Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N -Nitro-1H-pyrrole-2-carboxamide

Long Liu, ${ }^{\text {a }}$ Chunlin He, ${ }^{\text {b }}$ Zengxi Li, ${ }^{\text {a }}$ (Chunshan Li, ${ }^{\text {b }}$
Xiangping Zhang ${ }^{\text {b }}$ and Suojiang Zhang ${ }^{\text {b }}$

${ }^{\text {a }}$ Graduate University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
Correspondence e-mail:
zxli@home.ipe.ac.cn(Zengxi_Li), csli@home.ipe.ac.cn(Chunshan_Li)

Received 31 December 2010; accepted 18 January 2011

Key indicators: single-crystal X-ray study; $T=133 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.043 ; w R$ factor $=0.106$; data-to-parameter ratio $=13.0$.

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{3}$, the nitro group is twisted with respect to the amide group, with $\mathrm{C}-\mathrm{N}-\mathrm{N}-\mathrm{O}$ torsion angles of $29.0(2)$ and $-153.66(14)^{\circ}$. In the crystal, molecules are linked through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming supramolecular chains along the a axis. These chains stack in parallel and form distinct layer motifs in the (001) plane.

Related literature

For applications of pyrrole derivatives as antimicrobials, see: Mohamed et al. (2009). For the structures of similar pyrrole derivatives, see: Zeng et al. (2007, 2010); Wang et al. (2010); Ferreira et al. (2002). For the synthesis of N, N^{\prime}-dinitrourea (DNU), see: Goede et al. (2001).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=155.12$
Orthorhombic, Pbca

$$
\begin{aligned}
& a=9.988(3) \AA \\
& b=6.4547(17) \AA \\
& c=19.184(6) \AA
\end{aligned}
$$

$V=1236.8(6) \AA^{3}$
$\mu=0.14 \mathrm{~mm}^{-}$
$Z=8$
Mo $K \alpha$ radiation
$0.47 \times 0.43 \times 0.20 \mathrm{~mm}$

Data collection
Rigaku AFC10/Saturn724+ diffractometer
8849 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.106$
$S=1.00$
1402 reflections
108 parameters

1402 independent reflections 1214 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.34 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O}^{\mathrm{i}}$	$0.88(3)$	$2.21(3)$	$3.001(2)$	$150(2)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots 1^{\mathrm{ii}}$	$0.88(2)$	$2.11(2)$	$2.982(2)$	$171.5(19)$
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.39	$3.269(2)$	154
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.48	$3.245(2)$	138

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$.

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the National Natural Science Foundation of China (grant No. 21076221) and the National Defence Science and Technology Innovation Fund of the Chinese Academy of Sciences (grant No. CXJJ-11-M52).

[^0]
References

Barbour, L. (2001). J. Supramol. Chem. 1, 189-191.
Ferreira, P. M. T., Maia, H. L. L. \& Monteiro, L. S. (2002). Tetrahedron Lett. 43 4491-4493.
Goede, P., Wingborg, N., Bergman, H. \& Latypov, N. V. (2001). Propellant Explos. Pyrotech. 26, 17-20.
Mohamed, M. S., EL-Domany, R. A. \& EL-Hameed, R. H. (2009). Acta Pharm. 59, 145-158
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, S.-F., Li, C. \& Chen, S. (2010). Acta Cryst. E66, o3047.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zeng, X. C., Li, K. P., Hu, F. \& Zheng, L. (2010). Acta Cryst. E66, o2051.
Zeng, X.-C., Zeng, J., Li, X. \& Ling, X. (2007). Acta Cryst. E63, o3424.

supporting information

Acta Cryst. (2011). E67, o479 [doi:10.1107/S1600536811002455]

N -Nitro-1 H -pyrrole-2-carboxamide
 Long Liu, Chunlin He, Zengxi Li, Chunshan Li, Xiangping Zhang and Suojiang Zhang

S1. Comment

Pyrrole derivatives play an important role in heterocyclic chemistry due to their intrinsic biological activities as antimicrobial agents (Mohamed et al., 2009). The structures of these compounds have been reported extensively, such as 2,3,5-substituted pyrrole derivatives (Ferreira et al., 2002), 1-Benzyl- N-methyl-1 H -pyrrole-2-carboxamide (Zeng et al., 2010), 2-(4,5-dibromo-1H-pyrrole-2-carboxamido) propionate (Zeng et al., 2007) and Tetraethyl 1,1'-(ethane-1,2-diyl)bis(2,5-dimethyl-1H-pyrrole-3,4-dicarboxylate) (Wang et al., 2010).
The bond length of $\mathrm{N} 2-\mathrm{C} 5$ for the title compound (1.404(2) \AA) is about $0.07 \AA$ longer than compound 1-Benzyl- N -methyl-1H-pyrrole-2-carboxamide (1.334 (3) Å) (Zeng et al., 2010) (Fig. 1). The unit is nearly co-planar with the twist happens at nitro group ($\mathrm{C} 5-\mathrm{N} 2-\mathrm{N} 3-\mathrm{O} 2=29.0(2), \mathrm{C} 5-\mathrm{N} 2-\mathrm{N} 3-\mathrm{O} 3=-153.66(14)$), the maximum deviation of other torsions is $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2=-8.6(3)^{\circ}$.
In the crystal structure (Fig. 2), molecules are connected through $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 3, \mathrm{~N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 1, \mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1, \mathrm{C} 3-$ H3 \cdots O3 (Table 1) hydrogen bonds to form one-dimensional supramolecular chains along the a axis. These supramolecular chains stack in parallel and form distinct layer motif in (001) plane.

S2. Experimental

Pyrrole ($0.67 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added to a solution of N, N^{\prime}-dinitrourea (DNU) ($1.5 \mathrm{~g}, 0.01 \mathrm{~mol}$) dissolved in acetonitrile $(10 \mathrm{ml})$, stirred at room temperature for 24 h , the crude compound was obtained after acetonitrile was evaporated. Then the products were dissoved in ethyl acetate, colourless crystals suitable for X-ray crystal diffraction were obtained by slow evaporation of the solution at room temperature. DNU was synthesized according to the literautre (Goede et al., 2001).

S3. Refinement

The hydrogen atoms bonded to N 1 and N 2 were located from a difference Fourier maps and refined isotropically with N $-\mathrm{H}=0.88$ (3) \AA and 0.88 (2) \AA (respectively. The remaining hydrogen atoms were geometrically positioned (all $\mathrm{C}-\mathrm{H}=$ $0.9500 \AA$).

Figure 1
Thermal ellipsoid plot of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{3}$ at the 50% probability level; Hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2
Hydrogen-bonded layer structure.

N-Nitro-1H-pyrrole-2-carboxamide

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=155.12$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=9.988(3) \AA$
$b=6.4547$ (17) \AA
$c=19.184$ (6) \AA
$V=1236.8(6) \AA^{3}$
$Z=8$

Data collection

Rigaku AFC10/Saturn724+
diffractometer
Radiation source: Rotating Anode
Graphite monochromator
Detector resolution: 28.5714 pixels mm^{-1}
φ and ω scans
8849 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.106$
$S=1.00$
1402 reflections
108 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& F(000)=640 \\
& D_{\mathrm{x}}=1.666 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3166 \text { reflections } \\
& \theta=3.2-27.5^{\circ} \\
& \mu=0.14 \mathrm{~mm}^{-1} \\
& T=133 \mathrm{~K} \\
& \text { Platelet, colourless } \\
& 0.47 \times 0.43 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

1402 independent reflections
1214 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.9^{\circ}$
$h=-12 \rightarrow 12$
$k=-8 \rightarrow 8$
$l=-24 \rightarrow 24$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0596 P)^{2}+0.536 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.34 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.17512(12)$	$0.34028(18)$	$0.50500(5)$	$0.0219(3)$
O2	$0.27334(11)$	$0.3909(2)$	$0.37665(6)$	$0.0256(3)$
O3	$0.45611(12)$	$0.21230(19)$	$0.36431(6)$	$0.0255(3)$
N1	$0.25340(14)$	$0.3489(2)$	$0.64493(7)$	$0.0207(3)$
N2	$0.39562(13)$	$0.3045(2)$	$0.47037(7)$	$0.0182(3)$

N3	$0.37143(13)$	$0.3012(2)$	$0.39910(7)$	$0.0178(3)$
C1	$0.31849(18)$	$0.3310(3)$	$0.70652(8)$	$0.0235(4)$
H1	0.2800	0.3496	0.7514	0.028^{*}
C2	$0.44956(17)$	$0.2815(3)$	$0.69312(8)$	$0.0240(4)$
H2	0.5173	0.2581	0.7270	0.029^{*}
C3	$0.46594(16)$	$0.2715(2)$	$0.62056(8)$	$0.0198(4)$
H3	0.5464	0.2417	0.5962	0.024^{*}
C4	$0.34176(15)$	$0.3137(2)$	$0.59132(8)$	$0.0160(3)$
C5	$0.29335(15)$	$0.3204(2)$	$0.52027(8)$	$0.0158(3)$
H1N	$0.169(3)$	$0.380(4)$	$0.6375(12)$	$0.049(7)^{*}$
H2N	$0.474(2)$	$0.250(3)$	$0.4794(11)$	$0.032(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0140(6)$	$0.0339(7)$	$0.0177(5)$	$-0.0002(5)$	$-0.0004(4)$	$0.0003(5)$
O2	$0.0181(6)$	$0.0398(7)$	$0.0188(6)$	$0.0049(5)$	$-0.0022(4)$	$0.0071(5)$
O3	$0.0198(6)$	$0.0381(7)$	$0.0187(6)$	$0.0050(5)$	$0.0027(5)$	$-0.0052(5)$
N1	$0.0164(7)$	$0.0276(7)$	$0.0180(6)$	$0.0021(6)$	$0.0007(5)$	$0.0002(6)$
N2	$0.0132(6)$	$0.0281(7)$	$0.0133(6)$	$0.0016(5)$	$-0.0022(5)$	$0.0011(5)$
N3	$0.0153(6)$	$0.0241(7)$	$0.0141(6)$	$-0.0022(5)$	$0.0004(5)$	$0.0013(5)$
C1	$0.0273(9)$	$0.0286(9)$	$0.0145(7)$	$-0.0002(7)$	$0.0011(6)$	$0.0000(6)$
C2	$0.0223(8)$	$0.0315(9)$	$0.0183(8)$	$-0.0013(7)$	$-0.0053(6)$	$0.0015(6)$
C3	$0.0146(7)$	$0.0257(8)$	$0.0191(8)$	$-0.0008(6)$	$-0.0001(6)$	$0.0010(6)$
C4	$0.0147(7)$	$0.0176(7)$	$0.0158(7)$	$-0.0013(6)$	$0.0003(6)$	$-0.0001(5)$
C5	$0.0148(7)$	$0.0164(7)$	$0.0163(7)$	$-0.0011(6)$	$-0.0002(5)$	$-0.0002(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

O1-C5	1.2234 (19)	N2-H2N	0.88 (2)
$\mathrm{O} 2-\mathrm{N} 3$	1.2167 (17)	C1-C2	1.372 (2)
$\mathrm{O} 3-\mathrm{N} 3$	1.2206 (17)	C1-H1	0.9500
N1-C1	1.354 (2)	C2-C3	1.403 (2)
N1-C4	1.374 (2)	C2-H2	0.9500
N1-H1N	0.88 (3)	C3-C4	1.388 (2)
N2-N3	1.3886 (18)	C3-H3	0.9500
N2-C5	1.404 (2)	C4-C5	1.447 (2)
C1-N1-C4	109.32 (14)	C1-C2-C3	107.93 (15)
C1-N1-H1N	128.4 (16)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	126.0
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	122.3 (16)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	126.0
N3-N2-C5	123.09 (13)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	106.72 (14)
N3-N2-H2N	110.2 (14)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	126.6
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	123.1 (14)	C2-C3-H3	126.6
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{O} 3$	126.02 (14)	N1-C4-C3	107.68 (13)
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{N} 2$	118.77 (13)	N1-C4-C5	119.04 (14)
$\mathrm{O} 3-\mathrm{N} 3-\mathrm{N} 2$	115.15 (13)	C3-C4-C5	133.25 (14)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	108.33 (14)	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 2$	123.14 (14)

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	125.8
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	125.8
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{N} 3-\mathrm{O} 2$	$29.0(2)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{N} 3-\mathrm{O} 3$	$-153.66(14)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-0.71(19)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.9(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.67(19)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$0.28(18)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$178.72(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$0.24(18)$

$$
\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4
$$

$$
\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4
$$

$$
\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5
$$

$$
\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 5-\mathrm{O} 1
$$

$$
\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4
$$

$$
\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1
$$

$$
\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1
$$

$$
\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2
$$

$$
\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2
$$

123.46 (14)
113.39 (13)
-177.88 (16)
-2.7 (2)
177.98 (13)
-5.8 (2)
172.13 (17)
173.46 (13)
-8.6 (3)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O}^{3}$	$0.88(3)$	$2.21(3)$	$3.001(2)$	$150(2)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots 1^{\mathrm{iii}}$	$0.88(2)$	$2.11(2)$	$2.982(2)$	$171.5(19)$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.39	$3.269(2)$	154
$\mathrm{C} 3 — \mathrm{H} 3 \cdots 2^{\mathrm{ii}}$	0.95	2.48	$3.245(2)$	138

Symmetry codes: (i) $x-1 / 2,-y+1 / 2,-z+1$; (ii) $x+1 / 2,-y+1 / 2,-z+1$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2382)

