metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m227-m228

Bis(tetra­phenylphosphonium) tetra­cyanido­nitridochromate(V) dihydrate

aDepartment of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
*Correspondence e-mail: bendix@kiku.dk

(Received 7 January 2011; accepted 13 January 2011; online 22 January 2011)

In the title compound, (C24H20P)2[Cr(CN)4(N)]·2H2O, the complex anion exhibits a square-based pyramidal geometry around the central CrV atom, which is coordinated by a nitride ligand in the apical position and by four cyanide ligands in the equatorial plane. The chromium atom is located 0.4493 (13) Å out of the plane formed by the ligating C atoms of the cyanide ligands. The water mol­ecules of crystallization form inter­molecular O—H⋯N hydrogen bonds to the N atoms of two cyanide ligands of neighbouring complex anions, forming an infinite hydrogen-bonded chain parallel to [011] of water mol­ecules and [Cr(N)(CN)4]2− anions. The terminal nitride ligands are not engaged in inter­molecular inter­actions.

Related literature

For related structures of nitridocyanidometalates, see: Baldas et al. (1990[Baldas, J., Boas, J. F., Colmanet, S. F. & Mackay, M. F. (1990). Inorg. Chim. Acta, 170, 233-239.]); Bendix et al. (1998[Bendix, J., Meyer, K., Weyhermüller, T., Bill, E., Metzler-Nolte, N. & Wieghardt, K. (1998). Inorg. Chem. 37, 1767-1775.], 2000[Bendix, J., Deeth, R. J., Weyhermüller, T., Bill, E. & Wieghardt, K. (2000). Inorg. Chem. 39, 930-938.]); Britten et al. (1993[Britten, J. F., Lock, C. J. L. & Wei, Y. (1993). Acta Cryst. C49, 1277-1280.]); Che et al. (1989[Che, C. M., Lam, H. W. & Mak, T. C. W. (1989). J. Chem. Soc. Chem. Commun. pp. 1529-1531.]); Purcell et al. (1991[Purcell, W., Potgieter, I. Z., Damoense, L. J. & Leipolldt, J. S. (1991). Transition Met. Chem. 16, 473-475.]); van der Westhuizen et al. (1994[Westhuizen, H. J. van der, Basson, S. S., Leipoldt, J. G. & Purcell, W. (1994). Transition Met. Chem. 19, 582-584.]). For general background to CrV nitrido complexes, see: Birk & Bendix (2003[Birk, T. & Bendix, J. (2003). Inorg. Chem. 42, 7608-7615.]).

[Scheme 1]

Experimental

Crystal data
  • (C24H20P)2[Cr(CN)4(N)]·2H2O

  • Mr = 884.86

  • Triclinic, [P \overline 1]

  • a = 11.996 (5) Å

  • b = 12.387 (5) Å

  • c = 16.721 (4) Å

  • α = 98.34 (3)°

  • β = 110.01 (2)°

  • γ = 90.52 (4)°

  • V = 2305.3 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 122 K

  • 0.12 × 0.09 × 0.06 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: integration (Gaussian; Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.952, Tmax = 0.980

  • 72047 measured reflections

  • 8118 independent reflections

  • 6480 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 1.10

  • 8118 reflections

  • 571 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cr—N1 1.538 (2)
Cr—C2 2.066 (3)
Cr—C3 2.040 (3)
Cr—C4 2.068 (3)
Cr—C5 2.049 (3)
N1—Cr—C2 99.23 (11)
N1—Cr—C3 105.79 (11)
N1—Cr—C4 99.95 (11)
N1—Cr—C5 105.70 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2 0.86 (2) 2.23 (2) 3.065 (3) 167 (4)
O1—H1B⋯N2i 0.85 (2) 2.18 (2) 3.035 (3) 177 (4)
O2—H2A⋯N4 0.81 (2) 2.16 (2) 2.973 (3) 178 (3)
O2—H2B⋯N4ii 0.82 (2) 2.22 (2) 3.039 (3) 173 (3)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y, -z+1.

Table 3
Comparative geometric parameters (Å) of cyanidonitridometalates of chromate(V) and manganate(V)

  [Cr(CN)4(N)]2−a [Mn(CN)4(N)]2−b [Cr(CN)5(N)]3−c [Mn(CN)5(N)]3−c
M≡N 1.538 (2) 1.507 (2) 1.594 (9) 1.499 (8)
M—Ccis 2.040 (3)–2.068 (3) 1.974 (2)–1.995 (2) 2.039 (7)–2.08 (2) 1.985 (6)–2.001 (7)
M—Ctrans     2.299 (12) 2.243 (7)
M—oopd 0.449 0.436 0.255 0.222
Notes: (a) this work; (b) Bendix et al. (1998[Bendix, J., Meyer, K., Weyhermüller, T., Bill, E., Metzler-Nolte, N. & Wieghardt, K. (1998). Inorg. Chem. 37, 1767-1775.]); (c) Bendix et al. (2000[Bendix, J., Deeth, R. J., Weyhermüller, T., Bill, E. & Wieghardt, K. (2000). Inorg. Chem. 39, 930-938.]); (d) oop = out-of-plane.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal structures of mononuclear nitridocyanidometalates have previously been reported for technetium (Baldas et al., 1990), rhenium (Britten et al., 1993; Purcell et al., 1991), osmium (Che et al., 1989; van der Westhuizen et al., 1994). We have previously reported the syntheses and crystal stuctures of six coordinated pentacyanidonitridometalates of chromate(V) and manganate(V) (Bendix et al., 2000) as well as the synthesis of the title compound and crystal structure of the isostructural manganese compound (Bendix et al., 1998). In all the cases the nitride ligand imposes a strong trans-influence on the auxiliary ligands evidenced by a significant elongation of the M—Xtrans bond length and the displacement of the metal out of the plane spanned by cyanido-carbon atoms.

The molecular structure of the title compound is shown in Fig. 1. The CrV has a square based pyramidal coordination geometry frequently seen for CrV nitrido complexes (Birk & Bendix, 2003). The nitride occupy the apical position and the four cyanide ligands span the equatorial plane. The Cr atom is displaced 0.4493 (13) Å out of the plane spanned by the cyanido-carbon atoms. Selected geometric parameters are listed in Table 1. The water of crystallization form weak intermolecular hydrogen bonds (Table 2) to two nitrogen atoms of two cyanide ligands as depicted in Fig. 2. The complex anions and water molecules form an infinite chain. For comparison, Table 3 lists selected geometric parameters of the isostructural manganese compound and the six coordinated pentacyanidonitridometalates of chromate(V) and manganate(V).

Related literature top

For related structures of nitridocyanidometalates, see: Baldas et al. (1990); Bendix et al. (1998, 2000); Britten et al. (1993); Che et al. (1989); Purcell et al. (1991); van der Westhuizen et al. (1994). For general background to CrV nitrido complexes, see: Birk & Bendix, 2003.

Experimental top

The title compound was prepared as previously reported (Bendix et al., 1998). A solution of [Cr(N)(CN)4]2- (0.10 g; 0.21 mmol) in water (6.5 ml) was allowed to slowly diffuse into a solution of [PPh4]Cl (0.20 g; 0.53 mmol) in water (15 ml). The pale yellow crystals that precipitated were collected by filtration, washed with water, and air-dried. Yield: 0.16 g (86%).

Refinement top

H atoms on the phenyl groups were found in a difference Fourier map and were included in the refinement as constrained idealized protons riding the parent atom, with C—H = 0.95 Å. Ihe H atoms of the crystal waters were found in a difference Fourier map and were refined semi-free with a distance restraint and the Uiso equal to 1.5 times the Ueq of the parent oxygen.

Structure description top

Crystal structures of mononuclear nitridocyanidometalates have previously been reported for technetium (Baldas et al., 1990), rhenium (Britten et al., 1993; Purcell et al., 1991), osmium (Che et al., 1989; van der Westhuizen et al., 1994). We have previously reported the syntheses and crystal stuctures of six coordinated pentacyanidonitridometalates of chromate(V) and manganate(V) (Bendix et al., 2000) as well as the synthesis of the title compound and crystal structure of the isostructural manganese compound (Bendix et al., 1998). In all the cases the nitride ligand imposes a strong trans-influence on the auxiliary ligands evidenced by a significant elongation of the M—Xtrans bond length and the displacement of the metal out of the plane spanned by cyanido-carbon atoms.

The molecular structure of the title compound is shown in Fig. 1. The CrV has a square based pyramidal coordination geometry frequently seen for CrV nitrido complexes (Birk & Bendix, 2003). The nitride occupy the apical position and the four cyanide ligands span the equatorial plane. The Cr atom is displaced 0.4493 (13) Å out of the plane spanned by the cyanido-carbon atoms. Selected geometric parameters are listed in Table 1. The water of crystallization form weak intermolecular hydrogen bonds (Table 2) to two nitrogen atoms of two cyanide ligands as depicted in Fig. 2. The complex anions and water molecules form an infinite chain. For comparison, Table 3 lists selected geometric parameters of the isostructural manganese compound and the six coordinated pentacyanidonitridometalates of chromate(V) and manganate(V).

For related structures of nitridocyanidometalates, see: Baldas et al. (1990); Bendix et al. (1998, 2000); Britten et al. (1993); Che et al. (1989); Purcell et al. (1991); van der Westhuizen et al. (1994). For general background to CrV nitrido complexes, see: Birk & Bendix, 2003.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT (Nonius, 1999); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (1) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A ball-and-stick representation of the infinite chain of hydrogen bonded water molecules and [Cr(N)(CN)4]2- anions.
Bis(tetraphenylphosphonium) tetracyanidonitridochromate(V) dihydrate top
Crystal data top
(C24H20P)2[Cr(CN)4(N)]·2H2OZ = 2
Mr = 884.86F(000) = 922
Triclinic, P1Dx = 1.275 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.996 (5) ÅCell parameters from 83863 reflections
b = 12.387 (5) Åθ = 1.3–27.6°
c = 16.721 (4) ŵ = 0.36 mm1
α = 98.34 (3)°T = 122 K
β = 110.01 (2)°Prism, yellow
γ = 90.52 (4)°0.12 × 0.09 × 0.06 mm
V = 2305.3 (15) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
8118 independent reflections
Radiation source: fine-focus sealed tube6480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω and φ scansθmax = 25.0°, θmin = 1.3°
Absorption correction: integration
(Gaussian; Coppens, 1970)
h = 1414
Tmin = 0.952, Tmax = 0.980k = 1414
72047 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.P)2 + 2.4326P]
where P = (Fo2 + 2Fc2)/3
8118 reflections(Δ/σ)max = 0.001
571 parametersΔρmax = 0.41 e Å3
4 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C24H20P)2[Cr(CN)4(N)]·2H2Oγ = 90.52 (4)°
Mr = 884.86V = 2305.3 (15) Å3
Triclinic, P1Z = 2
a = 11.996 (5) ÅMo Kα radiation
b = 12.387 (5) ŵ = 0.36 mm1
c = 16.721 (4) ÅT = 122 K
α = 98.34 (3)°0.12 × 0.09 × 0.06 mm
β = 110.01 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
8118 independent reflections
Absorption correction: integration
(Gaussian; Coppens, 1970)
6480 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.980Rint = 0.061
72047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0394 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.41 e Å3
8118 reflectionsΔρmin = 0.44 e Å3
571 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

2.5074 (0.0102) x + 8.4452 (0.0095) y + 7.9575 (0.0134) z = 6.0445 (0.0089)

* 0.1022 (0.0012) C2 * -0.1077 (0.0012) C3 * 0.1077 (0.0012) C4 * -0.1021 (0.0012) C5 0.4493 (0.0013) Cr

Rms deviation of fitted atoms = 0.1050

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.97125 (3)0.24895 (3)0.24580 (2)0.01723 (10)
N11.03216 (19)0.34819 (17)0.31458 (13)0.0287 (5)
C20.9557 (2)0.3156 (2)0.13640 (16)0.0229 (5)
N20.9541 (2)0.35860 (19)0.07957 (15)0.0356 (6)
C31.1055 (2)0.16264 (19)0.22511 (14)0.0194 (5)
N31.17809 (19)0.10990 (18)0.21318 (14)0.0287 (5)
C40.9671 (2)0.1357 (2)0.32438 (15)0.0213 (5)
N40.96893 (19)0.07573 (18)0.37107 (14)0.0302 (5)
C50.7926 (2)0.25946 (19)0.22163 (15)0.0202 (5)
N50.6916 (2)0.25833 (18)0.20697 (14)0.0308 (5)
P10.66573 (5)0.81476 (5)0.15855 (4)0.01645 (14)
C110.7218 (2)0.88033 (19)0.08928 (14)0.0197 (5)
C120.7143 (3)0.9925 (2)0.08778 (17)0.0309 (6)
H120.67721.03530.12230.037*
C130.7613 (3)1.0411 (2)0.03558 (18)0.0405 (7)
H130.75751.11760.03510.049*
C140.8135 (3)0.9788 (2)0.01559 (17)0.0344 (7)
H140.84521.01250.05140.041*
C150.8200 (2)0.8679 (2)0.01495 (16)0.0292 (6)
H150.85590.82540.05050.035*
C160.7746 (2)0.8180 (2)0.03735 (16)0.0257 (6)
H160.77940.74150.03780.031*
C210.5901 (2)0.91094 (18)0.20943 (14)0.0172 (5)
C220.4676 (2)0.89460 (19)0.18939 (15)0.0209 (5)
H220.42590.83100.15160.025*
C230.4068 (2)0.9710 (2)0.22452 (16)0.0244 (6)
H230.32350.95970.21090.029*
C240.4674 (2)1.0636 (2)0.27944 (15)0.0246 (6)
H240.42551.11600.30350.030*
C250.5885 (2)1.08050 (19)0.29953 (15)0.0242 (6)
H250.62931.14450.33720.029*
C260.6512 (2)1.00486 (19)0.26518 (14)0.0201 (5)
H260.73461.01660.27930.024*
C310.5587 (2)0.70555 (18)0.09688 (14)0.0183 (5)
C320.5339 (2)0.62444 (19)0.13962 (15)0.0225 (5)
H320.58330.62050.19720.027*
C330.4381 (2)0.5503 (2)0.09839 (17)0.0271 (6)
H330.42110.49560.12760.032*
C340.3670 (2)0.5554 (2)0.01483 (17)0.0305 (6)
H340.30060.50440.01320.037*
C350.3914 (2)0.6341 (2)0.02869 (17)0.0316 (6)
H350.34250.63630.08660.038*
C360.4872 (2)0.7097 (2)0.01209 (15)0.0243 (6)
H360.50400.76400.01760.029*
C410.7823 (2)0.75651 (19)0.23712 (15)0.0193 (5)
C420.8155 (2)0.7932 (2)0.32521 (15)0.0237 (5)
H420.77950.85380.34580.028*
C430.9016 (2)0.7406 (2)0.38291 (16)0.0290 (6)
H430.92520.76620.44300.035*
C440.9530 (2)0.6517 (2)0.35352 (17)0.0284 (6)
H441.01070.61550.39340.034*
C450.9207 (2)0.6150 (2)0.26603 (17)0.0297 (6)
H450.95660.55380.24600.036*
C460.8365 (2)0.6671 (2)0.20761 (16)0.0276 (6)
H460.81520.64230.14750.033*
P20.65911 (5)0.34699 (5)0.62208 (4)0.01508 (13)
C510.72980 (19)0.38164 (18)0.54899 (14)0.0158 (5)
C520.7530 (2)0.29675 (19)0.49283 (14)0.0183 (5)
H520.72960.22320.49260.022*
C530.8102 (2)0.3205 (2)0.43758 (14)0.0217 (5)
H530.82760.26290.40040.026*
C540.8421 (2)0.4279 (2)0.43637 (15)0.0224 (5)
H540.88070.44390.39800.027*
C550.8178 (2)0.5120 (2)0.49107 (15)0.0231 (5)
H550.83930.58560.48990.028*
C560.7620 (2)0.48910 (19)0.54750 (14)0.0182 (5)
H560.74590.54700.58520.022*
C610.6187 (2)0.46906 (18)0.67540 (14)0.0179 (5)
C620.4995 (2)0.4868 (2)0.66260 (15)0.0220 (5)
H620.43860.43510.62460.026*
C630.4707 (2)0.5803 (2)0.70586 (16)0.0287 (6)
H630.38970.59250.69750.034*
C640.5586 (3)0.6560 (2)0.76098 (16)0.0303 (6)
H640.53770.72000.79010.036*
C650.6773 (2)0.6389 (2)0.77403 (16)0.0281 (6)
H650.73760.69120.81200.034*
C660.7081 (2)0.54541 (19)0.73164 (15)0.0238 (6)
H660.78930.53330.74070.029*
C710.5277 (2)0.26263 (18)0.55768 (14)0.0169 (5)
C720.4935 (2)0.1720 (2)0.58589 (16)0.0252 (6)
H720.54180.15140.63890.030*
C730.3883 (2)0.1116 (2)0.53614 (17)0.0314 (6)
H730.36490.04940.55510.038*
C740.3175 (2)0.1417 (2)0.45915 (16)0.0264 (6)
H740.24540.10020.42560.032*
C750.3512 (2)0.23212 (19)0.43086 (15)0.0221 (5)
H750.30220.25280.37810.027*
C760.4566 (2)0.29250 (18)0.47958 (14)0.0189 (5)
H760.48040.35400.45990.023*
C810.75605 (19)0.27572 (18)0.70289 (14)0.0164 (5)
C820.8202 (2)0.19116 (19)0.67944 (16)0.0232 (5)
H820.81290.17100.62080.028*
C830.8942 (2)0.1368 (2)0.74176 (17)0.0276 (6)
H830.93740.07890.72570.033*
C840.9056 (2)0.1663 (2)0.82709 (17)0.0283 (6)
H840.95720.12890.86960.034*
C850.8427 (2)0.2498 (2)0.85098 (16)0.0302 (6)
H850.85100.26990.90990.036*
C860.7672 (2)0.3046 (2)0.78916 (15)0.0247 (6)
H860.72330.36170.80550.030*
O10.8836 (2)0.57434 (19)0.01213 (19)0.0611 (7)
H1A0.910 (4)0.513 (2)0.025 (3)0.092*
H1B0.931 (3)0.592 (3)0.013 (2)0.092*
O20.85439 (16)0.04312 (15)0.49856 (12)0.0291 (4)
H2A0.884 (3)0.052 (2)0.4627 (16)0.044*
H2B0.906 (2)0.016 (2)0.5356 (16)0.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.0185 (2)0.0193 (2)0.0159 (2)0.00301 (16)0.00804 (16)0.00416 (15)
N10.0316 (13)0.0278 (12)0.0253 (11)0.0007 (10)0.0099 (10)0.0000 (9)
C20.0230 (14)0.0229 (13)0.0254 (14)0.0029 (11)0.0108 (11)0.0058 (11)
N20.0412 (14)0.0395 (14)0.0325 (13)0.0045 (11)0.0165 (11)0.0162 (11)
C30.0204 (13)0.0226 (13)0.0177 (12)0.0011 (11)0.0089 (10)0.0053 (10)
N30.0271 (12)0.0321 (12)0.0328 (13)0.0064 (10)0.0162 (10)0.0088 (10)
C40.0174 (13)0.0286 (14)0.0214 (13)0.0058 (10)0.0106 (11)0.0049 (11)
N40.0309 (13)0.0384 (13)0.0302 (12)0.0106 (10)0.0168 (10)0.0174 (11)
C50.0258 (15)0.0203 (13)0.0199 (12)0.0081 (11)0.0128 (11)0.0073 (10)
N50.0293 (14)0.0351 (13)0.0353 (13)0.0121 (10)0.0174 (11)0.0132 (10)
P10.0173 (3)0.0175 (3)0.0153 (3)0.0030 (2)0.0064 (3)0.0029 (2)
C110.0192 (13)0.0224 (13)0.0177 (12)0.0014 (10)0.0057 (10)0.0053 (10)
C120.0474 (18)0.0236 (14)0.0283 (14)0.0048 (12)0.0206 (13)0.0061 (11)
C130.071 (2)0.0251 (15)0.0340 (16)0.0009 (14)0.0282 (16)0.0087 (13)
C140.0440 (17)0.0393 (17)0.0251 (14)0.0057 (13)0.0162 (13)0.0110 (12)
C150.0295 (15)0.0398 (16)0.0215 (13)0.0035 (12)0.0128 (12)0.0049 (12)
C160.0302 (15)0.0236 (13)0.0264 (14)0.0061 (11)0.0126 (12)0.0066 (11)
C210.0202 (13)0.0175 (12)0.0158 (11)0.0042 (10)0.0078 (10)0.0048 (9)
C220.0200 (13)0.0202 (13)0.0205 (12)0.0010 (10)0.0051 (10)0.0020 (10)
C230.0196 (13)0.0259 (14)0.0308 (14)0.0056 (11)0.0121 (11)0.0062 (11)
C240.0337 (15)0.0202 (13)0.0253 (13)0.0082 (11)0.0166 (12)0.0047 (11)
C250.0343 (15)0.0179 (13)0.0199 (13)0.0009 (11)0.0103 (11)0.0006 (10)
C260.0187 (13)0.0215 (13)0.0200 (12)0.0003 (10)0.0064 (10)0.0040 (10)
C310.0186 (12)0.0190 (12)0.0171 (12)0.0047 (10)0.0066 (10)0.0012 (10)
C320.0262 (14)0.0235 (13)0.0190 (12)0.0038 (11)0.0092 (11)0.0039 (10)
C330.0290 (15)0.0220 (13)0.0331 (15)0.0011 (11)0.0146 (12)0.0042 (11)
C340.0225 (14)0.0258 (14)0.0373 (16)0.0020 (11)0.0056 (12)0.0022 (12)
C350.0287 (15)0.0303 (15)0.0246 (14)0.0033 (12)0.0034 (12)0.0000 (12)
C360.0285 (14)0.0226 (13)0.0219 (13)0.0047 (11)0.0083 (11)0.0042 (11)
C410.0163 (12)0.0206 (12)0.0207 (12)0.0010 (10)0.0048 (10)0.0066 (10)
C420.0250 (14)0.0232 (13)0.0228 (13)0.0014 (11)0.0079 (11)0.0040 (11)
C430.0285 (15)0.0325 (15)0.0220 (13)0.0030 (12)0.0026 (12)0.0071 (11)
C440.0166 (13)0.0320 (15)0.0354 (15)0.0001 (11)0.0029 (12)0.0163 (12)
C450.0246 (14)0.0290 (15)0.0360 (16)0.0102 (12)0.0096 (12)0.0089 (12)
C460.0274 (14)0.0309 (15)0.0236 (13)0.0084 (12)0.0079 (12)0.0034 (11)
P20.0148 (3)0.0161 (3)0.0153 (3)0.0016 (2)0.0065 (2)0.0024 (2)
C510.0124 (11)0.0202 (12)0.0146 (11)0.0021 (9)0.0039 (9)0.0040 (9)
C520.0186 (12)0.0188 (12)0.0168 (12)0.0012 (10)0.0051 (10)0.0031 (10)
C530.0206 (13)0.0290 (14)0.0143 (12)0.0045 (11)0.0056 (10)0.0009 (10)
C540.0188 (13)0.0326 (14)0.0178 (12)0.0000 (11)0.0082 (10)0.0058 (11)
C550.0233 (13)0.0227 (13)0.0236 (13)0.0033 (11)0.0075 (11)0.0067 (11)
C560.0190 (12)0.0193 (12)0.0168 (12)0.0016 (10)0.0073 (10)0.0018 (10)
C610.0233 (13)0.0178 (12)0.0165 (12)0.0021 (10)0.0115 (10)0.0039 (10)
C620.0233 (13)0.0266 (13)0.0176 (12)0.0068 (11)0.0082 (11)0.0054 (10)
C630.0305 (15)0.0355 (15)0.0245 (14)0.0174 (12)0.0128 (12)0.0092 (12)
C640.0522 (19)0.0199 (13)0.0276 (14)0.0136 (13)0.0231 (14)0.0083 (11)
C650.0439 (17)0.0189 (13)0.0265 (14)0.0050 (12)0.0204 (13)0.0001 (11)
C660.0256 (14)0.0240 (13)0.0268 (14)0.0019 (11)0.0159 (12)0.0027 (11)
C710.0155 (12)0.0185 (12)0.0176 (12)0.0016 (10)0.0073 (10)0.0018 (10)
C720.0256 (14)0.0298 (14)0.0209 (13)0.0021 (11)0.0069 (11)0.0094 (11)
C730.0296 (15)0.0342 (15)0.0309 (15)0.0099 (12)0.0087 (12)0.0120 (12)
C740.0217 (14)0.0296 (14)0.0256 (14)0.0056 (11)0.0070 (11)0.0009 (11)
C750.0212 (13)0.0262 (13)0.0170 (12)0.0028 (11)0.0044 (10)0.0026 (10)
C760.0231 (13)0.0156 (12)0.0197 (12)0.0019 (10)0.0092 (11)0.0039 (10)
C810.0139 (12)0.0178 (12)0.0171 (12)0.0013 (9)0.0046 (10)0.0037 (9)
C820.0266 (14)0.0242 (13)0.0213 (13)0.0031 (11)0.0106 (11)0.0054 (10)
C830.0235 (14)0.0271 (14)0.0373 (15)0.0080 (11)0.0133 (12)0.0141 (12)
C840.0190 (13)0.0331 (15)0.0306 (15)0.0014 (11)0.0006 (11)0.0178 (12)
C850.0351 (16)0.0342 (15)0.0156 (13)0.0035 (13)0.0014 (12)0.0046 (11)
C860.0286 (14)0.0261 (14)0.0186 (13)0.0022 (11)0.0078 (11)0.0020 (11)
O10.0613 (16)0.0420 (13)0.112 (2)0.0201 (12)0.0621 (16)0.0316 (14)
O20.0262 (10)0.0365 (11)0.0308 (11)0.0065 (8)0.0147 (9)0.0133 (9)
Geometric parameters (Å, º) top
Cr—N11.538 (2)C45—H450.9500
Cr—C22.066 (3)C46—H460.9500
Cr—C32.040 (3)P2—C711.794 (2)
Cr—C42.068 (3)P2—C611.798 (2)
Cr—C52.049 (3)P2—C811.802 (2)
C2—N21.150 (3)P2—C511.803 (2)
C3—N31.147 (3)C51—C561.389 (3)
C4—N41.148 (3)C51—C521.401 (3)
C5—N51.150 (3)C52—C531.385 (3)
P1—C311.789 (3)C52—H520.9500
P1—C211.795 (2)C53—C541.387 (3)
P1—C411.800 (2)C53—H530.9500
P1—C111.803 (2)C54—C551.385 (3)
C11—C161.394 (3)C54—H540.9500
C11—C121.396 (3)C55—C561.387 (3)
C12—C131.388 (4)C55—H550.9500
C12—H120.9500C56—H560.9500
C13—C141.380 (4)C61—C621.396 (3)
C13—H130.9500C61—C661.401 (3)
C14—C151.378 (4)C62—C631.386 (3)
C14—H140.9500C62—H620.9500
C15—C161.386 (3)C63—C641.381 (4)
C15—H150.9500C63—H630.9500
C16—H160.9500C64—C651.389 (4)
C21—C221.396 (3)C64—H640.9500
C21—C261.401 (3)C65—C661.389 (3)
C22—C231.384 (3)C65—H650.9500
C22—H220.9500C66—H660.9500
C23—C241.382 (4)C71—C721.389 (3)
C23—H230.9500C71—C761.398 (3)
C24—C251.381 (4)C72—C731.388 (4)
C24—H240.9500C72—H720.9500
C25—C261.388 (3)C73—C741.384 (4)
C25—H250.9500C73—H730.9500
C26—H260.9500C74—C751.385 (3)
C31—C361.392 (3)C74—H740.9500
C31—C321.399 (3)C75—C761.386 (3)
C32—C331.376 (4)C75—H750.9500
C32—H320.9500C76—H760.9500
C33—C341.376 (4)C81—C861.394 (3)
C33—H330.9500C81—C821.394 (3)
C34—C351.383 (4)C82—C831.381 (3)
C34—H340.9500C82—H820.9500
C35—C361.387 (4)C83—C841.379 (4)
C35—H350.9500C83—H830.9500
C36—H360.9500C84—C851.379 (4)
C41—C421.391 (3)C84—H840.9500
C41—C461.402 (3)C85—C861.387 (4)
C42—C431.391 (4)C85—H850.9500
C42—H420.9500C86—H860.9500
C43—C441.377 (4)O1—H1A0.856 (19)
C43—H430.9500O1—H1B0.854 (19)
C44—C451.383 (4)O2—H2A0.814 (17)
C44—H440.9500O2—H2B0.824 (17)
C45—C461.383 (4)
N1—Cr—C299.23 (11)C46—C45—C44120.2 (2)
N1—Cr—C3105.79 (11)C46—C45—H45119.9
N1—Cr—C499.95 (11)C44—C45—H45119.9
N1—Cr—C5105.70 (11)C45—C46—C41120.0 (2)
C3—Cr—C5148.38 (10)C45—C46—H46120.0
C3—Cr—C287.56 (10)C41—C46—H46120.0
C5—Cr—C290.28 (10)C71—P2—C61109.65 (11)
C3—Cr—C484.71 (9)C71—P2—C81110.71 (11)
C5—Cr—C487.09 (10)C61—P2—C81108.47 (11)
C2—Cr—C4160.64 (10)C71—P2—C51106.53 (11)
N2—C2—Cr174.6 (2)C61—P2—C51110.02 (11)
N3—C3—Cr177.0 (2)C81—P2—C51111.46 (11)
N4—C4—Cr176.8 (2)C56—C51—C52119.7 (2)
N5—C5—Cr175.7 (2)C56—C51—P2121.93 (17)
C31—P1—C21106.70 (11)C52—C51—P2118.37 (17)
C31—P1—C41107.08 (11)C53—C52—C51119.7 (2)
C21—P1—C41111.23 (11)C53—C52—H52120.1
C31—P1—C11110.46 (11)C51—C52—H52120.1
C21—P1—C11109.57 (11)C52—C53—C54120.3 (2)
C41—P1—C11111.66 (11)C52—C53—H53119.9
C16—C11—C12119.8 (2)C54—C53—H53119.9
C16—C11—P1119.24 (18)C55—C54—C53120.0 (2)
C12—C11—P1120.99 (18)C55—C54—H54120.0
C13—C12—C11119.6 (2)C53—C54—H54120.0
C13—C12—H12120.2C54—C55—C56120.2 (2)
C11—C12—H12120.2C54—C55—H55119.9
C14—C13—C12120.3 (3)C56—C55—H55119.9
C14—C13—H13119.9C55—C56—C51120.0 (2)
C12—C13—H13119.9C55—C56—H56120.0
C15—C14—C13120.3 (2)C51—C56—H56120.0
C15—C14—H14119.8C62—C61—C66120.1 (2)
C13—C14—H14119.8C62—C61—P2120.50 (18)
C14—C15—C16120.3 (2)C66—C61—P2119.43 (18)
C14—C15—H15119.9C63—C62—C61119.4 (2)
C16—C15—H15119.9C63—C62—H62120.3
C15—C16—C11119.8 (2)C61—C62—H62120.3
C15—C16—H16120.1C64—C63—C62120.7 (2)
C11—C16—H16120.1C64—C63—H63119.7
C22—C21—C26119.8 (2)C62—C63—H63119.7
C22—C21—P1119.34 (18)C63—C64—C65120.2 (2)
C26—C21—P1120.78 (18)C63—C64—H64119.9
C23—C22—C21120.1 (2)C65—C64—H64119.9
C23—C22—H22120.0C66—C65—C64120.0 (2)
C21—C22—H22120.0C66—C65—H65120.0
C24—C23—C22120.0 (2)C64—C65—H65120.0
C24—C23—H23120.0C65—C66—C61119.6 (2)
C22—C23—H23120.0C65—C66—H66120.2
C25—C24—C23120.3 (2)C61—C66—H66120.2
C25—C24—H24119.9C72—C71—C76120.1 (2)
C23—C24—H24119.9C72—C71—P2121.21 (18)
C24—C25—C26120.7 (2)C76—C71—P2118.66 (17)
C24—C25—H25119.7C73—C72—C71119.6 (2)
C26—C25—H25119.7C73—C72—H72120.2
C25—C26—C21119.2 (2)C71—C72—H72120.2
C25—C26—H26120.4C74—C73—C72120.4 (2)
C21—C26—H26120.4C74—C73—H73119.8
C36—C31—C32119.7 (2)C72—C73—H73119.8
C36—C31—P1121.13 (18)C73—C74—C75120.2 (2)
C32—C31—P1118.33 (18)C73—C74—H74119.9
C33—C32—C31120.0 (2)C75—C74—H74119.9
C33—C32—H32120.0C74—C75—C76120.0 (2)
C31—C32—H32120.0C74—C75—H75120.0
C32—C33—C34120.1 (2)C76—C75—H75120.0
C32—C33—H33120.0C75—C76—C71119.8 (2)
C34—C33—H33120.0C75—C76—H76120.1
C33—C34—C35120.5 (2)C71—C76—H76120.1
C33—C34—H34119.7C86—C81—C82119.6 (2)
C35—C34—H34119.7C86—C81—P2120.22 (18)
C34—C35—C36120.1 (2)C82—C81—P2120.14 (17)
C34—C35—H35120.0C83—C82—C81119.8 (2)
C36—C35—H35120.0C83—C82—H82120.1
C35—C36—C31119.5 (2)C81—C82—H82120.1
C35—C36—H36120.2C84—C83—C82120.4 (2)
C31—C36—H36120.2C84—C83—H83119.8
C42—C41—C46119.5 (2)C82—C83—H83119.8
C42—C41—P1122.46 (18)C83—C84—C85120.3 (2)
C46—C41—P1117.92 (18)C83—C84—H84119.8
C43—C42—C41119.6 (2)C85—C84—H84119.8
C43—C42—H42120.2C84—C85—C86120.1 (2)
C41—C42—H42120.2C84—C85—H85120.0
C44—C43—C42120.5 (2)C86—C85—H85120.0
C44—C43—H43119.8C85—C86—C81119.8 (2)
C42—C43—H43119.8C85—C86—H86120.1
C43—C44—C45120.2 (2)C81—C86—H86120.1
C43—C44—H44119.9H1A—O1—H1B100 (4)
C45—C44—H44119.9H2A—O2—H2B105 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.86 (2)2.23 (2)3.065 (3)167 (4)
O1—H1B···N2i0.85 (2)2.18 (2)3.035 (3)177 (4)
O2—H2A···N40.81 (2)2.16 (2)2.973 (3)178 (3)
O2—H2B···N4ii0.82 (2)2.22 (2)3.039 (3)173 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula(C24H20P)2[Cr(CN)4(N)]·2H2O
Mr884.86
Crystal system, space groupTriclinic, P1
Temperature (K)122
a, b, c (Å)11.996 (5), 12.387 (5), 16.721 (4)
α, β, γ (°)98.34 (3), 110.01 (2), 90.52 (4)
V3)2305.3 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.12 × 0.09 × 0.06
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionIntegration
(Gaussian; Coppens, 1970)
Tmin, Tmax0.952, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
72047, 8118, 6480
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.10
No. of reflections8118
No. of parameters571
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.44

Computer programs: COLLECT (Nonius, 1999), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Cr—N11.538 (2)Cr—C42.068 (3)
Cr—C22.066 (3)Cr—C52.049 (3)
Cr—C32.040 (3)
N1—Cr—C299.23 (11)N1—Cr—C499.95 (11)
N1—Cr—C3105.79 (11)N1—Cr—C5105.70 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.856 (19)2.23 (2)3.065 (3)167 (4)
O1—H1B···N2i0.854 (19)2.182 (19)3.035 (3)177 (4)
O2—H2A···N40.814 (17)2.159 (18)2.973 (3)178 (3)
O2—H2B···N4ii0.824 (17)2.219 (18)3.039 (3)173 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z+1.
Comparative geometric parameters (Å) of cyanidonitridometalates of chromate(V) and manganate(V). top
[Cr(CN)4(N)]2-a[Mn(CN)4(N)]2-b[Cr(CN)5(N)]3-c[Mn(CN)5(N)]3-c
MN1.538 (2)1.507 (2)1.594 (9)1.499 (8)
M—Ccis2.040 (3)-2.068 (3)1.974 (2)-1.995 (2)2.039 (7)-2.08 (2)1.985 (6)-2.001 (7)
M—Ctrans2.299 (12)2.243 (7)
M—oopd0.4490.4360.2550.222
Notes: (a) this work; (b) Bendix et al. (1998); (c) Bendix et al. (2000); (d) oop = out-of-plane.
 

References

First citationBaldas, J., Boas, J. F., Colmanet, S. F. & Mackay, M. F. (1990). Inorg. Chim. Acta, 170, 233–239.  CSD CrossRef CAS Web of Science Google Scholar
First citationBendix, J., Deeth, R. J., Weyhermüller, T., Bill, E. & Wieghardt, K. (2000). Inorg. Chem. 39, 930–938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBendix, J., Meyer, K., Weyhermüller, T., Bill, E., Metzler-Nolte, N. & Wieghardt, K. (1998). Inorg. Chem. 37, 1767–1775.  Web of Science CSD CrossRef CAS Google Scholar
First citationBirk, T. & Bendix, J. (2003). Inorg. Chem. 42, 7608–7615.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBritten, J. F., Lock, C. J. L. & Wei, Y. (1993). Acta Cryst. C49, 1277–1280.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChe, C. M., Lam, H. W. & Mak, T. C. W. (1989). J. Chem. Soc. Chem. Commun. pp. 1529–1531.  CrossRef Web of Science Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationPurcell, W., Potgieter, I. Z., Damoense, L. J. & Leipolldt, J. S. (1991). Transition Met. Chem. 16, 473–475.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWesthuizen, H. J. van der, Basson, S. S., Leipoldt, J. G. & Purcell, W. (1994). Transition Met. Chem. 19, 582–584.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m227-m228
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds