organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2,4-Di­chloro­benzyl­­idene)-2-fluoro­benzohydrazide

aThe Second Hospital of Jilin University, Changchun Jilin 130041, People's Republic of China, bPharmacy College of Ningxia Medical University, Yinchuan Ningxia 750004, People's Republic of China, cMinority Traditional Medical Center of Minzu University of China, Beijing 100081, People's Republic of China, and dTraditional Chinese Medicine College of Ningxia Medical University, Yinchuan Ningxia 750004, People's Republic of China
*Correspondence e-mail: niuyang750@126.com

(Received 17 December 2010; accepted 18 December 2010; online 8 January 2011)

The mol­ecule of the title compound, C14H9Cl2FN2O, exists in a trans configuration with respect to the methyl­idene unit and the benzene rings form a dihedral angle of 8.1 (2)°. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds into C(4) chains propagating in [100].

Related literature

For related structures and background to the pharmacological properties of hydrazone compounds, see: Xu et al. (2011a[Xu, C.-B., Wang, Z.-G., Nan, Y., Yuan, L., Wang, R. & Zhang, S.-X. (2011a). Acta Cryst. E67, o69.],b[Xu, C.-B., Wang, Z.-G., Nan, Y., Yuan, L., Wang, R. & Zhang, S.-X. (2011b). Acta Cryst. E67, o70.]). For reference bond-length values, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Cl2FN2O

  • Mr = 311.13

  • Monoclinic, P 21 /n

  • a = 7.2310 (14) Å

  • b = 26.145 (5) Å

  • c = 8.0590 (16) Å

  • β = 115.033 (3)°

  • V = 1380.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.898, Tmax = 0.911

  • 9842 measured reflections

  • 2963 independent reflections

  • 2236 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.163

  • S = 1.05

  • 2963 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.89 (1) 2.19 (1) 3.054 (3) 162 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a continuation of our recent work on the structures of hydrazone compounds (Xu et al., 2011a,b), the title compound, (I), is reported.

The molecule of the compound, Fig. 1, exists in a trans configuration with respect to the methylidene unit. The molecule is twisted, with the dihedral angle between the two benzene rings of 8.1 (2)°. The torsion angle C7—N1—N2—C8 is 9.0 (3)°. The bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), to form chains down the a axis (Fig. 2).

Related literature top

For related structures and background to the pharmacological properties of hydrazone compounds, see: Xu et al. (2011a,b). For reference bond-length values, see: Allen et al. (1987).

Experimental top

2,4-Dichlorobenzaldehyde (0.1 mmol, 17.4 mg) and 2-fluorobenzohydrazide (0.1 mmol, 15.4 mg) were mixed in ethanol (20 ml). The mixture was stirred at room temperature to give a clear colorless solution. Colorless well shaped blocks of the title compound were formed by gradual evaporation of the solvent over a period of five days at room temperature.

Refinement top

H2 atom was located from a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. The remaining H atoms were placed in geometrically idealized positions, with C—H = 0.93, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The one-dimensional chains structure along a axis. The intermolecular hydrogen bonds are shown as dashed lines.
N'-(2,4-Dichlorobenzylidene)-2-fluorobenzohydrazide top
Crystal data top
C14H9Cl2FN2OF(000) = 632
Mr = 311.13Dx = 1.497 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2459 reflections
a = 7.2310 (14) Åθ = 2.7–25.0°
b = 26.145 (5) ŵ = 0.48 mm1
c = 8.0590 (16) ÅT = 298 K
β = 115.033 (3)°Block, colorless
V = 1380.5 (5) Å30.23 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2963 independent reflections
Radiation source: fine-focus sealed tube2236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.898, Tmax = 0.911k = 3333
9842 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.4914P]
where P = (Fo2 + 2Fc2)/3
2963 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.66 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C14H9Cl2FN2OV = 1380.5 (5) Å3
Mr = 311.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2310 (14) ŵ = 0.48 mm1
b = 26.145 (5) ÅT = 298 K
c = 8.0590 (16) Å0.23 × 0.21 × 0.20 mm
β = 115.033 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2963 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2236 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.911Rint = 0.029
9842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.66 e Å3
2963 reflectionsΔρmin = 0.27 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86585 (15)0.06215 (3)0.64036 (10)0.0753 (3)
Cl20.71562 (15)0.01533 (3)0.04771 (12)0.0778 (3)
F10.7577 (4)0.25674 (8)0.9556 (3)0.0964 (7)
N10.7523 (3)0.21787 (8)0.4805 (3)0.0482 (5)
N20.7956 (3)0.24975 (8)0.6285 (3)0.0506 (6)
O10.5927 (3)0.31235 (8)0.4527 (3)0.0707 (6)
C10.7912 (4)0.13485 (10)0.3799 (3)0.0439 (6)
C20.8097 (4)0.08305 (11)0.4195 (3)0.0482 (6)
C30.7842 (4)0.04630 (10)0.2903 (4)0.0523 (6)
H30.79530.01170.32030.063*
C40.7417 (4)0.06205 (11)0.1141 (4)0.0526 (7)
C50.7245 (4)0.11280 (11)0.0675 (4)0.0540 (7)
H50.69770.12280.05130.065*
C60.7475 (4)0.14872 (11)0.1991 (4)0.0517 (6)
H60.73360.18320.16750.062*
C70.8217 (4)0.17291 (10)0.5209 (3)0.0479 (6)
H70.89380.16400.64340.058*
C80.7067 (4)0.29579 (10)0.6032 (3)0.0479 (6)
C90.7558 (4)0.32662 (10)0.7740 (3)0.0475 (6)
C100.7779 (4)0.30700 (12)0.9386 (4)0.0581 (7)
C110.8167 (5)0.33677 (16)1.0910 (4)0.0761 (10)
H110.83160.32211.20110.091*
C120.8328 (5)0.38854 (17)1.0753 (5)0.0832 (11)
H120.85920.40951.17620.100*
C130.8106 (5)0.40961 (14)0.9143 (6)0.0796 (10)
H130.82310.44480.90660.096*
C140.7696 (4)0.37967 (11)0.7614 (5)0.0615 (8)
H140.75140.39470.65100.074*
H20.886 (4)0.2381 (12)0.736 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1180 (7)0.0635 (5)0.0493 (4)0.0186 (4)0.0401 (5)0.0144 (3)
Cl20.1043 (7)0.0760 (6)0.0646 (5)0.0129 (5)0.0469 (5)0.0227 (4)
F10.143 (2)0.0761 (14)0.0794 (14)0.0124 (13)0.0558 (14)0.0170 (11)
N10.0445 (12)0.0506 (13)0.0370 (11)0.0004 (10)0.0050 (9)0.0031 (9)
N20.0505 (13)0.0511 (13)0.0332 (11)0.0077 (10)0.0012 (9)0.0017 (9)
O10.0788 (14)0.0604 (12)0.0421 (11)0.0151 (11)0.0044 (10)0.0048 (9)
C10.0374 (12)0.0507 (14)0.0375 (13)0.0004 (11)0.0099 (10)0.0028 (11)
C20.0493 (14)0.0553 (15)0.0397 (13)0.0055 (12)0.0186 (11)0.0053 (11)
C30.0584 (16)0.0474 (15)0.0552 (16)0.0029 (12)0.0281 (14)0.0016 (12)
C40.0500 (15)0.0631 (17)0.0470 (15)0.0085 (12)0.0227 (12)0.0117 (12)
C50.0581 (16)0.0636 (17)0.0360 (13)0.0107 (13)0.0158 (12)0.0011 (12)
C60.0510 (15)0.0538 (15)0.0430 (14)0.0041 (12)0.0127 (12)0.0047 (12)
C70.0445 (14)0.0536 (15)0.0369 (13)0.0043 (12)0.0087 (11)0.0011 (11)
C80.0409 (13)0.0505 (15)0.0410 (14)0.0012 (11)0.0064 (11)0.0019 (11)
C90.0321 (12)0.0548 (15)0.0437 (14)0.0054 (11)0.0044 (10)0.0010 (11)
C100.0510 (16)0.0625 (18)0.0527 (16)0.0142 (13)0.0140 (13)0.0033 (14)
C110.063 (2)0.109 (3)0.0447 (17)0.0231 (19)0.0124 (14)0.0059 (17)
C120.062 (2)0.096 (3)0.072 (2)0.0140 (19)0.0088 (18)0.035 (2)
C130.061 (2)0.064 (2)0.099 (3)0.0019 (16)0.0197 (19)0.025 (2)
C140.0491 (16)0.0514 (16)0.073 (2)0.0019 (12)0.0147 (14)0.0084 (14)
Geometric parameters (Å, º) top
Cl1—C21.738 (3)C5—C61.373 (4)
Cl2—C41.738 (3)C5—H50.9300
F1—C101.336 (4)C6—H60.9300
N1—C71.265 (3)C7—H70.9300
N1—N21.379 (3)C8—C91.503 (4)
N2—C81.339 (3)C9—C101.367 (4)
N2—H20.893 (10)C9—C141.397 (4)
O1—C81.222 (3)C10—C111.379 (4)
C1—C21.385 (4)C11—C121.369 (6)
C1—C61.401 (4)C11—H110.9300
C1—C71.455 (3)C12—C131.355 (6)
C2—C31.371 (4)C12—H120.9300
C3—C41.382 (4)C13—C141.382 (5)
C3—H30.9300C13—H130.9300
C4—C51.370 (4)C14—H140.9300
C7—N1—N2114.8 (2)N1—C7—H7119.3
C8—N2—N1119.5 (2)C1—C7—H7119.3
C8—N2—H2124 (2)O1—C8—N2123.3 (2)
N1—N2—H2116 (2)O1—C8—C9121.2 (2)
C2—C1—C6116.8 (2)N2—C8—C9115.5 (2)
C2—C1—C7121.4 (2)C10—C9—C14117.4 (3)
C6—C1—C7121.9 (2)C10—C9—C8125.0 (3)
C3—C2—C1122.8 (2)C14—C9—C8117.5 (2)
C3—C2—Cl1117.1 (2)F1—C10—C9119.7 (3)
C1—C2—Cl1120.1 (2)F1—C10—C11117.0 (3)
C2—C3—C4118.1 (3)C9—C10—C11123.3 (3)
C2—C3—H3120.9C12—C11—C10118.0 (3)
C4—C3—H3120.9C12—C11—H11121.0
C5—C4—C3121.7 (2)C10—C11—H11121.0
C5—C4—Cl2120.4 (2)C13—C12—C11120.7 (3)
C3—C4—Cl2117.9 (2)C13—C12—H12119.7
C4—C5—C6118.9 (2)C11—C12—H12119.7
C4—C5—H5120.5C12—C13—C14121.1 (3)
C6—C5—H5120.5C12—C13—H13119.4
C5—C6—C1121.8 (3)C14—C13—H13119.4
C5—C6—H6119.1C13—C14—C9119.5 (3)
C1—C6—H6119.1C13—C14—H14120.3
N1—C7—C1121.4 (2)C9—C14—H14120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.89 (1)2.19 (1)3.054 (3)162 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9Cl2FN2O
Mr311.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.2310 (14), 26.145 (5), 8.0590 (16)
β (°) 115.033 (3)
V3)1380.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.898, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
9842, 2963, 2236
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.163, 1.05
No. of reflections2963
No. of parameters184
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.893 (10)2.191 (14)3.054 (3)162 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the 2008 Ningxia science and technology key projects (No. 222) and the 2009 Ningxia science and technology key projects (No. 232).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C.-B., Wang, Z.-G., Nan, Y., Yuan, L., Wang, R. & Zhang, S.-X. (2011a). Acta Cryst. E67, o69.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, C.-B., Wang, Z.-G., Nan, Y., Yuan, L., Wang, R. & Zhang, S.-X. (2011b). Acta Cryst. E67, o70.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds