organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o390-o391

1-Methyl­piperazine-1,4-diium dipicrate

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 20 December 2010; accepted 7 January 2011; online 15 January 2011)

In the crystal structure of the title compound [systematic name: 1-methyl­piperazine-1,4-diium bis­(2,4,6-trinitro­phen­ol­ate)], C5H14N22+·2C6H2N3O7, the ionic components are connected by relatively strong N—H⋯O hydrogen bonds into centrosymmetric six-membered conglomerates, which comprise two dications and four anions. Besides Coulombic inter­actions, only weak C—H⋯O inter­actions and some stacking between picrates (separation between the planes of ca. 3.4 Å but only a small overlapping) can be identified between these `building blocks' of the crystal structure. The piperazine ring adopts a chair conformation with the methyl substituent in the equatorial position. In the picrate anions, the twist angles of the nitro groups depend on their positions relative to the phenolate O atom: it is much smaller for the NO2 groups para to the C—O group [15.23 (9)and 3.92 (14)°] than for the groups in the ortho positions [28.76 (13)–39.84 (11)°].

Related literature

For examples of the biological activity of piperazines: Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]); Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]). For the crystal structures of simple piperidinium picrates, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Shetty, D. N., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o714-o715.]); Li et al. (2009[Li, H., Hakim Al-arique, Q. N. M., Yathirajan, H. S., Narayana, B. & Ramesha, A. R. (2009). Acta Cryst. E65, o518.]); Verdonk et al. (1997[Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976-983.]); Wang & Jia (2008[Wang, Z.-L. & Jia, L.-H. (2008). Acta Cryst. E64, o665-o666.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, pp. 16-22. New York: Plenum.]).

[Scheme 1]

Experimental

Crystal data
  • C5H14N22+·2C6H2N3O7

  • Mr = 558.39

  • Triclinic, [P \overline 1]

  • a = 8.2001 (12) Å

  • b = 10.1780 (15) Å

  • c = 13.7399 (18) Å

  • α = 89.798 (12)°

  • β = 78.130 (11)°

  • γ = 81.558 (12)°

  • V = 1109.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 295 K

  • 0.4 × 0.15 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.936, Tmax = 1.000

  • 21056 measured reflections

  • 4891 independent reflections

  • 3624 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 0.95

  • 4891 reflections

  • 424 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O1A 0.892 (18) 1.831 (18) 2.6305 (17) 148.1 (16)
N11—H11⋯O22A 0.892 (18) 2.356 (18) 2.996 (2) 128.8 (14)
N14—H14B⋯O1Bi 0.88 (2) 1.98 (2) 2.8181 (19) 157.3 (17)
N14—H14A⋯O1B 0.92 (2) 1.99 (2) 2.7962 (18) 146.4 (18)
N14—H14A⋯O22B 0.92 (2) 2.28 (2) 2.992 (2) 133.9 (16)
C5A—H5A⋯O21Aii 0.917 (19) 2.476 (19) 3.383 (2) 170.3 (16)
C5B—H5B⋯O21Biii 0.913 (18) 2.487 (18) 3.394 (2) 172.3 (15)
C11A—H11C⋯O41Aiv 0.93 (3) 2.48 (3) 3.345 (2) 155 (2)
C11A—H11A⋯O62Aiii 0.94 (3) 2.57 (3) 3.496 (3) 168 (2)
C13—H13A⋯O62Bv 0.96 (2) 2.46 (2) 3.386 (2) 162.9 (17)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x+1, y-1, z; (v) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Piperazines are among the most important building blocks in today's drug discovery. They are found in biologically active compounds across a number of different therapeutic areas such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (for instance, Brockunier et al., 2004, Bogatcheva et al., 2006). A small number of piperazinium picrates or piperazinediium dipicrates have been structurally characterized, however generally the cations were heavily substituted. On the other hand, picric acid (pKa=0.38) has been studied for its ability to form salts which display wide spectrum of intermolecular interactions, for instance hydrogen bonds of different strengths and/or π···π stacking interactions. In the course of our studies of picrates of simple organic cations we have determined the crystal and molecular structure of the title compound (I: 1-methylpiprazinediium di(2,4,6-trinitrophenolate), Scheme 1).

In the CSD (Allen, 2002; Version 5.31 of Nov. 2009, updated August 2010) there are only a few picrates of simple piperazinium derivatives, for instance 4-(4-carboxybenzyl)-1-methylpiperazin-1-ium picrate (Li et al., 2009), 1-(2-methoxyphenyl)piperazinium picrate (Verdonk et al., 1997) or piperazine-1,4-diium–dipicrate piperazine complex (Wang & Jia, 2008). Also some more complicated structures were reported, for instance 4-(3-Carboxy-1-ethyl-6-fluoro-4-oxo-1,4- dihydro-7-quinolyl)-1-methylpiperazinium picrate (Fun et al., 2010).

In the crystal structure I there are two picrate anions and 1-methylpiperidinediium dication (Fig. 1); the presence of ionic species is supported by the successful location and refinement of the hydrogen atoms at both nitrogen atoms in the piperidine ring as well as by inspection of the pattern of bond distances and angles. The piperazine ring adopts an almost ideal chair conformation; the values of asymmetry parameters (Duax & Norton, 1975), which measure the deviations from the ideal symmetry (in the case D3 d), are very small, less than 1.6°. The methyl substituent is in the equatorial position as can be seen from the torsion angles C13—C12—C11—C11A: 176.60 (15)° and C15—C16—C11—C11A: -176.72 (14)°. Both aromatic rings are in a good approximation planar, maximum deviation from the least-squares plane calculated by the six ring atoms is 0.0248 (11)Å in the anion A and 0.0297 (10)Å in anion B. The nitro groups are twisted with respect to the ring planes, for the groups ortho with respect to the C—O- group (at C2 and C6) this twist is of course significantly larger (ranging from 28.76 (13)° to 39.84 (11)°) than for the groups in para positions, at C4 (15.23 (9)° in anion A, only 3.92 (14)° in B).

In the crystal structure the building block is made up of a centrosymetric pair of hydrogen bonded ionic components: two dications and four anions (Table 1, Fig. 2). Using graph set notation one can identify - taking into account the primary interactions only - the centrosymmetric ring R24(8) and dimeric D motifs. Interestingly no strong hydrogen bonds are observed between these structures; besides the coulombic interactions only weak C—H···O and some stacking between picrates (Fig. 3) organize the crystal packing.

Related literature top

For examples of the biological activity of piperazines: Brockunier et al. (2004); Bogatcheva et al. (2006). For the crystal structures of simple piperidinium picrates, see: Fun et al. (2010); Li et al. (2009); Verdonk et al. (1997); Wang & Jia (2008). For a description of the Cambridge Structural Database, see: Allen (2002). For asymmetry parameters, see: Duax & Norton (1975).

Experimental top

1-Methyl piperazine (1.00 g, 0.01 mol) was dissolved in 20 ml of alcohol. Picric acid (4.58 g, 0.02 mol) was dissolved in 50 ml of water. Both the solutions were mixed and to this, 5 ml of 3M HCl was added and stirred for few minutes. The formed complex was filtered and dried, crystals appropriate for X-ray data collection were found without further recrystallization (m. p. >523 K). Composition: Found (Calculated): C: 36.48 (36.57); H: 3.20 (3.25); N:19.98 (20.07).

Refinement top

Hydrogen atoms were located in difference Fourier maps and isotropically refined.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the ionic components of I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii; hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The centrosymmetric dimer of salt I; hydrogen bonds are shown as dashed lines. Symmetry codes: (i) -x,1 - y,1 - z.
[Figure 3] Fig. 3. The crystal packing as seen approximately along y-direction. Hydrogen bonds are shown as dashed lines.
1-methylpiperazine-1,4-diium bis(2,4,6-trinitrophenolate) top
Crystal data top
C5H14N22+·2C6H2N3O7Z = 2
Mr = 558.39F(000) = 576
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2001 (12) ÅCell parameters from 12041 reflections
b = 10.1780 (15) Åθ = 3.0–28.0°
c = 13.7399 (18) ŵ = 0.15 mm1
α = 89.798 (12)°T = 295 K
β = 78.130 (11)°Block, yellow
γ = 81.558 (12)°0.4 × 0.15 × 0.07 mm
V = 1109.6 (3) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4891 independent reflections
Radiation source: Enhance (Mo) X-ray Source3624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.1544 pixels mm-1θmax = 28.0°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1312
Tmin = 0.936, Tmax = 1.000l = 1818
21056 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.3607P]
where P = (Fo2 + 2Fc2)/3
4891 reflections(Δ/σ)max < 0.001
424 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C5H14N22+·2C6H2N3O7γ = 81.558 (12)°
Mr = 558.39V = 1109.6 (3) Å3
Triclinic, P1Z = 2
a = 8.2001 (12) ÅMo Kα radiation
b = 10.1780 (15) ŵ = 0.15 mm1
c = 13.7399 (18) ÅT = 295 K
α = 89.798 (12)°0.4 × 0.15 × 0.07 mm
β = 78.130 (11)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4891 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3624 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 1.000Rint = 0.021
21056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.24 e Å3
4891 reflectionsΔρmin = 0.30 e Å3
424 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.10838 (19)0.86643 (15)0.10686 (11)0.0303 (3)
O1A0.02003 (16)0.75573 (12)0.08429 (10)0.0469 (3)
C2A0.04660 (18)0.98367 (16)0.13439 (12)0.0309 (3)
N2A0.12392 (16)0.97199 (15)0.15030 (11)0.0394 (3)
O21A0.19522 (16)1.07010 (15)0.13867 (13)0.0601 (4)
O22A0.18805 (16)0.86647 (14)0.17951 (12)0.0568 (4)
C3A0.1404 (2)1.10787 (16)0.14843 (12)0.0314 (3)
H3A0.091 (3)1.179 (2)0.1651 (16)0.052 (6)*
C4A0.30793 (18)1.12289 (14)0.14285 (11)0.0284 (3)
N4A0.40990 (18)1.25160 (13)0.16554 (10)0.0350 (3)
