metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{rac-5-[Meth­­oxy(phen­yl)meth­yl]-10,20-di­phenyl­porphyrinato}nickel(II)

aSFI Tetrapyrrole Laboratory, School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: sengem@tcd.ie

(Received 5 January 2011; accepted 22 January 2011; online 29 January 2011)

The title compound, [Ni(C40H28N4O)], was obtained from a Grignard reaction of the respective formyl­porphyrin to yield {5-[hy­droxy(phen­yl)meth­yl]-10,20-diphenyl­porphyrinato}nickel(II), followed by crystallization from methyl­ene chloride/methanol. The mol­ecule exhibits a ruffled macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares plane (Δ24) of 0.26 Å and an average Ni—N bond length of 1.931 (2) Å. In line with the asymmetrical substituent pattern, the degree of distortion is slightly larger at point of attachment of the meth­oxy(phen­yl)methyl residue than at the unsubstituted meso position. The meth­oxy group attached to the chiral C atom is disordered in a 0.534 (4):0.466 (4) ratio.

Related literature

For related literature on the conformation of porphyrins, see: Senge (2000[Senge, M. O. (2000). The Porphyrin Handbook, Vol. 10, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1-218. San Diego: Academic Press.]). For the chemistry of porphyrins with mixed meso substituents, see: Dahms et al. (2007[Dahms, K., Senge, M. O. & Bakar, M. B. (2007). Eur. J. Org. Chem. pp. 3833-3848.]); Senge et al. (2010[Senge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. pp. 237-258.]). For Ni(II) porphyrin structures, see: Fleischer et al. (1964[Fleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc. 86, 2342-2348.]); Gallucci et al. (1982[Gallucci, J. C., Swepston, P. N. & Ibers, J. A. (1982). Acta Cryst. B38, 2134-2139.]); Hoard (1973[Hoard, J. L. (1973). Ann. N. Y. Acad. Sci. 206, 18-31.]); Lee & Scheidt (1987[Lee, Y. J. & Scheidt, W. R. (1987). Struct. Bonding (Berlin), 64, 1-69.]), Senge (2000[Senge, M. O. (2000). The Porphyrin Handbook, Vol. 10, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1-218. San Diego: Academic Press.]) and Senge et al. (2000[Senge, M. O., Renner, M. W., Kalisch, W. W. & Fajer, J. (2000). J. Chem. Soc. Dalton Trans. pp. 381-385.]). For handling of the crystals, see: Hope (1994[Hope, H. (1994). Prog. Inorg. Chem. 41, 1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C40H28N4O)]

  • Mr = 639.37

  • Triclinic, [P \overline 1]

  • a = 10.869 (2) Å

  • b = 11.984 (2) Å

  • c = 12.332 (3) Å

  • α = 72.356 (6)°

  • β = 85.305 (8)°

  • γ = 74.219 (7)°

  • V = 1473.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 123 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.873, Tmax = 0.873

  • 29300 measured reflections

  • 7270 independent reflections

  • 6754 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.108

  • S = 1.10

  • 7270 reflections

  • 436 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) crystallized as the racemic form in the triclinic space group P1. It was obtained from a Grignard reaction of the respective formylporphyrin to yield {5-[hydroxy(phenyl)methyl]-10,20-diphenylporphyrinato}nickel(II), (II) (Fig. 2), followed by crystallization from methylene chloride/methanol. I.e., substitution of the hydroxy group by a methoxy group occurred during the crystallization. The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

The molecule exhibits a ruffled macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares-plane (Δ24) of 0.26 Å and an average Ni–N bond length of 1.931 (2) Å. In line with the unsymmetrical substituent pattern the degree of distortion is slightly larger at C5 (the methoxyphenylmethyl residue) then at C15 (the unsubstituted meso position). This is indicated by the individual displacements of the Cm positions from the least-squares-plane of the four nitrogen atoms. The respective displacement values are -0.64, 0.49, -0.49, 0.47 Å for C5, C10, C15 and C20, respectively. Similarly, the Ca—Cm—Ca angle for C15 is widened (123.2 (2)°) compared to the other three meso positions (average = 121.3 (2)°). In terms of macrocycle distortion modes, the most significant out-of-plane contributor is B1u (ruffled) with some degree of B2u (saddle) mixed in. The most prominent in-plane distortion mode is A1 g, i.e., macrocycle breathing.

The molecules form a close spaced lattice structure characterized by stacking of the porphyrin macrocycles (not shown). The closest intramolecular contacts are Ni–H15 (3.034 Å) and Ni–H203 (2.764 Å). The former is a side-on contact and blocks one face of the porphyrin. The latter involves a meta-phenyl hydrogen atom pointing towards the nickel(II) center.

Related literature top

For related literature on the conformation of porphyrins, see: Senge (2000). For the chemistry of porphyrins with mixed meso substituents, see: Dahms et al. (2007); Senge et al. (2010). For Ni(II) porphyrin structures, see: Fleischer et al. (1964); Gallucci et al. (1982); Hoard (1973); Lee & Scheidt (1987), Senge (2000) and Senge et al. (2000). For handling of the crystals, see: Hope (1994).

Experimental top

The title compound I was obtained from II (Dahms et al., 2007) upon crystallization from CH2Cl2/CH3OH. Porphyrin II in turn was prepared via Grignard reaction of (5-formyl-10,20-diphenylporphyrinato)nickel(II) with phenyl magnesium bromide.

Refinement top

The compound crystallized with crystallographic disorder of the methoxy group at the meso carbon (C51) with the site-occupancy factors of 0.533 (3) and 0.467 (3) for part A and B respectively. The H atoms bonded to C58 and C58a atoms were refined with standard distances of 0.97 Å, for methyl groups with Uiso(H)=1.5Ueq(C) and the H atom for C51 was refined with 0.98Å with Uiso(H)=1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : View of the molecular structure of I in the crystals. Thermal ellipsoids are drawn for 50% occupancy. Only one of the two enantiomeric forms is shown; hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Schematic representations of (I) and (II).
{rac-5-[Methoxy(phenyl)methyl]-10,20-diphenylporphyrinato}nickel(II) top
Crystal data top
[Ni(C40H28N4O)]Z = 2
Mr = 639.37F(000) = 664
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 10.869 (2) ÅCell parameters from 4706 reflections
b = 11.984 (2) Åθ = 2.0–28.3°
c = 12.332 (3) ŵ = 0.70 mm1
α = 72.356 (6)°T = 123 K
β = 85.305 (8)°Prism, red
γ = 74.219 (7)°0.20 × 0.20 × 0.20 mm
V = 1473.0 (5) Å3
Data collection top
Rigaku Saturn724
diffractometer
7270 independent reflections
Radiation source: Sealed Tube6754 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.040
Detector resolution: 28.5714 pixels mm-1θmax = 28.4°, θmin = 2.6°
dtprofit.ref scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 1615
Tmin = 0.873, Tmax = 0.873l = 1616
29300 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.2452P]
where P = (Fo2 + 2Fc2)/3
7270 reflections(Δ/σ)max = 0.001
436 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Ni(C40H28N4O)]γ = 74.219 (7)°
Mr = 639.37V = 1473.0 (5) Å3
Triclinic, P1Z = 2
a = 10.869 (2) ÅMo Kα radiation
b = 11.984 (2) ŵ = 0.70 mm1
c = 12.332 (3) ÅT = 123 K
α = 72.356 (6)°0.20 × 0.20 × 0.20 mm
β = 85.305 (8)°
Data collection top
Rigaku Saturn724
diffractometer
7270 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
6754 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.873Rint = 0.040
29300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.10Δρmax = 0.37 e Å3
7270 reflectionsΔρmin = 0.52 e Å3
436 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The compound crystallized with crystallographic disorder of the methoxy group at the meso carbon (C51) with the site-occupancy factors of 0.533 (3) and 0.467 (3) for part A and B respectively. The H atoms bonded to C58 and C58a atoms were refined with standard distances of 0.97 Å, for methyl groups with Uiso(H)=1.5Ueq(C) and the H atom for C51 was refined with 0.98Å with Uiso(H)=1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.06269 (3)0.66980 (3)0.41138 (2)0.02087 (8)
O10.1607 (3)0.9874 (3)0.0116 (3)0.0299 (8)0.534 (4)
C580.1951 (6)1.0236 (5)0.1294 (4)0.0373 (13)0.534 (4)
H58A0.23791.11050.15380.056*0.534 (4)
H58B0.25310.97770.13970.056*0.534 (4)
H58C0.11791.00740.17500.056*0.534 (4)
O1A0.0393 (3)0.8932 (3)0.0643 (3)0.0282 (9)0.466 (4)
C58A0.1124 (5)0.9638 (5)0.1660 (4)0.0317 (13)0.466 (4)
H58D0.05710.96230.23280.047*0.466 (4)
H58E0.14641.04770.16390.047*0.466 (4)
H58F0.18330.92950.17060.047*0.466 (4)
N210.06152 (17)0.82009 (17)0.34561 (15)0.0224 (4)
N220.13478 (17)0.67312 (17)0.26209 (15)0.0224 (4)
N230.18836 (17)0.51926 (17)0.47673 (15)0.0217 (4)
N240.00879 (17)0.66697 (17)0.56101 (15)0.0229 (4)
C10.1395 (2)0.8957 (2)0.40303 (19)0.0249 (4)
C20.2243 (2)0.9954 (2)0.3252 (2)0.0292 (5)
H20.28451.06120.34340.035*
C30.2025 (2)0.9785 (2)0.2211 (2)0.0292 (5)
H30.24671.02870.15290.035*
C40.0998 (2)0.8703 (2)0.23274 (18)0.0239 (4)
C50.0403 (2)0.8278 (2)0.14332 (18)0.0240 (4)
C60.0776 (2)0.7423 (2)0.15786 (18)0.0229 (4)
C70.1641 (2)0.7195 (2)0.06717 (19)0.0275 (5)
H70.14750.75380.01210.033*
C80.2729 (2)0.6402 (2)0.11593 (19)0.0282 (5)
H80.34860.61160.07740.034*
C90.2530 (2)0.6072 (2)0.23683 (19)0.0241 (4)
C100.3340 (2)0.5109 (2)0.31438 (19)0.0238 (4)
C110.2962 (2)0.4657 (2)0.42545 (18)0.0232 (4)
C120.3591 (2)0.3490 (2)0.50041 (19)0.0266 (5)
H120.43560.29480.48540.032*
C130.2880 (2)0.3315 (2)0.59614 (19)0.0265 (5)
H130.30390.26160.66060.032*
C140.1843 (2)0.4377 (2)0.58233 (18)0.0228 (4)
C150.0995 (2)0.4599 (2)0.66710 (19)0.0244 (4)
H150.10070.39600.73540.029*
C160.0134 (2)0.5698 (2)0.65786 (18)0.0240 (4)
C170.0566 (2)0.6025 (2)0.7521 (2)0.0295 (5)
H170.05890.55050.82720.035*
C180.1184 (2)0.7206 (2)0.7145 (2)0.0312 (5)
H180.16950.76870.75860.037*
C190.0921 (2)0.7607 (2)0.59404 (19)0.0248 (4)
C200.1506 (2)0.8725 (2)0.52061 (19)0.0256 (5)
C510.1098 (2)0.8703 (2)0.0298 (2)0.0336 (6)
H510.04240.84930.02620.040*0.534 (4)
H51A0.16850.95110.02830.040*0.466 (4)
C520.1998 (2)0.7901 (2)0.03594 (19)0.0280 (5)
C530.3275 (2)0.8242 (3)0.0657 (2)0.0375 (6)
H530.36210.90140.07750.045*
C540.4051 (3)0.7458 (3)0.0782 (2)0.0425 (7)
H540.49260.76990.09800.051*
C550.3551 (3)0.6327 (3)0.0621 (2)0.0386 (6)
H550.40750.57850.07230.046*
C560.2285 (3)0.5993 (3)0.0310 (2)0.0380 (6)
H560.19410.52240.01840.046*
C570.1515 (2)0.6774 (2)0.0180 (2)0.0320 (5)
H570.06460.65360.00340.038*
C1010.4587 (2)0.4433 (2)0.27784 (18)0.0240 (4)
C1020.4646 (2)0.3764 (2)0.2015 (2)0.0281 (5)
H1020.38810.37750.16850.034*
C1030.5811 (2)0.3085 (2)0.1734 (2)0.0321 (5)
H1030.58410.26370.12110.039*
C1040.6934 (2)0.3057 (2)0.2216 (2)0.0328 (5)
H1040.77320.25970.20180.039*
C1050.6885 (2)0.3702 (2)0.2984 (2)0.0323 (5)
H1050.76510.36740.33240.039*
C1060.5727 (2)0.4388 (2)0.3261 (2)0.0288 (5)
H1060.57050.48340.37850.035*
C2010.2389 (2)0.9668 (2)0.56703 (19)0.0266 (5)
C2020.2094 (2)1.0755 (2)0.5560 (2)0.0307 (5)
H2020.13351.09070.51760.037*
C2030.2902 (2)1.1623 (2)0.6010 (2)0.0344 (6)
H2030.26971.23660.59270.041*
C2040.4003 (2)1.1408 (3)0.6577 (2)0.0373 (6)
H2040.45421.19930.69010.045*
C2050.4319 (2)1.0338 (3)0.6670 (2)0.0391 (6)
H2050.50831.01950.70480.047*
C2060.3522 (2)0.9476 (2)0.6214 (2)0.0346 (6)
H2060.37500.87490.62710.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.02108 (14)0.02495 (16)0.01675 (14)0.00704 (11)0.00045 (10)0.00553 (11)
O10.0398 (18)0.0252 (16)0.0224 (16)0.0079 (14)0.0088 (13)0.0017 (13)
C580.057 (3)0.030 (3)0.023 (2)0.014 (2)0.018 (2)0.002 (2)
O1A0.0301 (18)0.037 (2)0.0164 (16)0.0129 (16)0.0029 (13)0.0010 (15)
C58A0.040 (3)0.037 (3)0.017 (2)0.017 (3)0.010 (2)0.001 (2)
N210.0231 (9)0.0254 (10)0.0191 (9)0.0073 (7)0.0012 (7)0.0057 (8)
N220.0234 (9)0.0257 (10)0.0190 (9)0.0084 (7)0.0007 (7)0.0057 (8)
N230.0218 (8)0.0264 (10)0.0174 (8)0.0077 (7)0.0009 (7)0.0060 (7)
N240.0232 (9)0.0257 (10)0.0188 (9)0.0064 (7)0.0001 (7)0.0052 (8)
C10.0235 (10)0.0269 (11)0.0242 (11)0.0070 (9)0.0003 (8)0.0071 (9)
C20.0264 (11)0.0285 (12)0.0287 (12)0.0031 (9)0.0002 (9)0.0062 (10)
C30.0268 (11)0.0302 (12)0.0254 (11)0.0038 (10)0.0036 (9)0.0031 (10)
C40.0241 (10)0.0270 (11)0.0195 (10)0.0082 (9)0.0018 (8)0.0036 (9)
C50.0273 (11)0.0255 (11)0.0196 (10)0.0125 (9)0.0013 (8)0.0028 (9)
C60.0271 (10)0.0264 (11)0.0169 (10)0.0117 (9)0.0022 (8)0.0049 (9)
C70.0324 (12)0.0297 (12)0.0193 (10)0.0090 (10)0.0024 (9)0.0051 (9)
C80.0309 (12)0.0319 (13)0.0218 (11)0.0089 (10)0.0049 (9)0.0084 (10)
C90.0250 (10)0.0275 (11)0.0211 (10)0.0097 (9)0.0023 (8)0.0070 (9)
C100.0238 (10)0.0281 (12)0.0222 (11)0.0096 (9)0.0013 (8)0.0091 (9)
C110.0219 (10)0.0275 (11)0.0213 (10)0.0073 (9)0.0004 (8)0.0080 (9)
C120.0244 (10)0.0282 (12)0.0257 (11)0.0056 (9)0.0005 (9)0.0069 (10)
C130.0269 (11)0.0279 (12)0.0230 (11)0.0080 (9)0.0018 (9)0.0036 (9)
C140.0229 (10)0.0259 (11)0.0193 (10)0.0083 (9)0.0014 (8)0.0040 (9)
C150.0243 (10)0.0292 (12)0.0191 (10)0.0103 (9)0.0006 (8)0.0036 (9)
C160.0248 (10)0.0287 (12)0.0179 (10)0.0099 (9)0.0007 (8)0.0035 (9)
C170.0305 (11)0.0362 (13)0.0197 (11)0.0074 (10)0.0033 (9)0.0068 (10)
C180.0333 (12)0.0366 (13)0.0202 (11)0.0041 (10)0.0029 (9)0.0085 (10)
C190.0243 (10)0.0290 (12)0.0217 (11)0.0064 (9)0.0019 (8)0.0091 (9)
C200.0232 (10)0.0288 (12)0.0249 (11)0.0072 (9)0.0009 (9)0.0082 (10)
C510.0384 (13)0.0414 (15)0.0207 (11)0.0202 (12)0.0057 (10)0.0014 (11)
C520.0312 (12)0.0362 (13)0.0175 (10)0.0137 (10)0.0020 (9)0.0039 (10)
C530.0349 (13)0.0457 (16)0.0378 (14)0.0124 (12)0.0019 (11)0.0196 (12)
C540.0331 (13)0.0645 (19)0.0391 (15)0.0219 (13)0.0060 (11)0.0218 (14)
C550.0464 (15)0.0505 (17)0.0279 (13)0.0288 (13)0.0011 (11)0.0104 (12)
C560.0460 (15)0.0415 (15)0.0306 (13)0.0152 (12)0.0032 (11)0.0124 (12)
C570.0314 (12)0.0405 (14)0.0249 (12)0.0099 (11)0.0016 (9)0.0099 (11)
C1010.0243 (10)0.0265 (11)0.0204 (10)0.0082 (9)0.0034 (8)0.0051 (9)
C1020.0293 (11)0.0308 (12)0.0254 (11)0.0081 (10)0.0004 (9)0.0096 (10)
C1030.0390 (13)0.0303 (13)0.0266 (12)0.0060 (11)0.0036 (10)0.0112 (10)
C1040.0299 (12)0.0299 (13)0.0329 (13)0.0039 (10)0.0078 (10)0.0064 (11)
C1050.0250 (11)0.0379 (14)0.0345 (13)0.0103 (10)0.0018 (10)0.0100 (11)
C1060.0274 (11)0.0334 (13)0.0288 (12)0.0112 (10)0.0028 (9)0.0115 (10)
C2010.0254 (11)0.0326 (12)0.0218 (11)0.0049 (9)0.0013 (9)0.0099 (10)
C2020.0280 (11)0.0344 (13)0.0306 (12)0.0071 (10)0.0013 (10)0.0113 (11)
C2030.0340 (13)0.0359 (14)0.0337 (13)0.0036 (11)0.0062 (10)0.0144 (11)
C2040.0304 (12)0.0461 (16)0.0336 (13)0.0036 (11)0.0042 (10)0.0200 (12)
C2050.0243 (11)0.0518 (17)0.0403 (15)0.0053 (11)0.0039 (11)0.0174 (13)
C2060.0276 (12)0.0398 (14)0.0383 (14)0.0093 (11)0.0025 (10)0.0144 (12)
Geometric parameters (Å, º) top
Ni—N211.9224 (19)C15—C161.371 (3)
Ni—N231.9308 (19)C15—H150.9500
Ni—N221.9343 (18)C16—C171.432 (3)
Ni—N241.9368 (18)C17—C181.344 (3)
O1—C511.314 (4)C17—H170.9500
O1—C581.434 (5)C18—C191.446 (3)
O1—H51A0.5664C18—H180.9500
C58—H58A0.9800C19—C201.384 (3)
C58—H58B0.9800C20—C2011.496 (3)
C58—H58C0.9800C51—C521.529 (3)
O1A—C511.336 (4)C51—H511.0000
O1A—C58A1.440 (6)C51—H51A1.0000
C58A—H58D0.9800C52—C571.387 (3)
C58A—H58E0.9800C52—C531.388 (3)
C58A—H58F0.9800C53—C541.394 (4)
N21—C11.383 (3)C53—H530.9500
N21—C41.387 (3)C54—C551.384 (4)
N22—C91.380 (3)C54—H540.9500
N22—C61.390 (3)C55—C561.381 (4)
N23—C141.377 (3)C55—H550.9500
N23—C111.379 (3)C56—C571.384 (4)
N24—C161.376 (3)C56—H560.9500
N24—C191.382 (3)C57—H570.9500
C1—C201.393 (3)C101—C1021.398 (3)
C1—C21.432 (3)C101—C1061.398 (3)
C2—C31.352 (3)C102—C1031.387 (3)
C2—H20.9500C102—H1020.9500
C3—C41.440 (3)C103—C1041.389 (4)
C3—H30.9500C103—H1030.9500
C4—C51.392 (3)C104—C1051.383 (3)
C5—C61.391 (3)C104—H1040.9500
C5—C511.524 (3)C105—C1061.384 (3)
C6—C71.443 (3)C105—H1050.9500
C7—C81.350 (3)C106—H1060.9500
C7—H70.9500C201—C2021.390 (3)
C8—C91.436 (3)C201—C2061.394 (3)
C8—H80.9500C202—C2031.391 (3)
C9—C101.392 (3)C202—H2020.9500
C10—C111.385 (3)C203—C2041.381 (4)
C10—C1011.490 (3)C203—H2030.9500
C11—C121.441 (3)C204—C2051.386 (4)
C12—C131.350 (3)C204—H2040.9500
C12—H120.9500C205—C2061.385 (3)
C13—C141.428 (3)C205—H2050.9500
C13—H130.9500C206—H2060.9500
C14—C151.375 (3)
N21—Ni—N23179.60 (8)C16—C17—H17126.4
N21—Ni—N2289.80 (8)C17—C18—C19106.9 (2)
N23—Ni—N2289.88 (8)C17—C18—H18126.6
N21—Ni—N2490.21 (8)C19—C18—H18126.6
N23—Ni—N2490.10 (8)N24—C19—C20124.8 (2)
N22—Ni—N24179.66 (8)N24—C19—C18110.0 (2)
C51—O1—C58113.3 (3)C20—C19—C18125.0 (2)
C51—O1—H51A45.3C19—C20—C1121.4 (2)
C58—O1—H51A136.1C19—C20—C201119.7 (2)
C51—O1A—C58A114.3 (4)C1—C20—C201118.6 (2)
O1A—C58A—H58D109.5O1—C51—O1A80.5 (2)
O1A—C58A—H58E109.5O1—C51—C5116.8 (2)
H58D—C58A—H58E109.5O1A—C51—C5117.0 (2)
O1A—C58A—H58F109.5O1—C51—C52115.3 (2)
H58D—C58A—H58F109.5O1A—C51—C52117.1 (2)
H58E—C58A—H58F109.5C5—C51—C52108.33 (19)
C1—N21—C4105.40 (18)O1—C51—H51105.1
C1—N21—Ni126.87 (15)C5—C51—H51105.1
C4—N21—Ni127.52 (15)C52—C51—H51105.1
C9—N22—C6105.75 (17)O1A—C51—H51A104.2
C9—N22—Ni127.32 (15)C5—C51—H51A104.2
C6—N22—Ni126.94 (15)C52—C51—H51A104.2
C14—N23—C11104.96 (18)H51—C51—H51A128.8
C14—N23—Ni127.10 (14)C57—C52—C53118.9 (2)
C11—N23—Ni127.79 (15)C57—C52—C51119.5 (2)
C16—N24—C19105.15 (18)C53—C52—C51121.5 (2)
C16—N24—Ni126.83 (15)C52—C53—C54120.3 (3)
C19—N24—Ni128.03 (15)C52—C53—H53119.9
N21—C1—C20126.4 (2)C54—C53—H53119.9
N21—C1—C2110.34 (19)C55—C54—C53120.2 (3)
C20—C1—C2122.6 (2)C55—C54—H54119.9
C3—C2—C1107.1 (2)C53—C54—H54119.9
C3—C2—H2126.4C56—C55—C54119.6 (3)
C1—C2—H2126.4C56—C55—H55120.2
C2—C3—C4107.3 (2)C54—C55—H55120.2
C2—C3—H3126.3C55—C56—C57120.2 (3)
C4—C3—H3126.3C55—C56—H56119.9
N21—C4—C5124.7 (2)C57—C56—H56119.9
N21—C4—C3109.72 (19)C56—C57—C52120.8 (2)
C5—C4—C3125.4 (2)C56—C57—H57119.6
C6—C5—C4121.2 (2)C52—C57—H57119.6
C6—C5—C51119.7 (2)C102—C101—C106118.5 (2)
C4—C5—C51119.0 (2)C102—C101—C10121.4 (2)
N22—C6—C5125.21 (19)C106—C101—C10120.0 (2)
N22—C6—C7109.45 (19)C103—C102—C101120.5 (2)
C5—C6—C7125.1 (2)C103—C102—H102119.7
C8—C7—C6107.3 (2)C101—C102—H102119.7
C8—C7—H7126.4C102—C103—C104120.3 (2)
C6—C7—H7126.4C102—C103—H103119.9
C7—C8—C9107.3 (2)C104—C103—H103119.9
C7—C8—H8126.3C105—C104—C103119.7 (2)
C9—C8—H8126.3C105—C104—H104120.2
N22—C9—C10125.3 (2)C103—C104—H104120.2
N22—C9—C8110.0 (2)C104—C105—C106120.3 (2)
C10—C9—C8124.1 (2)C104—C105—H105119.8
C11—C10—C9121.4 (2)C106—C105—H105119.8
C11—C10—C101117.1 (2)C105—C106—C101120.7 (2)
C9—C10—C101121.2 (2)C105—C106—H106119.6
N23—C11—C10125.6 (2)C101—C106—H106119.6
N23—C11—C12110.31 (19)C202—C201—C206118.9 (2)
C10—C11—C12123.9 (2)C202—C201—C20120.3 (2)
C13—C12—C11106.7 (2)C206—C201—C20120.8 (2)
C13—C12—H12126.6C203—C202—C201120.4 (2)
C11—C12—H12126.6C203—C202—H202119.8
C12—C13—C14107.1 (2)C201—C202—H202119.8
C12—C13—H13126.4C204—C203—C202120.2 (2)
C14—C13—H13126.4C204—C203—H203119.9
C15—C14—N23124.6 (2)C202—C203—H203119.9
C15—C14—C13124.2 (2)C203—C204—C205119.8 (2)
N23—C14—C13110.83 (19)C203—C204—H204120.1
C16—C15—C14123.2 (2)C205—C204—H204120.1
C16—C15—H15118.4C206—C205—C204120.2 (2)
C14—C15—H15118.4C206—C205—H205119.9
C15—C16—N24125.3 (2)C204—C205—H205119.9
C15—C16—C17123.8 (2)C205—C206—C201120.5 (2)
N24—C16—C17110.6 (2)C205—C206—H206119.8
C18—C17—C16107.3 (2)C201—C206—H206119.8
C18—C17—H17126.4
N22—Ni—N21—C1166.05 (18)C14—C15—C16—N246.8 (4)
N24—Ni—N21—C113.61 (18)C14—C15—C16—C17166.5 (2)
N22—Ni—N21—C420.04 (18)C19—N24—C16—C15173.9 (2)
N24—Ni—N21—C4160.30 (18)Ni—N24—C16—C156.0 (3)
N21—Ni—N22—C9163.03 (18)C19—N24—C16—C170.1 (2)
N23—Ni—N22—C916.72 (18)Ni—N24—C16—C17179.93 (15)
N21—Ni—N22—C617.24 (18)C15—C16—C17—C18172.1 (2)
N23—Ni—N22—C6163.01 (18)N24—C16—C17—C182.0 (3)
N22—Ni—N23—C14163.01 (18)C16—C17—C18—C192.9 (3)
N24—Ni—N23—C1417.33 (18)C16—N24—C19—C20172.9 (2)
N22—Ni—N23—C1111.83 (18)Ni—N24—C19—C207.2 (3)
N24—Ni—N23—C11167.83 (18)C16—N24—C19—C181.7 (2)
N21—Ni—N24—C16165.54 (19)Ni—N24—C19—C18178.24 (16)
N23—Ni—N24—C1614.71 (19)C17—C18—C19—N243.0 (3)
N21—Ni—N24—C1914.53 (19)C17—C18—C19—C20171.6 (2)
N23—Ni—N24—C19165.21 (19)N24—C19—C20—C16.7 (4)
C4—N21—C1—C20169.3 (2)C18—C19—C20—C1167.0 (2)
Ni—N21—C1—C205.7 (3)N24—C19—C20—C201179.9 (2)
C4—N21—C1—C21.7 (2)C18—C19—C20—C2016.3 (4)
Ni—N21—C1—C2176.72 (15)N21—C1—C20—C197.6 (4)
N21—C1—C2—C32.7 (3)C2—C1—C20—C19162.5 (2)
C20—C1—C2—C3168.8 (2)N21—C1—C20—C201179.0 (2)
C1—C2—C3—C42.4 (3)C2—C1—C20—C20111.0 (3)
C1—N21—C4—C5175.2 (2)C58—O1—C51—O1A49.5 (4)
Ni—N21—C4—C59.9 (3)C58—O1—C51—C5165.0 (3)
C1—N21—C4—C30.2 (2)C58—O1—C51—C5266.1 (4)
Ni—N21—C4—C3175.18 (15)C58A—O1A—C51—O148.2 (4)
C2—C3—C4—N211.4 (3)C58A—O1A—C51—C5163.5 (3)
C2—C3—C4—C5173.5 (2)C58A—O1A—C51—C5265.4 (4)
N21—C4—C5—C611.2 (3)C6—C5—C51—O1135.6 (3)
C3—C4—C5—C6163.0 (2)C4—C5—C51—O148.1 (3)
N21—C4—C5—C51165.1 (2)C6—C5—C51—O1A42.8 (4)
C3—C4—C5—C5120.7 (3)C4—C5—C51—O1A140.9 (3)
C9—N22—C6—C5176.1 (2)C6—C5—C51—C5292.2 (3)
Ni—N22—C6—C54.1 (3)C4—C5—C51—C5284.1 (3)
C9—N22—C6—C71.0 (2)O1—C51—C52—C57145.6 (3)
Ni—N22—C6—C7179.22 (15)O1A—C51—C52—C5753.5 (4)
C4—C5—C6—N2214.0 (3)C5—C51—C52—C5781.5 (3)
C51—C5—C6—N22162.2 (2)O1—C51—C52—C5338.2 (4)
C4—C5—C6—C7160.3 (2)O1A—C51—C52—C53130.4 (3)
C51—C5—C6—C723.4 (3)C5—C51—C52—C5394.7 (3)
N22—C6—C7—C81.6 (3)C57—C52—C53—C540.6 (4)
C5—C6—C7—C8173.5 (2)C51—C52—C53—C54175.6 (2)
C6—C7—C8—C93.4 (3)C52—C53—C54—C550.5 (4)
C6—N22—C9—C10168.4 (2)C53—C54—C55—C561.4 (4)
Ni—N22—C9—C1011.4 (3)C54—C55—C56—C571.1 (4)
C6—N22—C9—C83.1 (2)C55—C56—C57—C520.0 (4)
Ni—N22—C9—C8177.11 (15)C53—C52—C57—C560.9 (4)
C7—C8—C9—N224.2 (3)C51—C52—C57—C56175.4 (2)
C7—C8—C9—C10167.4 (2)C11—C10—C101—C102109.2 (3)
N22—C9—C10—C115.4 (3)C9—C10—C101—C10264.1 (3)
C8—C9—C10—C11164.9 (2)C11—C10—C101—C10666.3 (3)
N22—C9—C10—C101178.4 (2)C9—C10—C101—C106120.5 (2)
C8—C9—C10—C1018.0 (3)C106—C101—C102—C1030.8 (4)
C14—N23—C11—C10174.9 (2)C10—C101—C102—C103176.3 (2)
Ni—N23—C11—C100.8 (3)C101—C102—C103—C1040.4 (4)
C14—N23—C11—C120.4 (2)C102—C103—C104—C1050.5 (4)
Ni—N23—C11—C12175.32 (15)C103—C104—C105—C1061.0 (4)
C9—C10—C11—N2310.9 (3)C104—C105—C106—C1010.6 (4)
C101—C10—C11—N23175.9 (2)C102—C101—C106—C1050.3 (4)
C9—C10—C11—C12162.9 (2)C10—C101—C106—C105175.9 (2)
C101—C10—C11—C1210.3 (3)C19—C20—C201—C202116.7 (3)
N23—C11—C12—C130.9 (3)C1—C20—C201—C20269.8 (3)
C10—C11—C12—C13173.7 (2)C19—C20—C201—C20663.7 (3)
C11—C12—C13—C141.8 (3)C1—C20—C201—C206109.9 (3)
C11—N23—C14—C15172.7 (2)C206—C201—C202—C2031.5 (4)
Ni—N23—C14—C1511.5 (3)C20—C201—C202—C203178.8 (2)
C11—N23—C14—C131.5 (2)C201—C202—C203—C2040.4 (4)
Ni—N23—C14—C13174.25 (14)C202—C203—C204—C2051.7 (4)
C12—C13—C14—C15172.1 (2)C203—C204—C205—C2061.1 (4)
C12—C13—C14—N232.1 (3)C204—C205—C206—C2010.9 (4)
N23—C14—C15—C164.0 (4)C202—C201—C206—C2052.2 (4)
C13—C14—C15—C16169.5 (2)C20—C201—C206—C205178.2 (2)

Experimental details

Crystal data
Chemical formula[Ni(C40H28N4O)]
Mr639.37
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)10.869 (2), 11.984 (2), 12.332 (3)
α, β, γ (°)72.356 (6), 85.305 (8), 74.219 (7)
V3)1473.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn724
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.873, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
29300, 7270, 6754
Rint0.040
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.108, 1.10
No. of reflections7270
No. of parameters436
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.52

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a grant from Science Foundation Ireland (SFI P·I. 09/IN.1/B2650).

References

First citationDahms, K., Senge, M. O. & Bakar, M. B. (2007). Eur. J. Org. Chem. pp. 3833–3848.  Web of Science CSD CrossRef Google Scholar
First citationFleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc. 86, 2342–2348.  CSD CrossRef CAS Web of Science Google Scholar
First citationGallucci, J. C., Swepston, P. N. & Ibers, J. A. (1982). Acta Cryst. B38, 2134–2139.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHoard, J. L. (1973). Ann. N. Y. Acad. Sci. 206, 18–31.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHope, H. (1994). Prog. Inorg. Chem. 41, 1–19.  CrossRef CAS Web of Science Google Scholar
First citationLee, Y. J. & Scheidt, W. R. (1987). Struct. Bonding (Berlin), 64, 1–69.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSenge, M. O. (2000). The Porphyrin Handbook, Vol. 10, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–218. San Diego: Academic Press.  Google Scholar
First citationSenge, M. O., Renner, M. W., Kalisch, W. W. & Fajer, J. (2000). J. Chem. Soc. Dalton Trans. pp. 381–385.  Web of Science CSD CrossRef Google Scholar
First citationSenge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. pp. 237–258.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds