Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Fluoro-1,3-dihydro-2,1-benzoxaborol1 -ol

Izabela D. Madura,* Agnieszka Adamczyk-Woźniak, Michał Jakubczyk and Andrzej Sporzyński

Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
Correspondence e-mail: izabela@ch.pw.edu.pl
Received 23 December 2010; accepted 11 January 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.032 ; w R$ factor $=0.088 ;$ data-to-parameter ratio $=11.4$.

In the crystal structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BFO}_{2}$, a broad-spectrum antifungal drug (AN2690), the planar [maximum deviation 0.035 (1) \AA] molecules form centrosymmetric $R_{2}^{2}(8)$ dimers via strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The dimers are arranged into layers by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds. The symmetry of this two-dimensional supramolecular assembly can be described by the layer group $p \overline{1}$ and topologically classified as a simple uninodal four-connected two-dimensional network of a (4.4.4.4.6.6) topology. Further weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions build up the three-dimensional structure.

Related literature

For the review of the synthesis, properties and applications of benzoxaboroles, see: Adamczyk-Woźniak et al. (2009). For the biological activity of the title compound, see: Baker et al. (2005, 2006); Hui et al. (2007); Rock et al. (2007). For the synthesis see: Baker et al. (2006), Gunasekera et al. (2007). For related structures, see: Adamczyk-Woźniak et al. (2010); Tan et al. (2001); Yamamoto et al. (2005); Zhdankin et al. (1999). For hydrogen-bond graph-set descriptors and layer symmetry groups, see: Etter (1990) and International Tables for Crystallography (2006), respectively.

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BFO}_{2}$
$M_{r}=151.93$
Triclinic, $P \overline{1}$

$$
\begin{aligned}
& a=3.8799(3) \AA \\
& b=6.3077(5) \AA \\
& c=14.0735(12) \AA
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=98.068(7)^{\circ} \\
& \beta=91.564(7)^{\circ} \\
& \gamma=100.473(7)^{\circ} \\
& V=334.84(5) \AA^{3} \\
& Z=2
\end{aligned}
$$

$\mathrm{Cu} K \alpha$ radiation
$\mu=1.06 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.60 \times 0.35 \times 0.20 \mathrm{~mm}$

Data collection

Oxford Diffraction Gemini A Ultra diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006)
$T_{\text {min }}=0.731, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.088$
$S=1.07$
1193 reflections
105 parameters

3451 measured reflections
1193 independent reflections
1147 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.83(2)$	$1.93(2)$	$2.7614(13)$	$175(2)$
$\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.99	2.55	$3.5325(15)$	172
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~F}^{\mathrm{iii}}$	0.95	2.58	$3.4779(14)$	157
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O}^{\mathrm{iv}}$	0.99	2.66	$3.2172(14)$	116
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{iv}}$	0.95	2.70	$3.4276(14)$	134

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $x, y-1, z$; (iii) $-x,-y+2,-z+2$; (iv) $x-1, y-1, z$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The authors acknowledge financial support by the Ministry of Science and Higher Education (grant No. N204 127938).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2381).

References

Adamczyk-Woźniak, A., Cyrański, M. K., Jakubczyk, M., Klimentowska, P., Koll, A., Kołodziejczak, J., Pojmaj, G., Żubrowska, A., Żukowska, Z. \& Sporzyński, A. (2010). J. Phys. Chem. A, 114, 2324-2330.
Adamczyk-Woźniak, A., Cyrański, M. K., Żubrowska, A. \& Sporzyński, A. (2009). J. Organomet. Chem. 694, 3533-3541.

Baker, S. J., Hui, X. \& Maibach, H. I. (2005). Annu. Rep. Med. Chem. 40, 323335.

Baker, S. J., Zhang, Y.-K., Akama, T., Lau, A., Zhou, H., Hernandez, V., Mao, W., Alley, M. R. K., Sanders, V. \& Plattner, J. (2006). J. Med. Chem. 49, 4447-4450.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

organic compounds

Gunasekera, D. S., Gerold, D. J., Aalderks, N. S., Chandra, J. S., Maanu, C. A., Kiprof, P., Zhdankin, V. V. \& Reddy, M. V. R. (2007). Tetrahedron, 63, 94019405.

Hui, X., Baker, S. J., Wester, R. C., Barbadillo, S., Cashmore, A. K., Sanders, V., Hold, K. M., Akama, T., Zhang, Y.-K., Plattner, J. J. \& Maibach, H. I. (2007). J. Pharm. Sci. 96, 2622-2631.

International Tables for Crystallography (2006). Vol. E, Subperiodic Groups, edited by V. Kopsky \& D. B. Litvin. Dordrecht: Kluwer Academic Publishers.
Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Rock, F. L., Mao, W., Yaremchuk, A., Tukalo, M., Crepin, T., Zhou, H., Zhang, Y.-K., Hernandez, V., Akama, T., Baker, S. J., Plattner, J. J., Shapiro, L., Martinis, S. A., Benkovic, S. J., Cusack, S. \& Alley, M. R. K. (2007). Science, 316, 1759-1761.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tan, Y.-L., White, A. J. P., Widdowson, D. A., Wilhelm, R. \& Williams, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3269-3280.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yamamoto, Y., Ishii, J., Nishiyama, H. \& Itoh, K. (2005). J. Am. Chem. Soc. 127, 9625-9631.
Zhdankin, V. V., Persichini, P. J. III, Zhang, L., Fix, S. \& Kiprof, P. (1999). Tetrahedron Lett. 40, 6705-6708.

supporting information

Acta Cryst. (2011). E67, o414-o415 [doi:10.1107/S1600536811001632]

5-Fluoro-1,3-dihydro-2,1-benzoxaborol-1-ol

Izabela D. Madura, Agnieszka Adamczyk-Woźniak, Michal Jakubczyk and Andrzej Sporzyński

S1. Experimental

5-Fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (I) was synthesized according to Fig. 3.
2-Bromo-5-fluorobenzaldehyde was purchased from Sigma-Aldrich and used as received. 2-Bromo-5-fluorobenzaldehyde $(5.00 \mathrm{~g}, 0.025 \mathrm{~mol})$ and $2.69 \mathrm{~g}(0.025 \mathrm{~mol})$ of trimethoxymethane was dissolved in 100 ml of methanol in a two-necked vessel. 0.4 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added. The solution was refluxed for one hour and left to cool down. Then the solution was brought to $\mathrm{pH} \simeq 11$ with a concentrated solution of NaOMe in methanol. The reaction mixture was distilled under vacuum to give 5.90 g of 1-Bromo-2-(dimethoxymethyl)-4-fluorobenzene as a colorless liquid (yield 96\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.49$ (dd, 1H), 7.34 (dd, 1H), 6.91 (td, 1H), 5.49 (s, 1H), 3.37 (s, 6H) p.p.m.). The product was dissolved in 100 ml of $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}$ in a three-necked vessel under argon flow. The solution was cooled down to $-78^{\circ} \mathrm{C}$ using dry ice/acetone bath. n-Butyllithium in hexane ($2.5 \mathrm{M}, 11 \mathrm{ml}$) was added dropwise to keep the temperature under $-70^{\circ} \mathrm{C}$. The solution was stirred for one hour, then $3.80 \mathrm{~g}(0.026 \mathrm{~mol}, 4.4 \mathrm{ml})$ of triethyl borate was added slowly, keeping the temperature under $-70^{\circ} \mathrm{C}$. The dry ice/acetone bath was removed and the solution was stirred for one hour. The solution was brought to $\mathrm{pH} \simeq 3$ with 3 Maq . HCl . The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{ml})$. The organic layers were combined and the solvent was partially removed under vacuum. The remaining thick solution was dissolved in hot water. Yellowish crystals of 4-fluoro-2-formylphenylboronic acid were filtered after a few hours. Recrystallization from water gave 1.79 g of the product (yield $49 \% ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{dd}, 1 \mathrm{H}), 7.62(\mathrm{dd}, 1 \mathrm{H}), 7.40(\mathrm{td}, 1 \mathrm{H})$ p.p.m.). The product ($1.79 \mathrm{~g}, 0.011 \mathrm{~mol}$) was dissolved in 100 ml of methanol in a one-necked vessel. $0.44 \mathrm{~g}(0.012 \mathrm{~mol})$ of NaBH_{4} was added in small portions. The solution was mixed for 12 h . Another portion of 0.22 g of NaBH_{4} was added and the solution was mixed for 3 days. The solvent was removed under vacuum. The crude product was dissolved in water. Crystallization gave 0.82 g of 5-Fluoro-1,3-di-hydro-1-hydroxy-2,1-benzoxaborole (I) as yellowish crystals (yield $51 \% ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.72(\mathrm{dd}, 1 \mathrm{H})$, $7.06(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H})$ p.p.m.; ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.3 \mathrm{MHz}\right)$: $-113.51(q)$ p.p.m.; ${ }^{11}$ B NMR $\left(\left(\mathrm{CdD}_{3}\right)_{2} \mathrm{CO}, 64.1 \mathrm{MHz}\right)$: 32.0 p.p.m.; m.p. $135-136^{\circ} \mathrm{C}$).

S2. Refinement

H 2 atom bonded to O 2 atom was located in a difference map and freely refined. Other H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2$ times $U_{\text {eq }}(\mathrm{C})$.

Figure 1

ORTEP plot of the hydrogen bonded dimer of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Projection on (10 2) plane showing layers of molecules linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (dashed lines), $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ (dotted lines) H-bonds.

Figure 3

Synthesis of 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (I).

5-Fluoro-1,3-dihydro-2,1-benzoxaborol-1-ol

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BFO}_{2}$

$M_{r}=151.93$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=3.8799$ (3) \AA
$b=6.3077(5) \AA$
$c=14.0735(12) \AA$
$\alpha=98.068(7)^{\circ}$
$\beta=91.564$ (7) ${ }^{\circ}$
$\gamma=100.473(7)^{\circ}$
$V=334.84(5) \AA^{3}$

Data collection

Oxford Diffraction Gemini A Ultra
diffractometer
Radiation source: Enhance Ultra (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.3347 pixels mm^{-1}

ω scans

Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.088$
$S=1.07$
1193 reflections
105 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& Z=2 \\
& F(000)=156 \\
& D_{\mathrm{x}}=1.507 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point: } 408 \mathrm{~K} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.5418 \AA \\
& \text { Cell parameters from } 3116 \text { reflections } \\
& \theta=3.2-67.1^{\circ} \\
& \mu=1.06 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Prism, light yellow } \\
& 0.60 \times 0.35 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

$T_{\min }=0.731, T_{\max }=1.000$
3451 measured reflections
1193 independent reflections
1147 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=67.1^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-4 \rightarrow 4$
$k=-7 \rightarrow 7$
$l=-16 \rightarrow 14$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0511 P)^{2}+0.1152 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.046 (5)

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (Oxford Diffraction, 2006)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O2	$0.9636(2)$	$1.22613(14)$	$0.60638(7)$	$0.0189(3)$
F1	$0.0385(2)$	$0.70856(13)$	$0.93059(5)$	$0.0282(3)$
O1	$0.7364(2)$	$0.84381(13)$	$0.56821(6)$	$0.0171(3)$
C3	$0.2566(3)$	$0.6725(2)$	$0.77652(9)$	$0.0185(3)$
H3	0.1624	0.5207	0.7660	0.022^{*}
C4	$0.2168(3)$	$0.8036(2)$	$0.86129(9)$	$0.0200(3)$
C2	$0.4422(3)$	$0.7757(2)$	$0.70750(9)$	$0.0162(3)$
C1	$0.5825(3)$	$0.9983(2)$	$0.72234(9)$	$0.0167(3)$
C5	$0.3485(3)$	$1.0251(2)$	$0.87950(9)$	$0.0207(3)$
H5	0.3121	1.1083	0.9388	0.025^{*}
C6	$0.5346(3)$	$1.1237(2)$	$0.80968(9)$	$0.0186(3)$
H6	0.6291	1.2754	0.8210	0.022^{*}
B1	$0.7783(3)$	$1.0404(2)$	$0.63011(10)$	$0.0164(3)$
C7	$0.5248(3)$	$0.6711(2)$	$0.61026(9)$	$0.0170(3)$
H7B	0.6562	0.5526	0.6164	0.020^{*}
H7A	0.3064	0.6096	0.5701	0.020^{*}
H2	$1.061(5)$	$1.212(3)$	$0.5545(15)$	$0.040(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	$0.0245(5)$	$0.0147(5)$	$0.0169(5)$	$0.0025(4)$	$0.0053(4)$	$0.0011(3)$
F1	$0.0329(5)$	$0.0323(5)$	$0.0196(4)$	$0.0035(4)$	$0.0106(3)$	$0.0065(3)$
O1	$0.0208(5)$	$0.0145(5)$	$0.0154(5)$	$0.0019(3)$	$0.0046(3)$	$0.0017(3)$
C3	$0.0178(6)$	$0.0188(6)$	$0.0193(7)$	$0.0037(5)$	$0.0009(5)$	$0.0033(5)$
C4	$0.0181(6)$	$0.0273(7)$	$0.0160(6)$	$0.0052(5)$	$0.0038(5)$	$0.0061(5)$
C2	$0.0149(6)$	$0.0174(6)$	$0.0168(6)$	$0.0055(5)$	$-0.0004(4)$	$0.0014(5)$
C1	$0.0154(6)$	$0.0174(6)$	$0.0178(7)$	$0.0051(5)$	$-0.0011(5)$	$0.0021(5)$
C5	$0.0212(6)$	$0.0256(7)$	$0.0155(6)$	$0.0083(5)$	$0.0008(5)$	$-0.0016(5)$
C6	$0.0187(6)$	$0.0179(6)$	$0.0188(6)$	$0.0049(5)$	$-0.0001(5)$	$-0.0007(5)$
B1	$0.0162(6)$	$0.0162(7)$	$0.0172(7)$	$0.0055(5)$	$-0.0011(5)$	$0.0009(5)$
C7	$0.0197(6)$	$0.0135(6)$	$0.0174(6)$	$0.0017(5)$	$0.0036(5)$	$0.0021(5)$

Geometric parameters (A, ${ }^{\circ}$)

O2-B1	1.3483 (18)	C2-C1	1.3948 (18)
O2-H2	0.83 (2)	C2-C7	1.5025 (17)
F1-C4	1.3562 (15)	C1-C6	1.4013 (17)
O1-B1	1.3922 (17)	C1-B1	1.5522 (18)
O1-C7	1.4471 (15)	C5-H5	0.9500
C3-H3	0.9500	C5-C6	1.3856 (18)
C3-C4	1.3822 (19)	C6-H6	0.9500
C3-C2	1.3897 (18)	C7-H7B	0.9900
C4-C5	1.3829 (19)	C7-H7A	0.9900
$\mathrm{O} 2-\mathrm{B} 1-\mathrm{O} 1$	121.51 (12)	C2-C3-H3	121.9
$\mathrm{O} 2-\mathrm{B} 1-\mathrm{C} 1$	130.25 (12)	C2-C1-C6	119.16 (12)
F1-C4-C3	117.85 (12)	C2-C1-B1	104.93 (11)
F1-C4-C5	118.27 (12)	C2-C7-H7B	110.7
$\mathrm{O} 1-\mathrm{B} 1-\mathrm{C} 1$	108.24 (11)	C2-C7-H7A	110.7
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 2$	105.45 (9)	C1-C2-C7	110.88 (11)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	110.7	C1-C6-H6	120.2
O1-C7- H 7 A	110.7	C5-C6-C1	119.66 (12)
C3-C4-C5	123.88 (12)	C5-C6-H6	120.2
C3-C2-C1	122.36 (12)	C6-C1-B1	135.86 (12)
C3-C2-C7	126.75 (11)	C6-C5-H5	120.6
C4-C3-H3	121.9	B1-O2-H2	115.3 (13)
C4-C3-C2	116.12 (12)	$\mathrm{B} 1-\mathrm{O} 1-\mathrm{C} 7$	110.46 (10)
C4- $45-\mathrm{H} 5$	120.6	H7B-C7-H7A	108.8
C4- $45-\mathrm{C} 6$	118.82 (12)		
F1-C4-C5-C6	179.28 (10)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{B} 1-\mathrm{O} 2$	-179.25 (12)
C3-C4-C5-C6	-0.58 (19)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{B} 1-\mathrm{O} 1$	0.71 (13)
C3-C2-C1-C6	-0.23 (17)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{O} 1$	2.08 (13)
C3-C2-C1-B1	177.60 (11)	C6- $12-\mathrm{B} 1-\mathrm{O} 2$	-2.0 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{O} 1$	-177.19 (11)	C6-C1-B1-O1	178.00 (12)
C4-C3-C2-C1	0.24 (18)	B1-O1-C7-C2	-1.57 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	179.42 (11)	B1-C1-C6-C5	-177.18 (12)
C4-C5-C6-C1	0.57 (18)	$\mathrm{C} 7-\mathrm{O} 1-\mathrm{B} 1-\mathrm{O} 2$	-179.45 (10)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{F} 1$	-179.69 (9)	C7-O1-B1-C1	0.59 (13)
C2-C3-C4-C5	0.17 (19)	C7-C2-C1-C6	-179.53 (10)
C2-C1-C6-C5	-0.19 (17)	C7-C2-C1-B1	-1.70 (13)

Hydrogen-bond geometry ($\AA,{ }^{o}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.83(2)$	$1.93(2)$	$2.7614(13)$	$175(2)$
$\mathrm{C} 7 — \mathrm{H} 7 B \cdots 2^{\mathrm{ii}}$	0.99	2.55	$3.5325(15)$	172
$\mathrm{C} 5 — \mathrm{H} 5 \cdots 1^{\mathrm{iii}}$	0.95	2.58	$3.4779(14)$	157

supporting information

$\mathrm{C} 7 — \mathrm{H} 7 A \cdots \mathrm{O} 2^{\mathrm{iv}}$	0.99	2.66	$3.2172(14)$	116
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{iv}}$	0.95	2.70	$3.4276(14)$	134

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $x, y-1, z$; (iii) $-x,-y+2,-z+2$; (iv) $x-1, y-1, z$.