O41A0.56396 (15)1.25745 (13)0.18252 (10)0.0474 (3)
O42A0.33873 (18)1.34906 (12)0.16819 (12)0.0566 (4)
C5A0.38244 (19)1.01553 (15)0.12063 (11)0.0288 (3)
H5A0.495 (2)1.0237 (18)0.1186 (13)0.036 (5)*
C6A0.28521 (19)0.89319 (14)0.10388 (11)0.0294 (3)
N6A0.36772 (18)0.78285 (13)0.08081 (11)0.0370 (3)
O61A0.3268 (2)0.67315 (13)0.11180 (13)0.0662 (5)
O62A0.47823 (18)0.80553 (14)0.03359 (11)0.0557 (4)
C1B0.29112 (18)0.24867 (15)0.41703 (11)0.0270 (3)
O1B0.19899 (13)0.35763 (11)0.44572 (8)0.0353 (3)
C2B0.23173 (18)0.13264 (16)0.38650 (12)0.0299 (3)
N2B0.05928 (16)0.14283 (15)0.37308 (12)0.0404 (3)
O21B0.00902 (16)0.04406 (15)0.38274 (15)0.0690 (5)
O22B0.00859 (16)0.24821 (14)0.34659 (12)0.0576 (4)
C3B0.32794 (19)0.00995 (16)0.36639 (12)0.0315 (3)
H3B0.279 (2)0.0637 (19)0.3481 (14)0.040 (5)*
C4B0.49633 (19)0.00422 (15)0.37139 (11)0.0301 (3)
N4B0.59846 (18)0.13327 (14)0.34997 (11)0.0389 (3)
O41B0.74541 (16)0.14586 (14)0.35957 (12)0.0558 (4)
O42B0.53534 (19)0.22459 (14)0.32327 (14)0.0652 (4)
C5B0.56874 (19)0.10308 (16)0.39575 (11)0.0303 (3)
H5B0.681 (2)0.0949 (17)0.3956 (13)0.033 (4)*
C6B0.46974 (18)0.22393 (16)0.41531 (11)0.0295 (3)
N6B0.55497 (17)0.33587 (15)0.43280 (12)0.0414 (4)
O61B0.5170 (2)0.44149 (14)0.39533 (12)0.0590 (4)
O62B0.66595 (18)0.31520 (16)0.47993 (14)0.0699 (5)
N110.16733 (15)0.57565 (13)0.16779 (10)0.0291 (3)
H110.114 (2)0.6554 (18)0.1567 (13)0.030 (4)*
C11A0.2986 (3)0.5363 (2)0.07575 (15)0.0456 (5)
H11C0.346 (3)0.450 (3)0.0848 (19)0.071 (7)*
H11B0.243 (3)0.539 (2)0.024 (2)0.068 (7)*
H11A0.372 (3)0.600 (3)0.068 (2)0.079 (8)*
C120.2433 (2)0.58588 (17)0.25660 (13)0.0348 (4)
H12B0.300 (2)0.498 (2)0.2664 (14)0.041 (5)*
H12A0.322 (3)0.647 (2)0.2416 (16)0.053 (6)*
C130.1088 (2)0.63356 (18)0.34660 (13)0.0387 (4)
H13B0.054 (2)0.7194 (19)0.3366 (13)0.035 (5)*
H13A0.157 (2)0.636 (2)0.4042 (16)0.049 (5)*
N140.02066 (18)0.54247 (15)0.36518 (11)0.0361 (3)
H14B0.100 (3)0.576 (2)0.4161 (16)0.044 (5)*
H14A0.031 (3)0.460 (2)0.3783 (15)0.048 (5)*
C150.0961 (2)0.52998 (19)0.27659 (13)0.0364 (4)
H15B0.153 (2)0.616 (2)0.2644 (15)0.042 (5)*
H15A0.171 (3)0.471 (2)0.2906 (15)0.047 (5)*
C160.0398 (2)0.48330 (17)0.18685 (13)0.0338 (3)
H16B0.098 (2)0.3954 (19)0.1948 (14)0.036 (5)*
H16A0.012 (3)0.481 (2)0.1283 (17)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0339 (8)0.0278 (8)0.0286 (8)0.0045 (6)0.0116 (6)0.0010 (6)
O1A0.0507 (7)0.0349 (6)0.0543 (8)0.0144 (5)0.0239 (6)0.0092 (6)
C2A0.0257 (7)0.0361 (8)0.0310 (8)0.0019 (6)0.0081 (6)0.0030 (6)
N2A0.0275 (7)0.0450 (8)0.0462 (9)0.0034 (6)0.0097 (6)0.0010 (7)
O21A0.0355 (7)0.0566 (9)0.0925 (12)0.0161 (6)0.0166 (7)0.0067 (8)
O22A0.0422 (7)0.0511 (8)0.0820 (11)0.0035 (6)0.0320 (7)0.0070 (7)
C3A0.0342 (8)0.0290 (8)0.0324 (8)0.0068 (6)0.0088 (6)0.0024 (6)
C4A0.0311 (7)0.0244 (7)0.0284 (8)0.0010 (6)0.0072 (6)0.0014 (6)
N4A0.0435 (8)0.0274 (7)0.0324 (7)0.0029 (6)0.0099 (6)0.0003 (5)
O41A0.0381 (7)0.0415 (7)0.0571 (8)0.0112 (5)0.0094 (6)0.0042 (6)
O42A0.0646 (9)0.0267 (6)0.0792 (11)0.0052 (6)0.0174 (8)0.0055 (6)
C5A0.0280 (7)0.0307 (8)0.0287 (8)0.0012 (6)0.0102 (6)0.0027 (6)
C6A0.0357 (8)0.0260 (7)0.0289 (8)0.0037 (6)0.0130 (6)0.0011 (6)
N6A0.0453 (8)0.0307 (7)0.0387 (8)0.0068 (6)0.0163 (6)0.0020 (6)
O61A0.0923 (11)0.0293 (7)0.0920 (12)0.0132 (7)0.0508 (10)0.0087 (7)
O62A0.0606 (8)0.0531 (8)0.0682 (9)0.0181 (7)0.0407 (8)0.0056 (7)
C1B0.0256 (7)0.0315 (8)0.0221 (7)0.0001 (6)0.0036 (5)0.0009 (6)
O1B0.0338 (6)0.0350 (6)0.0336 (6)0.0054 (5)0.0061 (5)0.0059 (5)
C2B0.0227 (7)0.0359 (8)0.0308 (8)0.0032 (6)0.0055 (6)0.0006 (6)
N2B0.0265 (7)0.0434 (8)0.0523 (9)0.0043 (6)0.0108 (6)0.0032 (7)
O21B0.0357 (7)0.0529 (9)0.1243 (15)0.0158 (6)0.0236 (8)0.0045 (9)
O22B0.0400 (7)0.0510 (8)0.0875 (11)0.0010 (6)0.0315 (7)0.0076 (7)
C3B0.0312 (8)0.0310 (8)0.0331 (8)0.0061 (6)0.0070 (6)0.0003 (6)
C4B0.0288 (7)0.0312 (8)0.0278 (8)0.0027 (6)0.0050 (6)0.0014 (6)
N4B0.0388 (8)0.0355 (8)0.0370 (8)0.0050 (6)0.0031 (6)0.0023 (6)
O41B0.0365 (7)0.0511 (8)0.0751 (10)0.0147 (6)0.0155 (6)0.0074 (7)
O42B0.0597 (9)0.0352 (7)0.0992 (13)0.0017 (6)0.0186 (8)0.0210 (8)
C5B0.0227 (7)0.0402 (9)0.0264 (8)0.0003 (6)0.0053 (6)0.0026 (6)
C6B0.0273 (7)0.0349 (8)0.0264 (7)0.0051 (6)0.0056 (6)0.0037 (6)
N6B0.0318 (7)0.0453 (9)0.0462 (9)0.0065 (6)0.0052 (6)0.0166 (7)
O61B0.0718 (9)0.0448 (8)0.0644 (9)0.0235 (7)0.0133 (8)0.0015 (7)
O62B0.0495 (8)0.0688 (10)0.0995 (13)0.0001 (7)0.0399 (9)0.0343 (9)
N110.0286 (6)0.0248 (6)0.0310 (7)0.0034 (5)0.0047 (5)0.0002 (5)
C11A0.0464 (10)0.0415 (11)0.0383 (10)0.0077 (9)0.0055 (8)0.0011 (8)
C120.0280 (8)0.0350 (9)0.0423 (9)0.0012 (7)0.0122 (7)0.0009 (7)
C130.0431 (9)0.0357 (9)0.0386 (9)0.0020 (7)0.0169 (8)0.0092 (7)
N140.0343 (7)0.0384 (8)0.0289 (7)0.0082 (6)0.0010 (6)0.0024 (6)
C150.0271 (8)0.0411 (9)0.0403 (9)0.0024 (7)0.0073 (7)0.0020 (7)
C160.0376 (8)0.0309 (8)0.0342 (9)0.0054 (7)0.0104 (7)0.0033 (7)
Geometric parameters (Å, º) top
C1A—O1A1.2494 (18)N4B—O42B1.220 (2)
C1A—C2A1.443 (2)N4B—O41B1.2271 (19)
C1A—C6A1.445 (2)C5B—C6B1.365 (2)
C2A—C3A1.372 (2)C5B—H5B0.913 (18)
C2A—N2A1.4470 (19)C6B—N6B1.466 (2)
N2A—O21A1.2233 (19)N6B—O62B1.215 (2)
N2A—O22A1.2283 (19)N6B—O61B1.217 (2)
C3A—C4A1.378 (2)N11—C161.490 (2)
C3A—H3A0.93 (2)N11—C121.490 (2)
C4A—C5A1.391 (2)N11—C11A1.495 (2)
C4A—N4A1.4445 (19)N11—H110.892 (18)
N4A—O42A1.2267 (19)C11A—H11C0.93 (3)
N4A—O41A1.2291 (18)C11A—H11B0.92 (3)
C5A—C6A1.369 (2)C11A—H11A0.94 (3)
C5A—H5A0.917 (19)C12—C131.505 (2)
C6A—N6A1.4605 (19)C12—H12B0.97 (2)
N6A—O62A1.2144 (18)C12—H12A0.96 (2)
N6A—O61A1.2190 (19)C13—N141.493 (2)
C1B—O1B1.2612 (18)C13—H13B0.946 (19)
C1B—C2B1.437 (2)C13—H13A0.96 (2)
C1B—C6B1.445 (2)N14—C151.488 (2)
C2B—C3B1.372 (2)N14—H14B0.88 (2)
C2B—N2B1.4521 (19)N14—H14A0.92 (2)
N2B—O21B1.215 (2)C15—C161.507 (2)
N2B—O22B1.2238 (19)C15—H15B0.96 (2)
C3B—C4B1.383 (2)C15—H15A0.92 (2)
C3B—H3B0.959 (19)C16—H16B0.965 (18)
C4B—C5B1.390 (2)C16—H16A0.99 (2)
C4B—N4B1.446 (2)
O1A—C1A—C2A124.85 (14)C5B—C6B—C1B124.82 (14)
O1A—C1A—C6A123.25 (15)C5B—C6B—N6B116.40 (13)
C2A—C1A—C6A111.84 (13)C1B—C6B—N6B118.76 (13)
C3A—C2A—C1A124.24 (13)O62B—N6B—O61B123.87 (16)
C3A—C2A—N2A116.59 (14)O62B—N6B—C6B117.52 (16)
C1A—C2A—N2A119.16 (13)O61B—N6B—C6B118.50 (14)
O21A—N2A—O22A122.68 (14)C16—N11—C12110.14 (13)
O21A—N2A—C2A118.32 (14)C16—N11—C11A111.97 (14)
O22A—N2A—C2A118.91 (14)C12—N11—C11A111.84 (14)
C2A—C3A—C4A119.12 (15)C16—N11—H11107.5 (11)
C2A—C3A—H3A118.9 (13)C12—N11—H11109.0 (11)
C4A—C3A—H3A121.8 (13)C11A—N11—H11106.2 (11)
C3A—C4A—C5A121.40 (14)N11—C11A—H11C106.1 (16)
C3A—C4A—N4A119.07 (14)N11—C11A—H11B106.3 (15)
C5A—C4A—N4A119.46 (13)H11C—C11A—H11B110 (2)
O42A—N4A—O41A123.36 (14)N11—C11A—H11A106.9 (17)
O42A—N4A—C4A118.51 (14)H11C—C11A—H11A116 (2)
O41A—N4A—C4A118.12 (14)H11B—C11A—H11A111 (2)
C6A—C5A—C4A118.49 (14)N11—C12—C13110.48 (13)
C6A—C5A—H5A119.2 (11)N11—C12—H12B106.7 (11)
C4A—C5A—H5A122.3 (11)C13—C12—H12B110.9 (11)
C5A—C6A—C1A124.74 (14)N11—C12—H12A107.2 (13)
C5A—C6A—N6A116.96 (13)C13—C12—H12A110.5 (13)
C1A—C6A—N6A118.30 (13)H12B—C12—H12A110.9 (16)
O62A—N6A—O61A122.69 (14)N14—C13—C12110.29 (14)
O62A—N6A—C6A118.18 (13)N14—C13—H13B107.8 (11)
O61A—N6A—C6A119.09 (13)C12—C13—H13B110.5 (11)
O1B—C1B—C2B124.76 (13)N14—C13—H13A108.6 (12)
O1B—C1B—C6B123.54 (14)C12—C13—H13A110.3 (12)
C2B—C1B—C6B111.65 (13)H13B—C13—H13A109.3 (16)
C3B—C2B—C1B124.68 (13)C15—N14—C13111.26 (14)
C3B—C2B—N2B115.96 (14)C15—N14—H14B109.5 (13)
C1B—C2B—N2B119.34 (13)C13—N14—H14B107.5 (13)
O21B—N2B—O22B122.20 (14)C15—N14—H14A108.4 (13)
O21B—N2B—C2B118.69 (14)C13—N14—H14A108.3 (12)
O22B—N2B—C2B118.96 (14)H14B—N14—H14A111.8 (18)
C2B—C3B—C4B118.77 (15)N14—C15—C16110.20 (13)
C2B—C3B—H3B120.1 (11)N14—C15—H15B108.1 (12)
C4B—C3B—H3B121.1 (11)C16—C15—H15B109.3 (12)
C3B—C4B—C5B121.27 (14)N14—C15—H15A108.0 (13)
C3B—C4B—N4B119.00 (14)C16—C15—H15A110.7 (13)
C5B—C4B—N4B119.73 (13)H15B—C15—H15A110.4 (16)
O42B—N4B—O41B122.89 (14)N11—C16—C15110.70 (13)
O42B—N4B—C4B118.86 (14)N11—C16—H16B108.1 (10)
O41B—N4B—C4B118.24 (14)C15—C16—H16B112.1 (11)
C6B—C5B—C4B118.58 (14)N11—C16—H16A108.9 (13)
C6B—C5B—H5B120.0 (11)C15—C16—H16A108.8 (13)
C4B—C5B—H5B121.3 (11)H16B—C16—H16A108.2 (16)
O1A—C1A—C2A—C3A172.55 (16)C3B—C2B—N2B—O21B27.4 (2)
C6A—C1A—C2A—C3A4.8 (2)C1B—C2B—N2B—O21B153.91 (17)
O1A—C1A—C2A—N2A8.5 (2)C3B—C2B—N2B—O22B148.21 (17)
C6A—C1A—C2A—N2A174.11 (14)C1B—C2B—N2B—O22B30.5 (2)
C3A—C2A—N2A—O21A26.5 (2)C1B—C2B—C3B—C4B2.8 (2)
C1A—C2A—N2A—O21A154.53 (16)N2B—C2B—C3B—C4B175.80 (14)
C3A—C2A—N2A—O22A150.03 (16)C2B—C3B—C4B—C5B0.3 (2)
C1A—C2A—N2A—O22A29.0 (2)C2B—C3B—C4B—N4B179.82 (14)
C1A—C2A—C3A—C4A4.6 (2)C3B—C4B—N4B—O42B3.6 (2)
N2A—C2A—C3A—C4A174.39 (14)C5B—C4B—N4B—O42B175.90 (16)
C2A—C3A—C4A—C5A1.8 (2)C3B—C4B—N4B—O41B176.40 (15)
C2A—C3A—C4A—N4A175.04 (14)C5B—C4B—N4B—O41B4.1 (2)
C3A—C4A—N4A—O42A15.4 (2)C3B—C4B—C5B—C6B0.3 (2)
C5A—C4A—N4A—O42A167.73 (15)N4B—C4B—C5B—C6B179.78 (14)
C3A—C4A—N4A—O41A163.68 (14)C4B—C5B—C6B—C1B2.9 (2)
C5A—C4A—N4A—O41A13.2 (2)C4B—C5B—C6B—N6B175.30 (14)
C3A—C4A—C5A—C6A0.2 (2)O1B—C1B—C6B—C5B172.05 (15)
N4A—C4A—C5A—C6A177.01 (14)C2B—C1B—C6B—C5B5.4 (2)
C4A—C5A—C6A—C1A0.4 (2)O1B—C1B—C6B—N6B9.8 (2)
C4A—C5A—C6A—N6A179.97 (13)C2B—C1B—C6B—N6B172.77 (14)
O1A—C1A—C6A—C5A174.70 (15)C5B—C6B—N6B—O62B38.6 (2)
C2A—C1A—C6A—C5A2.7 (2)C1B—C6B—N6B—O62B143.11 (16)
O1A—C1A—C6A—N6A4.9 (2)C5B—C6B—N6B—O61B137.68 (16)
C2A—C1A—C6A—N6A177.70 (13)C1B—C6B—N6B—O61B40.6 (2)
C5A—C6A—N6A—O62A33.9 (2)C16—N11—C12—C1358.20 (17)
C1A—C6A—N6A—O62A145.77 (16)C11A—N11—C12—C13176.60 (15)
C5A—C6A—N6A—O61A144.12 (17)N11—C12—C13—N1457.33 (18)
C1A—C6A—N6A—O61A36.3 (2)C12—C13—N14—C1556.74 (18)
O1B—C1B—C2B—C3B172.05 (15)C13—N14—C15—C1656.51 (19)
C6B—C1B—C2B—C3B5.3 (2)C12—N11—C16—C1558.16 (17)
O1B—C1B—C2B—N2B9.4 (2)C11A—N11—C16—C15176.72 (14)
C6B—C1B—C2B—N2B173.25 (14)N14—C15—C16—N1157.15 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O1A0.892 (18)1.831 (18)2.6305 (17)148.1 (16)
N11—H11···O22A0.892 (18)2.356 (18)2.996 (2)128.8 (14)
N14—H14B···O1Bi0.88 (2)1.98 (2)2.8181 (19)157.3 (17)
N14—H14A···O1B0.92 (2)1.99 (2)2.7962 (18)146.4 (18)
N14—H14A···O22B0.92 (2)2.28 (2)2.992 (2)133.9 (16)
C5A—H5A···O21Aii0.917 (19)2.476 (19)3.383 (2)170.3 (16)
C5B—H5B···O21Biii0.913 (18)2.487 (18)3.394 (2)172.3 (15)
C11A—H11C···O41Aiv0.93 (3)2.48 (3)3.345 (2)155 (2)
C11A—H11A···O62Aiii0.94 (3)2.57 (3)3.496 (3)168 (2)
C12—H12A···O22A0.96 (2)2.56 (2)3.046 (2)111.6 (15)
C13—H13A···O62Bv0.96 (2)2.46 (2)3.386 (2)162.9 (17)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H14N22+·2C6H2N3O7
Mr558.39
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.2001 (12), 10.1780 (15), 13.7399 (18)
α, β, γ (°)89.798 (12), 78.130 (11), 81.558 (12)
V3)1109.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.4 × 0.15 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.936, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21056, 4891, 3624
Rint0.021
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 0.95
No. of reflections4891
No. of parameters424
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O1A0.892 (18)1.831 (18)2.6305 (17)148.1 (16)
N11—H11···O22A0.892 (18)2.356 (18)2.996 (2)128.8 (14)
N14—H14B···O1Bi0.88 (2)1.98 (2)2.8181 (19)157.3 (17)
N14—H14A···O1B0.92 (2)1.99 (2)2.7962 (18)146.4 (18)
N14—H14A···O22B0.92 (2)2.28 (2)2.992 (2)133.9 (16)
C5A—H5A···O21Aii0.917 (19)2.476 (19)3.383 (2)170.3 (16)
C5B—H5B···O21Biii0.913 (18)2.487 (18)3.394 (2)172.3 (15)
C11A—H11C···O41Aiv0.93 (3)2.48 (3)3.345 (2)155 (2)
C11A—H11A···O62Aiii0.94 (3)2.57 (3)3.496 (3)168 (2)
C12—H12A···O22A0.96 (2)2.56 (2)3.046 (2)111.6 (15)
C13—H13A···O62Bv0.96 (2)2.46 (2)3.386 (2)162.9 (17)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y1, z; (v) x+1, y+1, z+1.
 

Acknowledgements

SS thanks Mangalore University for the research facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, pp. 16–22. New York: Plenum.  Google Scholar
First citationFun, H.-K., Hemamalini, M., Shetty, D. N., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o714–o715.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H., Hakim Al-arique, Q. N. M., Yathirajan, H. S., Narayana, B. & Ramesha, A. R. (2009). Acta Cryst. E65, o518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVerdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976–983.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Jia, L.-H. (2008). Acta Cryst. E64, o665–o666.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o390-o391
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds