organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o362-o363

1,3-Bis[2-(2-oxo-1,3-oxazolidin-3-yl)eth­yl]-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA, cDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and eINANOTECH (Institute of Nanomaterials and Nanotechnology), MASCiR, Avenue de l'Armée Royale, Rabat, Morocco
*Correspondence e-mail: emessassi@yahoo.fr

(Received 3 December 2010; accepted 12 December 2010; online 12 January 2011)

The mol­ecular structure of the title compound, C17H20N4O5, contains a central fused-ring system, comprised of six- and five-membered rings. This unit is linked by C2 chains to two 2-oxo-1,3-oxazolidine five-membered rings. The central fused-ring system is essentially planar, with a maximum deviation of 0.008 (1) Å from the mean plane. Both oxazolidine five-membered rings are also nearly planar, with maximum deviations of 0.090 (1) and 0.141 (1) Å.

Related literature

For the pharmacological and biochemical properties of oxazolidin-2-ones, see: Gribkoff et al. (1994[Gribkoff, V. K., Champigny, G., Barbry, P., Dworetzky, S. I., Meanwell, N. A. & Lazdunski, M. (1994). J. Biol. Chem. 269, 10983-10986.]); Olesen et al. (1994[Olesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53-59.]); Soderlind et al. (1999[Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug Des. 14, 19-36.]). For their anti­bacterial activity, see: Diekema & Jones (2000[Diekema, D. J. & Jones, R. N. (2000). Drugs, 59, 7-16.]); Mukhtar & Wright (2005[Mukhtar, T. A. & Wright, G. D. (2005). Chem. Rev. 105, 529-542.]). For related structures, see: Ouzidan et al. (2010[Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.]); Matsunaga et al. (2005[Matsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron, 61, 8073-8094.]); Evans et al. (1993[Evans, D. A., Ny, H. P. & Rieger, D. L. (1993). J. Am. Chem. Soc. 115, 11446-11459.]); Caleb et al. (2009[Caleb, A. A., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2009). Acta Cryst. E65, o2024-o2025.]); Ahoya et al. (2010[Ahoya, C. A., Bouhfid, R., Daouda, B., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o1050.]); Bel-Ghacham et al. (2010[Bel-Ghacham, H., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o456.]); Alsubari et al. (2009[Alsubari, A., Bouhfid, R. & Essassi, E. M. (2009). Arkivoc, xii, 337-346.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N4O5

  • Mr = 360.37

  • Monoclinic, P 21 /c

  • a = 10.5331 (10) Å

  • b = 10.9647 (10) Å

  • c = 14.5541 (14) Å

  • β = 103.258 (5)°

  • V = 1636.1 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.92 mm−1

  • T = 90 K

  • 0.30 × 0.28 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 0.852

  • 15549 measured reflections

  • 2914 independent reflections

  • 2842 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.05

  • 2914 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzimidazol-2-one derivatives are useful heterocyclic building blocks and are prominent structural elements of compounds presenting a wide variety of pharmacological and biochemical properties(Gribkoff et al. (1994); Olesen et al. (1994); Soderlind et al. (1999).

Also oxazolidin-2-ones are a very important class of heterocyclic compounds and their derivatives have attracted attention in various areas of drug development for antibacterial activity (Diekema & Jones, 2000); Mukhtar & Wright (2005). Some oxazolidin-2-ones have been used as chiral auxiliaries in a wide range of asymmetric reactions (Evans et al., 1993); Matsunaga et al. (2005).

In the previous works, we have studied the crystal structure of several heterocyclic systems containng oxazolidin-2-one (Ouzidan et al. (2010); Caleb et al. (2009); Ahoya et al. (2010); Bel-Ghacham et al. (2010); Alsubari et al. (2009)). In this work, we have synthesized benzimidazol-2-one possessing Oxazolidin-2-one ring by action of bis(2-chloroethyl)amine hydrochloride with 1H-benzo[d]imidazol-2(3H)-one using same conditions, the reaction provided the title compound (Scheme 1).

The 1,3-bis(2-(2-oxo-oxazolidin-3-yl)ethyl)-1H-benzimidazol -\2(3H)-one molecule structure is built up from two fused six-and five-membered rings linked to two chains of five-membered rings by ethylene groups as schown in Fg.1. The fused-ring system is essentially planar, with a maximum deviation of 0.008 (1) Å and -0.008 (1) Å for C1 and C7 or N2 respectyvely. The dihedral angle between them does not exceed 0.23 (6)°. The both five-membered rings (2-oxo-oxazolidine) are almost planar with maximum deviation of -0.090 (1) Å and -0.141 (1) Å for C11 and C16 respectyvely. Their puckering parameters are Q2 = 0.1498 (2) Å and ϕ2 = 131.6 (5)° for (O2C10N3C12C11) and Q2 = 0.2343 (2) Å and ϕ2 = -49.4 (3)° for (O4C15N4C17C16). The dihedral angles between each of them and the fused rings are 43.02 (5)° (O2C10N3C12C11) and 49.12 (6)° (O4C15N4C17C16). The torsion angles C1 N1 C8 C9 and C1 N2 C13 C14 are -87.85 (2)° and 101.00 (2)° respectively. These values show the strong asymmetry of the molecule.

Related literature top

For the pharmacological and biochemical properties of oxazolidin-2-ones, see: Gribkoff et al. (1994); Olesen et al. (1994); Soderlind et al. (1999). For their antibacterial activity, see: Diekema & Jones (2000); Mukhtar & Wright (2005). For related structures, see: Ouzidan et al. (2010); Matsunaga et al. (2005); Evans et al. (1993); Caleb et al. (2009); Ahoya et al. (2010); Bel-Ghacham et al. (2010); Alsubari et al. (2009).

Experimental top

To 1H-benzo[d]imidazol-2(3H)-one (0,2 g, 1,5 mmol), potassium carbonate (0,82 g, 6 mmol), and tetra-n-butylammonium bromide (0.1 g, 0,3 mmol) in DMF (15 ml) was added bis(2-chloroethyl)amine hydrochloride (0,64 g, 3,58 mmol). The mixture was heated for 48 h. After the completion of the reaction (as monitored by TLC), the inorganic material salt was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel by using (ethanol/ethyl acetate: 1/4) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å for all H atoms with Uiso(H) = 1.2 Ueq(aromatic, methine).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
1,3-Bis[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]-1H-benzimidazol- 2(3H)-one top
Crystal data top
C17H20N4O5F(000) = 760
Mr = 360.37Dx = 1.463 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9916 reflections
a = 10.5331 (10) Åθ = 4.0–68.1°
b = 10.9647 (10) ŵ = 0.92 mm1
c = 14.5541 (14) ÅT = 90 K
β = 103.258 (5)°Fragment, colourless
V = 1636.1 (3) Å30.30 × 0.28 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2914 independent reflections
Radiation source: fine-focus sealed tube2842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 68.2°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 129
Tmin = 0.770, Tmax = 0.852k = 1213
15549 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.8105P]
where P = (Fo2 + 2Fc2)/3
2914 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H20N4O5V = 1636.1 (3) Å3
Mr = 360.37Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.5331 (10) ŵ = 0.92 mm1
b = 10.9647 (10) ÅT = 90 K
c = 14.5541 (14) Å0.30 × 0.28 × 0.18 mm
β = 103.258 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2914 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2842 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.852Rint = 0.024
15549 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2914 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51156 (8)0.90454 (8)0.65034 (6)0.01864 (19)
O20.81349 (8)0.63845 (8)0.39970 (6)0.0221 (2)
O30.61653 (8)0.68768 (8)0.42496 (6)0.0209 (2)
O40.22108 (8)0.77982 (8)0.47938 (6)0.01792 (19)
O50.18927 (8)0.77876 (8)0.62760 (6)0.0217 (2)
N10.71846 (9)0.83091 (9)0.64775 (7)0.0145 (2)
N20.58627 (9)0.71116 (9)0.70549 (7)0.0143 (2)
N30.79091 (9)0.81926 (9)0.46197 (7)0.0149 (2)
N40.33456 (9)0.64839 (9)0.58183 (7)0.0158 (2)
C10.59511 (11)0.82469 (11)0.66601 (8)0.0143 (2)
C20.78498 (11)0.72200 (10)0.67384 (8)0.0142 (2)
C30.70112 (11)0.64616 (11)0.71027 (7)0.0137 (2)
C40.73829 (11)0.52998 (11)0.74338 (8)0.0157 (2)
H40.68280.48000.76790.019*
C50.86290 (11)0.49150 (11)0.73819 (8)0.0174 (3)
H50.89070.41370.75910.021*
C60.94645 (11)0.56687 (11)0.70237 (8)0.0176 (3)
H61.02880.53840.70000.021*
C70.90915 (11)0.68422 (11)0.66999 (8)0.0162 (2)
H70.96530.73500.64680.019*
C80.76194 (11)0.93510 (10)0.60123 (8)0.0159 (2)
H8A0.85580.94320.62270.019*
H8B0.72231.00860.61900.019*
C90.72673 (11)0.92265 (11)0.49385 (8)0.0162 (2)
H9A0.63300.91320.47240.019*
H9B0.75160.99660.46590.019*
C100.72954 (11)0.71504 (11)0.42958 (8)0.0160 (2)
C110.94356 (12)0.69048 (12)0.42409 (9)0.0210 (3)
H11A0.98460.68610.37090.025*
H11B0.99770.64750.47710.025*
C120.92429 (11)0.82316 (11)0.45003 (8)0.0170 (3)
H12A0.98520.84660.50800.020*
H12B0.93290.87850.39980.020*
C130.47432 (11)0.67173 (11)0.74094 (8)0.0156 (2)
H13A0.42620.74300.75330.019*
H13B0.50500.62900.80020.019*
C140.38313 (11)0.58849 (11)0.67225 (8)0.0169 (2)
H14A0.42930.51470.66280.020*
H14B0.31020.56550.69890.020*
C150.24555 (11)0.73773 (11)0.57032 (8)0.0159 (2)
C160.31809 (12)0.72690 (11)0.43458 (9)0.0198 (3)
H16A0.38890.78370.43550.024*
H16B0.27940.70480.36970.024*
C170.36658 (12)0.61423 (11)0.49327 (8)0.0197 (3)
H17A0.32040.54130.46650.024*
H17B0.45960.60230.50060.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0189 (4)0.0159 (4)0.0217 (4)0.0033 (3)0.0056 (3)0.0003 (3)
O20.0169 (4)0.0205 (5)0.0288 (5)0.0003 (3)0.0049 (3)0.0081 (4)
O30.0160 (4)0.0201 (5)0.0261 (5)0.0024 (3)0.0038 (3)0.0008 (4)
O40.0165 (4)0.0186 (4)0.0190 (4)0.0030 (3)0.0048 (3)0.0007 (3)
O50.0178 (4)0.0263 (5)0.0222 (4)0.0031 (4)0.0069 (3)0.0052 (4)
N10.0156 (5)0.0134 (5)0.0151 (5)0.0001 (4)0.0047 (4)0.0010 (4)
N20.0135 (5)0.0143 (5)0.0155 (5)0.0002 (4)0.0044 (4)0.0001 (4)
N30.0145 (5)0.0147 (5)0.0159 (5)0.0007 (4)0.0042 (4)0.0003 (4)
N40.0161 (5)0.0158 (5)0.0155 (5)0.0018 (4)0.0037 (4)0.0017 (4)
C10.0158 (6)0.0145 (6)0.0123 (5)0.0005 (5)0.0025 (4)0.0022 (4)
C20.0164 (6)0.0143 (6)0.0108 (5)0.0001 (5)0.0010 (4)0.0011 (4)
C30.0139 (5)0.0159 (6)0.0111 (5)0.0006 (4)0.0020 (4)0.0023 (4)
C40.0184 (6)0.0160 (6)0.0125 (5)0.0018 (5)0.0031 (4)0.0001 (4)
C50.0211 (6)0.0153 (6)0.0148 (5)0.0034 (5)0.0019 (4)0.0014 (4)
C60.0157 (6)0.0212 (6)0.0158 (5)0.0038 (5)0.0033 (4)0.0002 (5)
C70.0163 (6)0.0188 (6)0.0141 (5)0.0013 (5)0.0047 (4)0.0001 (4)
C80.0181 (6)0.0118 (6)0.0183 (6)0.0016 (5)0.0054 (4)0.0003 (4)
C90.0179 (6)0.0133 (6)0.0175 (6)0.0020 (5)0.0042 (4)0.0017 (4)
C100.0177 (6)0.0163 (6)0.0136 (5)0.0017 (5)0.0024 (4)0.0017 (4)
C110.0149 (6)0.0240 (7)0.0241 (6)0.0000 (5)0.0049 (5)0.0046 (5)
C120.0146 (6)0.0201 (6)0.0169 (6)0.0007 (5)0.0046 (4)0.0016 (5)
C130.0147 (6)0.0172 (6)0.0159 (5)0.0010 (5)0.0057 (4)0.0003 (5)
C140.0166 (6)0.0161 (6)0.0179 (6)0.0008 (5)0.0038 (4)0.0012 (5)
C150.0121 (5)0.0165 (6)0.0183 (6)0.0028 (5)0.0020 (4)0.0030 (5)
C160.0215 (6)0.0197 (6)0.0206 (6)0.0029 (5)0.0097 (5)0.0006 (5)
C170.0246 (6)0.0175 (6)0.0197 (6)0.0033 (5)0.0106 (5)0.0001 (5)
Geometric parameters (Å, º) top
O1—C11.2252 (14)C5—H50.9300
O2—C101.3612 (14)C6—C71.3955 (17)
O2—C111.4510 (15)C6—H60.9300
O3—C101.2144 (14)C7—H70.9300
O4—C151.3692 (14)C8—C91.5273 (16)
O4—C161.4531 (14)C8—H8A0.9700
O5—C151.2147 (14)C8—H8B0.9700
N1—C11.3862 (15)C9—H9A0.9700
N1—C21.3926 (15)C9—H9B0.9700
N1—C81.4545 (15)C11—C121.5282 (17)
N2—C11.3831 (15)C11—H11A0.9700
N2—C31.3921 (15)C11—H11B0.9700
N2—C131.4570 (14)C12—H12A0.9700
N3—C101.3439 (16)C12—H12B0.9700
N3—C91.4496 (15)C13—C141.5215 (16)
N3—C121.4552 (14)C13—H13A0.9700
N4—C151.3396 (15)C13—H13B0.9700
N4—C171.4542 (15)C14—H14A0.9700
N4—C141.4546 (15)C14—H14B0.9700
C2—C71.3853 (16)C16—C171.5220 (17)
C2—C31.4027 (16)C16—H16A0.9700
C3—C41.3862 (17)C16—H16B0.9700
C4—C51.3971 (17)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C61.3927 (17)
C10—O2—C11108.99 (9)C8—C9—H9B109.2
C15—O4—C16107.65 (9)H9A—C9—H9B107.9
C1—N1—C2109.92 (9)O3—C10—N3128.03 (11)
C1—N1—C8122.48 (10)O3—C10—O2122.02 (11)
C2—N1—C8127.44 (10)N3—C10—O2109.95 (10)
C1—N2—C3109.94 (9)O2—C11—C12105.27 (9)
C1—N2—C13123.46 (9)O2—C11—H11A110.7
C3—N2—C13126.51 (10)C12—C11—H11A110.7
C10—N3—C9123.71 (10)O2—C11—H11B110.7
C10—N3—C12112.52 (10)C12—C11—H11B110.7
C9—N3—C12123.31 (10)H11A—C11—H11B108.8
C15—N4—C17112.04 (10)N3—C12—C11100.84 (9)
C15—N4—C14122.29 (10)N3—C12—H12A111.6
C17—N4—C14125.49 (10)C11—C12—H12A111.6
O1—C1—N2127.34 (11)N3—C12—H12B111.6
O1—C1—N1126.44 (11)C11—C12—H12B111.6
N2—C1—N1106.22 (9)H12A—C12—H12B109.4
C7—C2—N1131.76 (11)N2—C13—C14112.67 (9)
C7—C2—C3121.35 (11)N2—C13—H13A109.1
N1—C2—C3106.88 (10)C14—C13—H13A109.1
C4—C3—N2131.36 (11)N2—C13—H13B109.1
C4—C3—C2121.60 (11)C14—C13—H13B109.1
N2—C3—C2107.03 (10)H13A—C13—H13B107.8
C3—C4—C5116.91 (11)N4—C14—C13111.20 (10)
C3—C4—H4121.5N4—C14—H14A109.4
C5—C4—H4121.5C13—C14—H14A109.4
C6—C5—C4121.54 (11)N4—C14—H14B109.4
C6—C5—H5119.2C13—C14—H14B109.4
C4—C5—H5119.2H14A—C14—H14B108.0
C5—C6—C7121.36 (11)O5—C15—N4128.51 (11)
C5—C6—H6119.3O5—C15—O4121.68 (11)
C7—C6—H6119.3N4—C15—O4109.79 (10)
C2—C7—C6117.21 (11)O4—C16—C17104.61 (9)
C2—C7—H7121.4O4—C16—H16A110.8
C6—C7—H7121.4C17—C16—H16A110.8
N1—C8—C9112.19 (9)O4—C16—H16B110.8
N1—C8—H8A109.2C17—C16—H16B110.8
C9—C8—H8A109.2H16A—C16—H16B108.9
N1—C8—H8B109.2N4—C17—C1699.92 (9)
C9—C8—H8B109.2N4—C17—H17A111.8
H8A—C8—H8B107.9C16—C17—H17A111.8
N3—C9—C8112.07 (9)N4—C17—H17B111.8
N3—C9—H9A109.2C16—C17—H17B111.8
C8—C9—H9A109.2H17A—C17—H17B109.5
N3—C9—H9B109.2

Experimental details

Crystal data
Chemical formulaC17H20N4O5
Mr360.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)10.5331 (10), 10.9647 (10), 14.5541 (14)
β (°) 103.258 (5)
V3)1636.1 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.92
Crystal size (mm)0.30 × 0.28 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.770, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
15549, 2914, 2842
Rint0.024
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.05
No. of reflections2914
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationAhoya, C. A., Bouhfid, R., Daouda, B., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlsubari, A., Bouhfid, R. & Essassi, E. M. (2009). Arkivoc, xii, 337–346.  Google Scholar
First citationBel-Ghacham, H., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o456.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaleb, A. A., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2009). Acta Cryst. E65, o2024–o2025.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDiekema, D. J. & Jones, R. N. (2000). Drugs, 59, 7–16.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, D. A., Ny, H. P. & Rieger, D. L. (1993). J. Am. Chem. Soc. 115, 11446–11459.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGribkoff, V. K., Champigny, G., Barbry, P., Dworetzky, S. I., Meanwell, N. A. & Lazdunski, M. (1994). J. Biol. Chem. 269, 10983–10986.  CAS PubMed Web of Science Google Scholar
First citationMatsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron, 61, 8073–8094.  Web of Science CrossRef CAS Google Scholar
First citationMukhtar, T. A. & Wright, G. D. (2005). Chem. Rev. 105, 529–542.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53–59.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOuzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug Des. 14, 19–36.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o362-o363
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds