organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Chloro­phen­yl)-1-(2,3,4-tri­chloro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Mangalore, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 December 2010; accepted 18 December 2010; online 8 January 2011)

In the title chalcone derivative, C15H8Cl4O, the C=C double bond exists in an E configuration and the dihedral angle between the two benzene rings is 48.13 (11)°. In the crystal, mol­ecules are arranged into columns and stacked down the a axis featuring possible weak aromatic ππ stacking inter­actions [centroid–centroid separation = 3.888 (2) Å].

Related literature

For general background to and applications of chalcone derivatives, see: Geiger & Conn (1945[Geiger, W. B. & Conn, J. E. (1945). J. Am. Chem. Soc. 67, 112-116.]); Misra et al. (1971[Misra, S. S., Tewari, R. S. & Nath, B. (1971). Indian J. Appl. Chem. 34, 260-264.]); Cole & Julian (1954[Cole, W. & Julian, P. L. (1954). J. Org. Chem. 19, 131-138.]); Aries (1972[Aries, R. (1972). French Patent 2 192 811.]); Levine et al. (1979[Levine, B. F., Bethea, C. G., Thurmond, C. D., Lynch, R. T. & Bernstein, J. L. (1979). J. Appl. Phys. 50, 2523-2527.]); Vranasi et al. (1996[Vranasi, P. R., Jen, A. K. Y., Chandrashekar, J., Namboothiri, I. N. N. & Ratna, A. (1996). J. Am. Chem. Soc. 118, 12443-12448.]).

[Scheme 1]

Experimental

Crystal data
  • C15H8Cl4O

  • Mr = 346.01

  • Triclinic, P 1

  • a = 3.8879 (2) Å

  • b = 6.7510 (3) Å

  • c = 13.7788 (5) Å

  • α = 97.620 (2)°

  • β = 96.177 (2)°

  • γ = 92.017 (2)°

  • V = 355.93 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 296 K

  • 0.76 × 0.33 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.574, Tmax = 0.837

  • 7510 measured reflections

  • 3395 independent reflections

  • 3183 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.06

  • 3395 reflections

  • 181 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1324 Friedel pairs

  • Flack parameter: −0.02 (5)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are natural biocides (Geiger & Conn, 1945) and also well known as intermediates in the synthesis of heterocyclic compounds which exhibit various biological activities (Misra et al., 1971). The presence of enone functional group in the chalcone molecule confers antibiotic activity upon it (Cole & Julian, 1954). This property is enhanced when substitution is made at the α-(nitro and bromo) and (bromo and hydroxylic-) positions (Aries, 1972). Chalcones are also reported to possess trypanocidal (Levine et al., 1979), anti-inflammatory and anticancer properties (Vranasi et al., 1996).

The C7=C8 double bond of the title compound (I) exists in an E-configuration (Fig. 1). The dihedral angle between the two benzene rings being 48.13 (11)°. In the crystal structure, the molecules are arranged into columns and stacked down a axis (Fig. 2).

Related literature top

For general background to and applications of chalcone derivatives, see: Geiger & Conn (1945); Misra et al. (1971); Cole & Julian (1954); Aries (1972); Levine et al. (1979); Vranasi et al. (1996).

Experimental top

2,3,4-Trichloroacetophenone (10 mmol) was dissolved in ethanol. Sodium hydroxide (5 ml, 30%) solution and 4-chlorobeldehyde (10 mmol) were then added to the resulting solution with continuous stirring. The stirring was continued for 4 h and was allowed to stand overnight. The reaction mass was then poured onto the crushed ice. The resulting solid was separated, filtered and dried. The compound was re-crystallized using ethanol and DMF mixture to yield yellow blocks. M.P.: 162–165 °C

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C). A total of 1324 Friedel pairs were use to determine the absolute structure.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed down the a axis, showing molecules stacked down a axis.
(E)-3-(4-Chlorophenyl)-1-(2,3,4-trichlorophenyl)prop-2-en-1-one top
Crystal data top
C15H8Cl4OZ = 1
Mr = 346.01F(000) = 174
Triclinic, P1Dx = 1.614 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8879 (2) ÅCell parameters from 5499 reflections
b = 6.7510 (3) Åθ = 3.0–30.0°
c = 13.7788 (5) ŵ = 0.82 mm1
α = 97.620 (2)°T = 296 K
β = 96.177 (2)°Block, yellow
γ = 92.017 (2)°0.76 × 0.33 × 0.22 mm
V = 355.93 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3395 independent reflections
Radiation source: fine-focus sealed tube3183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.574, Tmax = 0.837k = 89
7510 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.0513P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3395 reflectionsΔρmax = 0.33 e Å3
181 parametersΔρmin = 0.18 e Å3
3 restraintsAbsolute structure: Flack (1983), 1324 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C15H8Cl4Oγ = 92.017 (2)°
Mr = 346.01V = 355.93 (3) Å3
Triclinic, P1Z = 1
a = 3.8879 (2) ÅMo Kα radiation
b = 6.7510 (3) ŵ = 0.82 mm1
c = 13.7788 (5) ÅT = 296 K
α = 97.620 (2)°0.76 × 0.33 × 0.22 mm
β = 96.177 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3395 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3183 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.837Rint = 0.024
7510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.33 e Å3
S = 1.06Δρmin = 0.18 e Å3
3395 reflectionsAbsolute structure: Flack (1983), 1324 Friedel pairs
181 parametersAbsolute structure parameter: 0.02 (5)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18842 (18)1.21292 (10)0.08423 (5)0.05987 (19)
Cl21.09977 (14)0.85687 (8)0.46292 (4)0.04498 (14)
Cl30.99789 (19)0.85943 (10)0.68403 (5)0.05664 (17)
Cl40.67317 (19)0.47391 (11)0.75284 (5)0.0645 (2)
O10.9846 (5)0.3188 (3)0.28530 (12)0.0512 (4)
C10.5993 (6)0.7313 (4)0.00979 (16)0.0407 (5)
H1A0.69200.61480.01800.049*
C20.4793 (7)0.8687 (4)0.05019 (16)0.0445 (5)
H2A0.48940.84510.11780.053*
C30.3445 (6)1.0413 (4)0.00805 (17)0.0399 (5)
C40.3247 (6)1.0802 (4)0.09119 (18)0.0428 (5)
H4A0.23111.19730.11790.051*
C50.4465 (6)0.9424 (3)0.15142 (15)0.0386 (5)
H5A0.43660.96850.21900.046*
C60.5836 (5)0.7650 (3)0.11160 (14)0.0336 (4)
C70.7206 (6)0.6183 (3)0.17296 (15)0.0369 (4)
H7A0.83420.51330.14180.044*
C80.6995 (6)0.6198 (3)0.26870 (15)0.0372 (4)
H8A0.58720.72260.30210.045*
C90.8480 (6)0.4641 (3)0.32376 (14)0.0348 (4)
C100.8101 (5)0.4806 (3)0.43238 (14)0.0319 (4)
C110.9116 (5)0.6485 (3)0.50096 (15)0.0309 (4)
C120.8730 (6)0.6515 (3)0.60100 (16)0.0357 (4)
C130.7287 (6)0.4796 (4)0.63117 (16)0.0384 (5)
C140.6308 (6)0.3128 (3)0.56447 (18)0.0432 (5)
H14A0.53640.19970.58560.052*
C150.6713 (6)0.3117 (3)0.46607 (16)0.0384 (4)
H15A0.60540.19720.42160.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0665 (4)0.0563 (4)0.0629 (4)0.0105 (3)0.0037 (3)0.0313 (3)
Cl20.0504 (3)0.0319 (2)0.0539 (3)0.0034 (2)0.0081 (2)0.0100 (2)
Cl30.0731 (4)0.0484 (3)0.0425 (3)0.0058 (3)0.0047 (3)0.0069 (2)
Cl40.0849 (5)0.0797 (5)0.0369 (3)0.0232 (4)0.0178 (3)0.0231 (3)
O10.0688 (12)0.0460 (9)0.0405 (8)0.0188 (9)0.0118 (8)0.0036 (7)
C10.0496 (13)0.0391 (11)0.0343 (10)0.0064 (10)0.0069 (9)0.0059 (8)
C20.0545 (13)0.0489 (12)0.0309 (9)0.0041 (11)0.0054 (9)0.0072 (9)
C30.0393 (11)0.0390 (11)0.0440 (11)0.0012 (9)0.0028 (9)0.0170 (9)
C40.0469 (12)0.0331 (10)0.0504 (12)0.0074 (9)0.0096 (10)0.0078 (9)
C50.0468 (12)0.0374 (11)0.0314 (9)0.0025 (9)0.0056 (9)0.0027 (8)
C60.0355 (9)0.0342 (9)0.0323 (9)0.0014 (8)0.0054 (8)0.0074 (7)
C70.0376 (10)0.0379 (11)0.0367 (10)0.0050 (9)0.0061 (8)0.0085 (8)
C80.0388 (11)0.0399 (11)0.0348 (10)0.0067 (9)0.0057 (8)0.0095 (8)
C90.0379 (10)0.0357 (10)0.0317 (9)0.0035 (8)0.0044 (8)0.0073 (7)
C100.0347 (10)0.0293 (9)0.0334 (9)0.0074 (8)0.0047 (8)0.0086 (7)
C110.0307 (9)0.0281 (9)0.0348 (9)0.0051 (7)0.0024 (7)0.0079 (7)
C120.0372 (10)0.0364 (10)0.0332 (9)0.0105 (8)0.0003 (8)0.0045 (7)
C130.0409 (11)0.0460 (12)0.0318 (9)0.0127 (9)0.0046 (8)0.0146 (8)
C140.0462 (12)0.0397 (12)0.0483 (12)0.0046 (10)0.0075 (10)0.0203 (10)
C150.0469 (12)0.0286 (10)0.0388 (10)0.0008 (8)0.0000 (9)0.0063 (8)
Geometric parameters (Å, º) top
Cl1—C31.745 (2)C6—C71.463 (3)
Cl2—C111.730 (2)C7—C81.329 (3)
Cl3—C121.709 (2)C7—H7A0.9300
Cl4—C131.718 (2)C8—C91.474 (3)
O1—C91.218 (3)C8—H8A0.9300
C1—C21.383 (3)C9—C101.509 (3)
C1—C61.399 (3)C10—C111.392 (3)
C1—H1A0.9300C10—C151.399 (3)
C2—C31.378 (3)C11—C121.400 (3)
C2—H2A0.9300C12—C131.403 (3)
C3—C41.369 (3)C13—C141.370 (4)
C4—C51.389 (3)C14—C151.381 (3)
C4—H4A0.9300C14—H14A0.9300
C5—C61.398 (3)C15—H15A0.9300
C5—H5A0.9300
C2—C1—C6121.0 (2)C9—C8—H8A118.8
C2—C1—H1A119.5O1—C9—C8123.42 (18)
C6—C1—H1A119.5O1—C9—C10118.57 (18)
C3—C2—C1118.9 (2)C8—C9—C10117.92 (17)
C3—C2—H2A120.6C11—C10—C15118.23 (18)
C1—C2—H2A120.6C11—C10—C9124.79 (18)
C4—C3—C2122.0 (2)C15—C10—C9116.95 (19)
C4—C3—Cl1119.28 (18)C10—C11—C12121.51 (18)
C2—C3—Cl1118.73 (17)C10—C11—Cl2119.60 (14)
C3—C4—C5119.1 (2)C12—C11—Cl2118.87 (16)
C3—C4—H4A120.5C11—C12—C13118.2 (2)
C5—C4—H4A120.5C11—C12—Cl3120.83 (17)
C4—C5—C6120.77 (19)C13—C12—Cl3120.94 (16)
C4—C5—H5A119.6C14—C13—C12120.76 (19)
C6—C5—H5A119.6C14—C13—Cl4118.73 (17)
C5—C6—C1118.25 (19)C12—C13—Cl4120.51 (18)
C5—C6—C7122.28 (18)C13—C14—C15120.4 (2)
C1—C6—C7119.43 (18)C13—C14—H14A119.8
C8—C7—C6126.72 (19)C15—C14—H14A119.8
C8—C7—H7A116.6C14—C15—C10120.9 (2)
C6—C7—H7A116.6C14—C15—H15A119.6
C7—C8—C9122.32 (19)C10—C15—H15A119.6
C7—C8—H8A118.8
C6—C1—C2—C30.4 (4)C8—C9—C10—C15127.9 (2)
C1—C2—C3—C40.3 (4)C15—C10—C11—C120.9 (3)
C1—C2—C3—Cl1179.2 (2)C9—C10—C11—C12178.96 (19)
C2—C3—C4—C50.5 (4)C15—C10—C11—Cl2177.53 (17)
Cl1—C3—C4—C5179.44 (19)C9—C10—C11—Cl20.6 (3)
C3—C4—C5—C60.8 (4)C10—C11—C12—C130.1 (3)
C4—C5—C6—C10.9 (3)Cl2—C11—C12—C13178.29 (16)
C4—C5—C6—C7178.7 (2)C10—C11—C12—Cl3179.78 (17)
C2—C1—C6—C50.7 (3)Cl2—C11—C12—Cl31.8 (2)
C2—C1—C6—C7178.6 (2)C11—C12—C13—C140.5 (3)
C5—C6—C7—C88.2 (4)Cl3—C12—C13—C14179.62 (19)
C1—C6—C7—C8174.0 (2)C11—C12—C13—Cl4179.80 (16)
C6—C7—C8—C9179.9 (2)Cl3—C12—C13—Cl40.1 (3)
C7—C8—C9—O13.7 (4)C12—C13—C14—C150.3 (3)
C7—C8—C9—C10179.8 (2)Cl4—C13—C14—C15179.98 (19)
O1—C9—C10—C11129.4 (2)C13—C14—C15—C100.5 (4)
C8—C9—C10—C1153.9 (3)C11—C10—C15—C141.1 (3)
O1—C9—C10—C1548.7 (3)C9—C10—C15—C14179.3 (2)

Experimental details

Crystal data
Chemical formulaC15H8Cl4O
Mr346.01
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)3.8879 (2), 6.7510 (3), 13.7788 (5)
α, β, γ (°)97.620 (2), 96.177 (2), 92.017 (2)
V3)355.93 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.76 × 0.33 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.574, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
7510, 3395, 3183
Rint0.024
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.06
No. of reflections3395
No. of parameters181
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.18
Absolute structureFlack (1983), 1324 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF and CSY thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAries, R. (1972). French Patent 2 192 811.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCole, W. & Julian, P. L. (1954). J. Org. Chem. 19, 131–138.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeiger, W. B. & Conn, J. E. (1945). J. Am. Chem. Soc. 67, 112–116.  CrossRef CAS Web of Science Google Scholar
First citationLevine, B. F., Bethea, C. G., Thurmond, C. D., Lynch, R. T. & Bernstein, J. L. (1979). J. Appl. Phys. 50, 2523–2527.  CrossRef CAS Web of Science Google Scholar
First citationMisra, S. S., Tewari, R. S. & Nath, B. (1971). Indian J. Appl. Chem. 34, 260–264.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVranasi, P. R., Jen, A. K. Y., Chandrashekar, J., Namboothiri, I. N. N. & Ratna, A. (1996). J. Am. Chem. Soc. 118, 12443–12448.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds