A., Hasan, A. & Barbarín, C. R. (2009). Acta Cryst. E65, o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, pp. 16–22. New York: Plenum.  Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334–o335.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Girish, K. S. & Kalluraya, B. (2009). Acta Cryst. E65, o1235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o445-o446
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds