organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{5,5-Di­methyl-3-[2-(pyridin-2-yl)ethen­yl]cyclo­hex-2-enyl­­idene}propane­di­nitrile

aThe College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
*Correspondence e-mail: chenliuqingluck@163.com

(Received 10 January 2011; accepted 11 January 2011; online 22 January 2011)

The mol­ecule of the title compound, C18H17N3, with the exception of the –C(CH3)2 group, is nearly planar [maximum deviation: 0.208 (4), r.m.s. deviation 0.099 (6) Å] and the disubstituted C atom is displaced by 0.679 (2) Å from the mean plane through the remaining non-H atoms. In the crystal, the packing is stabilized by weak C—H⋯π inter­actions.

Related literature

For the synthesis, see: Lemke (1970[Lemke, R. (1970). Chem. Ber. 103, 1894-1898.]). For a related structure, see: Kolev et al. (2001[Kolev, T., Glavcheva, Z., Yancheva, D., Schürmann, M., Kleb, D.-C., Preut, H. & Bleckmann, P. (2001). Acta Cryst. E57, o561-o562.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3

  • Mr = 275.35

  • Triclinic, [P \overline 1]

  • a = 8.4910 (17) Å

  • b = 9.6516 (19) Å

  • c = 9.6532 (19) Å

  • α = 89.06 (3)°

  • β = 70.47 (3)°

  • γ = 87.02 (3)°

  • V = 744.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.982, Tmax = 0.993

  • 5037 measured reflections

  • 2617 independent reflections

  • 2076 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.07

  • 2617 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9ACg1i 0.97 2.77 3.6933 (16) 160
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Since discovery of their solvatochromic behaviour (Lemke, 1970), derivatives of 2-(5,5-dimethyl-3-styrylcyclohexenylidene)malononitrile have attracted considerable interest for numerous applications, such as candidates for non-linear optical (NLO), organic light emitting diodes(OLED). As part of our investigations on organic electrooptical materials, 2-(3-(2-vinyl pyridine)-5,5-dimethylcyclohex-2-enylidene)malononitrile (VPDEM)(I) was synthesized according to the general procedure described by Lemke (1970). An X-ray crystal structure determination of (I) was undertaken in order to elucidate the conformation, and the results are presented here.

With the exception of the C(CH3)2 group, the molecule of the title compound is nearly planar; the disubstituted C atom being displaced by -0.679 (2) Å from the mean plane of the remaining non-H atoms (Fig. 1). The disubstuted cyclohexene ring has an envelope conformation with puckering parameters: Q= 0.4657 (13) Å, θ= 126.97 (16)° and ϕ= 323.0 (2)° (Cremer & Pople, 1975).The the 2-vinylpyridine is planar with the largest deviation from the plane being -0.0876 (8)Å at C8. The bond distances and angles within the 5,5-dimethylcyclohex-2-enylidene) malononitrile are in agreement with the related 2-(3-(2-(4-Hydroxyphenyl)vinyl)-5,5-dimethylcyclohex-2-en-1-ylidene)-malononitrile (Kolev et al., 2001).

In the crystal, the packing is stabilized by weak C-H···π between the C9 methylene group of the cyclohexene ring and the symmetry related pyridine ring and Van der Waals forces.

Related literature top

For the synthesis, see: Lemke (1970). For a related structure, see: Kolev et al. (2001). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The compound was synthesized in a manner similar to the general procedure described by Lemke (1970). And the preparation of compound 2-(3,5,5,-trimethylcyclohex-2-enylidene)malononitrile was previously reported by Kolev (Kolev, et al. 2001). Malononitrile (1.87 g, 28.3 mmol) and isophorone (3.90 g, 28.3 mmol) were added to a solution of acetic acid (28µl), acetic anhydride (18µl), piperidine (380µl) and DMF (5.0 ml). The mixture was stirred at room temperature for 1 h and then at 80°C for 1 h. Then pyridine-2-carboxaldehyde (3.3789 g, 0.0122 mol) was added, and the reaction mixture was stirred at 80°C for 1 h. The mixture was poured into 200 ml of hot water containing 6 ml concentrated HCl and the precipitate was washed by water for three times. The solid was collected by filtration under reduced pressure and the crystals were grown from an CH3CN solution by slow evaporation at room temperature over a period of several days with a yield of 63%; 1H NMR(300 MHz, CDCl3): 1.03(s, 6H), 2.57(s, 2H), 2.64(s, 2H), 6.95(s,1H), 7.28(d, 2H), 7.64(d, 2H), 7.81~7.87(m, 1H), 8.61(d, 1H); IR(KBr, cm-1) ν:3404, 2962, 2224, 1609, 1574, 1522, 1462, 1322, 1262, 1210, 1158, 1097, 960, 890, 760; Anal. Calcd. For C18 H17 N3: C 78.45; H 6.17; N 15.25; Found: C78.41; H 6.17; N 15.22.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C methylene and aromatic) or Uiso(H) = 1.5Ueq(C methyl).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom labeling for non-H atoms. Displacement ellipsoids are darwn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
2-{5,5-Dimethyl-3-[2-(pyridin-2-yl)ethenyl]cyclohex-2-enylidene}propanedinitrile top
Crystal data top
C18H17N3Z = 2
Mr = 275.35F(000) = 292
Triclinic, P1Dx = 1.228 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4910 (17) ÅCell parameters from 3453 reflections
b = 9.6516 (19) Åθ = 2.5–27.2°
c = 9.6532 (19) ŵ = 0.07 mm1
α = 89.06 (3)°T = 293 K
β = 70.47 (3)°Block, colorless
γ = 87.02 (3)°0.24 × 0.20 × 0.10 mm
V = 744.6 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2617 independent reflections
Radiation source: fine-focus sealed tube2076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1010
Tmin = 0.982, Tmax = 0.993k = 1111
5037 measured reflectionsl = 811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0694P)2]
where P = (Fo2 + 2Fc2)/3
2617 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H17N3γ = 87.02 (3)°
Mr = 275.35V = 744.6 (3) Å3
Triclinic, P1Z = 2
a = 8.4910 (17) ÅMo Kα radiation
b = 9.6516 (19) ŵ = 0.07 mm1
c = 9.6532 (19) ÅT = 293 K
α = 89.06 (3)°0.24 × 0.20 × 0.10 mm
β = 70.47 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2617 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2076 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.993Rint = 0.020
5037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
2617 reflectionsΔρmin = 0.20 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.27970 (12)0.18230 (11)0.77938 (12)0.0255 (3)
N21.19520 (13)0.35307 (12)0.25775 (12)0.0284 (3)
N30.71256 (14)0.57738 (13)0.39307 (14)0.0374 (3)
C11.39339 (16)0.27762 (14)0.79280 (15)0.0301 (4)
H11.50360.27070.73160.036*
C21.35746 (17)0.38617 (14)0.89219 (15)0.0291 (3)
H21.44130.45020.89670.035*
C31.19582 (17)0.39740 (14)0.98393 (15)0.0289 (3)
H31.16780.46901.05210.035*
C41.07473 (16)0.29945 (14)0.97293 (14)0.0245 (3)
H40.96440.30421.03450.029*
C51.12001 (14)0.19426 (13)0.86906 (13)0.0196 (3)
C60.99405 (14)0.09422 (13)0.84861 (13)0.0197 (3)
H60.88440.09970.91170.024*
C71.02591 (14)0.00468 (13)0.74519 (13)0.0195 (3)
H71.13720.01310.68730.023*
C80.90367 (14)0.09977 (13)0.71496 (13)0.0182 (3)
C90.72124 (14)0.09492 (13)0.80722 (13)0.0196 (3)
H9A0.70550.13470.90280.024*
H9B0.69220.00140.82230.024*
C100.60033 (14)0.17193 (13)0.74062 (13)0.0194 (3)
C110.67159 (14)0.31267 (13)0.68002 (13)0.0199 (3)
H11A0.59890.35980.63330.024*
H11B0.67370.37020.76080.024*
C120.84488 (14)0.29522 (13)0.57089 (13)0.0184 (3)
C130.95597 (14)0.19220 (13)0.60334 (13)0.0199 (3)
H131.06840.18870.54550.024*
C140.57912 (15)0.08771 (14)0.61607 (14)0.0267 (3)
H14A0.52790.00260.65460.040*
H14B0.68670.06730.54350.040*
H14C0.50940.14030.57170.040*
C150.42935 (15)0.19588 (14)0.85935 (14)0.0260 (3)
H15A0.35470.24550.81810.039*
H15B0.44120.24910.93820.039*
H15C0.38480.10810.89640.039*
C160.89702 (14)0.37719 (13)0.44842 (13)0.0191 (3)
C171.06329 (15)0.36272 (12)0.34315 (13)0.0207 (3)
C180.79250 (15)0.48667 (14)0.41784 (14)0.0234 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0191 (5)0.0285 (7)0.0261 (6)0.0033 (5)0.0046 (5)0.0038 (5)
N20.0253 (6)0.0333 (7)0.0253 (6)0.0041 (5)0.0067 (5)0.0063 (5)
N30.0384 (7)0.0344 (8)0.0440 (8)0.0003 (6)0.0207 (6)0.0118 (6)
C10.0261 (7)0.0339 (8)0.0295 (8)0.0080 (6)0.0096 (6)0.0005 (7)
C20.0344 (8)0.0250 (8)0.0327 (8)0.0088 (6)0.0190 (7)0.0039 (6)
C30.0424 (8)0.0199 (7)0.0304 (8)0.0028 (6)0.0201 (7)0.0067 (6)
C40.0263 (7)0.0245 (8)0.0240 (7)0.0045 (6)0.0098 (6)0.0043 (6)
C50.0217 (7)0.0190 (7)0.0191 (6)0.0012 (5)0.0082 (5)0.0004 (5)
C60.0172 (6)0.0211 (7)0.0189 (6)0.0006 (5)0.0035 (5)0.0002 (5)
C70.0169 (6)0.0209 (7)0.0187 (6)0.0011 (5)0.0036 (5)0.0000 (5)
C80.0188 (6)0.0185 (7)0.0161 (6)0.0012 (5)0.0042 (5)0.0021 (5)
C90.0189 (6)0.0198 (7)0.0173 (6)0.0001 (5)0.0026 (5)0.0023 (5)
C100.0172 (6)0.0215 (7)0.0179 (6)0.0017 (5)0.0039 (5)0.0026 (5)
C110.0184 (6)0.0207 (7)0.0208 (6)0.0014 (5)0.0072 (5)0.0015 (5)
C120.0195 (6)0.0177 (7)0.0199 (6)0.0035 (5)0.0087 (5)0.0003 (5)
C130.0159 (6)0.0216 (7)0.0204 (6)0.0000 (5)0.0040 (5)0.0010 (5)
C140.0266 (7)0.0306 (8)0.0239 (7)0.0076 (6)0.0089 (6)0.0013 (6)
C150.0190 (7)0.0321 (8)0.0245 (7)0.0016 (6)0.0049 (6)0.0055 (6)
C160.0185 (6)0.0196 (7)0.0204 (7)0.0033 (5)0.0077 (5)0.0018 (5)
C170.0258 (7)0.0187 (7)0.0213 (7)0.0050 (5)0.0124 (6)0.0056 (5)
C180.0243 (7)0.0256 (8)0.0219 (7)0.0058 (6)0.0095 (6)0.0053 (6)
Geometric parameters (Å, º) top
N1—C11.3352 (17)C9—H9A0.9700
N1—C51.3526 (16)C9—H9B0.9700
N2—C171.1476 (16)C10—C141.5267 (17)
N3—C181.1507 (17)C10—C151.5284 (17)
C1—C21.384 (2)C10—C111.5415 (18)
C1—H10.9300C11—C121.4990 (17)
C2—C31.3709 (19)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.3895 (18)C12—C161.3694 (18)
C3—H30.9300C12—C131.4374 (17)
C4—C51.3904 (19)C13—H130.9300
C4—H40.9300C14—H14A0.9600
C5—C61.4638 (17)C14—H14B0.9600
C6—C71.3402 (19)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—C81.4490 (17)C15—H15B0.9600
C7—H70.9300C15—H15C0.9600
C8—C131.3578 (18)C16—C181.4349 (18)
C8—C91.5095 (16)C16—C171.4388 (17)
C9—C101.5382 (17)
C1—N1—C5117.15 (12)C15—C10—C9109.57 (10)
N1—C1—C2124.07 (13)C14—C10—C11109.23 (10)
N1—C1—H1118.0C15—C10—C11109.62 (10)
C2—C1—H1118.0C9—C10—C11108.81 (10)
C3—C2—C1118.69 (12)C12—C11—C10111.68 (10)
C3—C2—H2120.7C12—C11—H11A109.3
C1—C2—H2120.7C10—C11—H11A109.3
C2—C3—C4118.58 (13)C12—C11—H11B109.3
C2—C3—H3120.7C10—C11—H11B109.3
C4—C3—H3120.7H11A—C11—H11B107.9
C3—C4—C5119.43 (12)C16—C12—C13121.43 (11)
C3—C4—H4120.3C16—C12—C11121.50 (11)
C5—C4—H4120.3C13—C12—C11117.03 (11)
N1—C5—C4122.06 (12)C8—C13—C12122.75 (11)
N1—C5—C6117.04 (12)C8—C13—H13118.6
C4—C5—C6120.86 (11)C12—C13—H13118.6
C7—C6—C5124.47 (11)C10—C14—H14A109.5
C7—C6—H6117.8C10—C14—H14B109.5
C5—C6—H6117.8H14A—C14—H14B109.5
C6—C7—C8126.26 (11)C10—C14—H14C109.5
C6—C7—H7116.9H14A—C14—H14C109.5
C8—C7—H7116.9H14B—C14—H14C109.5
C13—C8—C7119.05 (11)C10—C15—H15A109.5
C13—C8—C9121.08 (11)C10—C15—H15B109.5
C7—C8—C9119.87 (11)H15A—C15—H15B109.5
C8—C9—C10114.54 (10)C10—C15—H15C109.5
C8—C9—H9A108.6H15A—C15—H15C109.5
C10—C9—H9A108.6H15B—C15—H15C109.5
C8—C9—H9B108.6C12—C16—C18122.74 (11)
C10—C9—H9B108.6C12—C16—C17122.27 (11)
H9A—C9—H9B107.6C18—C16—C17114.97 (11)
C14—C10—C15108.76 (10)N2—C17—C16178.78 (14)
C14—C10—C9110.84 (10)N3—C18—C16177.81 (14)
C13—C8—C9—C1015.38 (17)C10—C11—C12—C1340.03 (15)
C7—C8—C9—C10164.63 (10)C7—C8—C13—C12176.48 (10)
C8—C9—C10—C1476.11 (13)C9—C8—C13—C123.51 (19)
C8—C9—C10—C15163.85 (10)C11—C12—C13—C89.42 (18)
C8—C9—C10—C1144.02 (14)C11—C12—C16—C181.62 (19)
C14—C10—C11—C1265.09 (13)C13—C12—C16—C171.87 (18)
C9—C10—C11—C1256.03 (13)C11—C12—C16—C17179.46 (11)
C10—C11—C12—C16142.28 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg1i0.972.773.6933 (16)160
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC18H17N3
Mr275.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4910 (17), 9.6516 (19), 9.6532 (19)
α, β, γ (°)89.06 (3), 70.47 (3), 87.02 (3)
V3)744.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.24 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.982, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5037, 2617, 2076
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.07
No. of reflections2617
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg1i0.972.773.6933 (16)160
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

The author acknowledges financial support from the Natural Science Foundation of Shanxi Province (2010021023–2, 2008011008)

References

First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKolev, T., Glavcheva, Z., Yancheva, D., Schürmann, M., Kleb, D.-C., Preut, H. & Bleckmann, P. (2001). Acta Cryst. E57, o561–o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLemke, R. (1970). Chem. Ber. 103, 1894–1898.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds