organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acridinium 6-carb­­oxy­pyridine-2-carboxyl­ate monohydrate

aDepartment of Chemistry, Faculty of Sciences, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, bDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA, and cYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: zderik@yahoo.com

(Received 18 December 2010; accepted 22 December 2010; online 15 January 2011)

The title compound, C13H10N+·C7H4NO4·H2O or (acrH)+(pydcH)·H2O, is a monohydrate of acridinium cations and a mono-deprotonated pyridine-2,6-dicarb­oxy­lic acid. The structure contains a range of non-covalent inter­actions, such as O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, as well as ππ stacking [range of centroid–centroid distances = 3.4783 (5)–3.8059 (5) Å]. The N—H⋯O hydrogen bond between the donor acridinium cation and the carboxyl­ate acceptor is particularly strong. The average separation between the π-stacked acridinium planes is 3.42 (3) Å.

Related literature

For structures of acridinium salts, see: Aghabozorg et al. (2010[Aghabozorg, H., Attar Gharamaleki, J., Parvizi, M. & Derikvand, Z. (2010). Acta Cryst. E66, m83-m84.]); Attar Gharamaleki et al. (2010[Attar Gharamaleki, J., Derikvand, Z. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, o2231.]); Derikvand et al. (2009[Derikvand, Z., Aghabozorg, H. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o1173.], 2010[Derikvand, Z., Attar Gharamaleki, J. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1316-m1317.]); Shaameri et al. (2001[Shaameri, Z., Shan, N. & Jones, W. (2001). Acta Cryst. E57, o945-o946.]); Tabatabaee et al. (2009[Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N+·C7H4NO4·H2O

  • Mr = 364.35

  • Triclinic, [P \overline 1]

  • a = 7.4842 (3) Å

  • b = 8.6850 (3) Å

  • c = 13.0305 (4) Å

  • α = 100.266 (3)°

  • β = 93.851 (2)°

  • γ = 97.766 (2)°

  • V = 822.16 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 90 K

  • 0.32 × 0.23 × 0.17 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.982

  • 11632 measured reflections

  • 4403 independent reflections

  • 4034 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.105

  • S = 1.07

  • 4403 reflections

  • 308 parameters

  • All H-atom parameters refined

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O5 0.869 (17) 1.958 (17) 2.7604 (10) 152.9 (16)
O4—H4A⋯N2 0.869 (17) 2.182 (17) 2.6646 (10) 114.6 (14)
O5—H5A⋯O1 0.849 (18) 2.016 (18) 2.8421 (10) 164.0 (16)
O5—H5B⋯O2i 0.845 (18) 2.134 (18) 2.9255 (10) 155.8 (16)
N1—H1⋯O2 1.031 (17) 1.555 (18) 2.5859 (9) 178.6 (16)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We have reported a number of crystal structures of protonated acridine and pyridine dicarboxylates (Derikvand et al., 2009, 2010; Aghabozorg et al., 2010; Attar Gharamaleki et al., 2010; Tabatabaee et al., 2009). Many other examples of acridinium salts are known, and they have ππ stacking of the acridinium ions and various types of hydrogen bonding in common. The molecular structure of the title compound, the 1:1 salt of acridinium and pydridine-2,6-dicarboylate is illustrated in Fig. 1. The crystal structure shows one of the protons of the two carboxylic groups has been transferred to the nitrogen atom of the acridine molecule.

As expected, bond lengths of the –CO2 groups reflect the presence or lack of an acidic H atom. At distances of 1.2403 (11) Å and 1.2806 (1)) Å, respectively, the O1—C19 and O2—C19 bond lengths are much closer to equality than O3—C20 and O4—C20, at 1.226 (11) Å and 1.3305 (11) Å. However, we can also point out that the O2—C19 bond is slightly longer than the O1—C19 bond, possibly due to there being two classical hydrogen bonds involving O2 and only one involving O1 (see Table 1). In fact, one of the hydrogen bonds for O2 can be classified as a very strong hydrogen bond, with an N···O distance of 2.5859 (9) Å. In a similar structure involving the acridinium salt of isophthalate (Shaameri et al., 2001), the analogous arrangement of cation and anion gives rise to a similar short hydrogen bond with N···O distance of 2.553 (2) Å. A depiction of the hydrogen bonded motif involving anion and cation fragments and water molecules is presented in Fig. 2. The hydrogen bonds between the water molecule and O2 serve to link the anions into a chain along the a axis direction. Symmetry code: i = x - 1, y, z.

Additional noncovalent interactions cause the structure to form a self assembled system. In the structure ππ stacking interactions between the acridinium ions average 3.42[3]Å (average deviation in square brackets). Sideways strong hydrogen bonds between O2 and the the proton of acridine gather the π-stack and the anionic chain together as shown in Fig. 3.

Related literature top

For structure of acridinium salts, see: Aghabozorg et al. (2010); Attar Gharamaleki Derikvand & Stoeckli-Evans (2010); Derikvand et al. (2009, 2010); Shaameri et al. (2001); Tabatabaee et al. (2009).

Experimental top

A solution of pyridine-2,6-dicarboxylic acid (167 mg, 1 mmol) in water (10 ml) was added to a solution of acridine(179 mg, 1 mmol) in methanol (5 ml) and stirring for 30 minutes, a clear solution was obtained (Scheme 1). Yellow-gold block crystals suitable for X-ray crystallography were produced by slow evaporation of the solvent at room temperature after a week.

Refinement top

All hydrogen atoms were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (acrH)+(pydcH)-. H2O. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding interactions. Symmetry code: i = x - 1, y, z.
[Figure 3] Fig. 3. ππ Stacking interactions between cationic fragments and their link to anionic chains as viewed along [0 1 1].
Acridinium 6-carboxypyridine-2-carboxylate monohydrate top
Crystal data top
C13H10N+·C7H4NO4·H2OZ = 2
Mr = 364.35F(000) = 380
Triclinic, P1Dx = 1.472 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4842 (3) ÅCell parameters from 7626 reflections
b = 8.6850 (3) Åθ = 2.6–32.9°
c = 13.0305 (4) ŵ = 0.11 mm1
α = 100.266 (3)°T = 90 K
β = 93.851 (2)°Block, yellow
γ = 97.766 (2)°0.32 × 0.23 × 0.17 mm
V = 822.16 (5) Å3
Data collection top
Bruker SMART APEXII
diffractometer
4403 independent reflections
Radiation source: fine-focus sealed tube4034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Detector resolution: 8.3 pixels mm-1θmax = 29.1°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.966, Tmax = 0.982l = 1717
11632 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.1884P]
where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H10N+·C7H4NO4·H2Oγ = 97.766 (2)°
Mr = 364.35V = 822.16 (5) Å3
Triclinic, P1Z = 2
a = 7.4842 (3) ÅMo Kα radiation
b = 8.6850 (3) ŵ = 0.11 mm1
c = 13.0305 (4) ÅT = 90 K
α = 100.266 (3)°0.32 × 0.23 × 0.17 mm
β = 93.851 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
4403 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4034 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.982Rint = 0.011
11632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.105All H-atom parameters refined
S = 1.07Δρmax = 0.48 e Å3
4403 reflectionsΔρmin = 0.20 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49045 (9)0.63220 (8)0.25575 (5)0.02109 (15)
O20.19185 (9)0.63670 (8)0.23357 (5)0.01783 (14)
O30.62172 (10)0.08319 (8)0.08226 (5)0.02271 (16)
O40.75469 (9)0.23901 (8)0.06409 (6)0.02201 (15)
H4A0.735 (2)0.320 (2)0.1097 (13)0.043 (4)*
O50.81245 (10)0.49602 (9)0.22739 (6)0.02321 (16)
H5A0.721 (2)0.544 (2)0.2252 (13)0.044 (4)*
H5B0.907 (2)0.560 (2)0.2244 (13)0.043 (4)*
N10.22761 (10)0.86086 (8)0.39668 (6)0.01351 (15)
H10.215 (2)0.771 (2)0.3318 (14)0.049 (5)*
N20.46280 (10)0.38054 (8)0.09346 (5)0.01356 (15)
C10.29254 (11)0.83725 (10)0.49119 (6)0.01346 (16)
C20.33756 (12)0.68689 (11)0.50193 (7)0.01783 (18)
H20.3209 (19)0.6010 (17)0.4401 (11)0.029 (3)*
C30.40456 (13)0.66579 (12)0.59791 (8)0.02161 (19)
H30.432 (2)0.5632 (18)0.6068 (11)0.034 (4)*
C40.43460 (13)0.79225 (13)0.68579 (8)0.0226 (2)
H40.486 (2)0.7719 (18)0.7514 (12)0.034 (4)*
C50.39282 (12)0.93759 (12)0.67742 (7)0.01935 (18)
H50.418 (2)1.0241 (17)0.7378 (11)0.031 (4)*
C60.31603 (11)0.96397 (10)0.57969 (6)0.01448 (16)
C70.26325 (11)1.10795 (10)0.56689 (7)0.01559 (17)
H70.2804 (19)1.1941 (17)0.6252 (11)0.028 (3)*
C80.19056 (11)1.12820 (10)0.46937 (7)0.01433 (17)
C90.13152 (12)1.27198 (11)0.45221 (8)0.01948 (18)
H90.139 (2)1.3590 (17)0.5148 (11)0.031 (3)*
C100.06669 (13)1.28604 (12)0.35436 (9)0.0227 (2)
H100.026 (2)1.3839 (18)0.3435 (12)0.037 (4)*
C110.05946 (13)1.15875 (12)0.26824 (8)0.02219 (19)
H110.016 (2)1.1712 (18)0.1989 (12)0.037 (4)*
C120.11412 (12)1.01882 (11)0.28081 (7)0.01838 (18)
H120.1125 (19)0.9325 (17)0.2221 (11)0.028 (3)*
C130.17760 (11)1.00027 (10)0.38252 (6)0.01340 (16)
C140.31558 (11)0.44843 (9)0.11517 (6)0.01310 (16)
C150.14892 (12)0.39585 (11)0.05742 (7)0.01748 (17)
H150.0454 (18)0.4460 (16)0.0776 (10)0.025 (3)*
C160.13303 (13)0.26913 (12)0.02620 (7)0.0224 (2)
H160.015 (2)0.2304 (19)0.0658 (12)0.039 (4)*
C170.28452 (13)0.19891 (11)0.04975 (7)0.02011 (19)
H170.280 (2)0.1079 (17)0.1077 (11)0.032 (4)*
C180.44547 (11)0.25928 (10)0.01274 (6)0.01459 (16)
C190.33787 (12)0.58364 (10)0.20896 (6)0.01463 (16)
C200.61355 (12)0.18562 (10)0.00691 (7)0.01689 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0156 (3)0.0221 (3)0.0213 (3)0.0021 (2)0.0019 (2)0.0053 (2)
O20.0154 (3)0.0174 (3)0.0187 (3)0.0044 (2)0.0012 (2)0.0031 (2)
O30.0247 (3)0.0232 (3)0.0206 (3)0.0092 (3)0.0066 (3)0.0007 (3)
O40.0159 (3)0.0220 (3)0.0267 (4)0.0062 (2)0.0003 (3)0.0013 (3)
O50.0150 (3)0.0245 (4)0.0307 (4)0.0020 (3)0.0008 (3)0.0078 (3)
N10.0133 (3)0.0131 (3)0.0137 (3)0.0024 (2)0.0012 (2)0.0011 (2)
N20.0139 (3)0.0140 (3)0.0130 (3)0.0031 (2)0.0014 (2)0.0025 (2)
C10.0110 (3)0.0146 (4)0.0150 (4)0.0015 (3)0.0024 (3)0.0034 (3)
C20.0157 (4)0.0162 (4)0.0233 (4)0.0040 (3)0.0048 (3)0.0060 (3)
C30.0154 (4)0.0251 (5)0.0297 (5)0.0067 (3)0.0061 (3)0.0153 (4)
C40.0149 (4)0.0363 (5)0.0199 (4)0.0036 (4)0.0020 (3)0.0145 (4)
C50.0147 (4)0.0290 (5)0.0139 (4)0.0005 (3)0.0011 (3)0.0052 (3)
C60.0117 (4)0.0182 (4)0.0127 (4)0.0002 (3)0.0014 (3)0.0025 (3)
C70.0145 (4)0.0149 (4)0.0153 (4)0.0005 (3)0.0025 (3)0.0012 (3)
C80.0124 (4)0.0128 (4)0.0173 (4)0.0006 (3)0.0028 (3)0.0020 (3)
C90.0169 (4)0.0134 (4)0.0286 (5)0.0026 (3)0.0049 (3)0.0040 (3)
C100.0172 (4)0.0194 (4)0.0352 (5)0.0051 (3)0.0037 (4)0.0126 (4)
C110.0169 (4)0.0288 (5)0.0237 (4)0.0034 (3)0.0001 (3)0.0132 (4)
C120.0164 (4)0.0230 (4)0.0158 (4)0.0024 (3)0.0001 (3)0.0045 (3)
C130.0112 (3)0.0141 (4)0.0149 (4)0.0015 (3)0.0017 (3)0.0029 (3)
C140.0145 (4)0.0134 (4)0.0114 (3)0.0028 (3)0.0012 (3)0.0020 (3)
C150.0147 (4)0.0221 (4)0.0145 (4)0.0056 (3)0.0003 (3)0.0011 (3)
C160.0162 (4)0.0297 (5)0.0172 (4)0.0049 (3)0.0026 (3)0.0062 (3)
C170.0188 (4)0.0231 (4)0.0156 (4)0.0041 (3)0.0012 (3)0.0042 (3)
C180.0156 (4)0.0152 (4)0.0135 (4)0.0041 (3)0.0031 (3)0.0022 (3)
C190.0159 (4)0.0135 (4)0.0139 (4)0.0023 (3)0.0011 (3)0.0009 (3)
C200.0161 (4)0.0170 (4)0.0185 (4)0.0040 (3)0.0041 (3)0.0038 (3)
Geometric parameters (Å, º) top
O1—C191.2403 (11)C6—C71.3952 (12)
O2—C191.2806 (10)C7—C81.3980 (12)
O3—C201.2126 (11)C7—H70.955 (14)
O4—C201.3305 (11)C8—C131.4256 (11)
O4—H4A0.869 (17)C8—C91.4282 (12)
O5—H5A0.849 (18)C9—C101.3655 (14)
O5—H5B0.845 (18)C9—H91.002 (14)
N1—C11.3533 (11)C10—C111.4204 (15)
N1—C131.3538 (11)C10—H100.972 (16)
N1—H11.031 (17)C11—C121.3665 (13)
N2—C181.3350 (11)C11—H110.970 (16)
N2—C141.3415 (11)C12—C131.4215 (12)
C1—C21.4199 (12)C12—H120.969 (14)
C1—C61.4283 (11)C14—C151.3885 (12)
C2—C31.3680 (13)C14—C191.5194 (11)
C2—H20.984 (14)C15—C161.3901 (12)
C3—C41.4208 (15)C15—H150.968 (14)
C3—H30.966 (15)C16—C171.3850 (13)
C4—C51.3617 (14)C16—H160.977 (16)
C4—H40.969 (15)C17—C181.3908 (12)
C5—C61.4303 (12)C17—H170.987 (15)
C5—H50.975 (14)C18—C201.5032 (12)
C20—O4—H4A112.1 (11)C9—C10—C11120.43 (9)
H5A—O5—H5B109.3 (16)C9—C10—H10119.8 (9)
C1—N1—C13122.44 (7)C11—C10—H10119.7 (9)
C1—N1—H1120.2 (10)C12—C11—C10121.37 (9)
C13—N1—H1117.3 (10)C12—C11—H11119.0 (9)
C18—N2—C14117.75 (7)C10—C11—H11119.6 (9)
N1—C1—C2119.91 (8)C11—C12—C13119.08 (9)
N1—C1—C6119.81 (8)C11—C12—H12121.8 (8)
C2—C1—C6120.28 (8)C13—C12—H12119.1 (8)
C3—C2—C1119.03 (9)N1—C13—C12119.76 (8)
C3—C2—H2121.8 (8)N1—C13—C8119.91 (7)
C1—C2—H2119.2 (8)C12—C13—C8120.32 (8)
C2—C3—C4121.31 (9)N2—C14—C15122.24 (8)
C2—C3—H3119.9 (9)N2—C14—C19116.69 (7)
C4—C3—H3118.8 (9)C15—C14—C19121.05 (7)
C5—C4—C3120.73 (8)C14—C15—C16119.29 (8)
C5—C4—H4121.3 (9)C14—C15—H15119.3 (8)
C3—C4—H4118.0 (9)C16—C15—H15121.4 (8)
C4—C5—C6120.05 (9)C17—C16—C15118.93 (8)
C4—C5—H5119.8 (9)C17—C16—H16121.7 (9)
C6—C5—H5120.1 (9)C15—C16—H16119.3 (9)
C7—C6—C1118.53 (8)C16—C17—C18117.69 (8)
C7—C6—C5122.96 (8)C16—C17—H17122.0 (9)
C1—C6—C5118.52 (8)C18—C17—H17120.3 (9)
C6—C7—C8120.73 (8)N2—C18—C17124.10 (8)
C6—C7—H7119.2 (9)N2—C18—C20115.58 (7)
C8—C7—H7120.0 (9)C17—C18—C20120.31 (8)
C7—C8—C13118.48 (8)O1—C19—O2125.44 (8)
C7—C8—C9123.10 (8)O1—C19—C14119.23 (8)
C13—C8—C9118.42 (8)O2—C19—C14115.33 (7)
C10—C9—C8120.32 (9)O3—C20—O4121.35 (8)
C10—C9—H9122.8 (8)O3—C20—C18122.73 (8)
C8—C9—H9116.9 (8)O4—C20—C18115.92 (7)
C13—N1—C1—C2178.05 (7)C11—C12—C13—N1178.23 (8)
C13—N1—C1—C62.15 (12)C11—C12—C13—C82.42 (13)
N1—C1—C2—C3179.41 (8)C7—C8—C13—N12.91 (12)
C6—C1—C2—C30.39 (13)C9—C8—C13—N1178.14 (7)
C1—C2—C3—C41.84 (13)C7—C8—C13—C12176.43 (8)
C2—C3—C4—C51.74 (14)C9—C8—C13—C122.51 (12)
C3—C4—C5—C60.66 (14)C18—N2—C14—C150.51 (12)
N1—C1—C6—C72.80 (12)C18—N2—C14—C19178.61 (7)
C2—C1—C6—C7177.40 (8)N2—C14—C15—C160.32 (14)
N1—C1—C6—C5177.12 (7)C19—C14—C15—C16178.35 (8)
C2—C1—C6—C52.68 (12)C14—C15—C16—C170.15 (15)
C4—C5—C6—C7177.28 (8)C15—C16—C17—C180.39 (15)
C4—C5—C6—C12.80 (13)C14—N2—C18—C170.24 (13)
C1—C6—C7—C80.59 (12)C14—N2—C18—C20178.89 (7)
C5—C6—C7—C8179.32 (8)C16—C17—C18—N20.21 (15)
C6—C7—C8—C132.20 (12)C16—C17—C18—C20178.38 (9)
C6—C7—C8—C9178.91 (8)N2—C14—C19—O15.15 (12)
C7—C8—C9—C10178.03 (8)C15—C14—C19—O1176.72 (8)
C13—C8—C9—C100.87 (13)N2—C14—C19—O2173.96 (7)
C8—C9—C10—C110.86 (14)C15—C14—C19—O24.17 (12)
C9—C10—C11—C120.97 (14)N2—C18—C20—O3173.96 (8)
C10—C11—C12—C130.68 (14)C17—C18—C20—O37.33 (14)
C1—N1—C13—C12178.61 (7)N2—C18—C20—O46.37 (11)
C1—N1—C13—C80.74 (12)C17—C18—C20—O4172.34 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O50.869 (17)1.958 (17)2.7604 (10)152.9 (16)
O4—H4A···N20.869 (17)2.182 (17)2.6646 (10)114.6 (14)
O5—H5A···O10.849 (18)2.016 (18)2.8421 (10)164.0 (16)
O5—H5B···O2i0.845 (18)2.134 (18)2.9255 (10)155.8 (16)
N1—H1···O21.031 (17)1.555 (18)2.5859 (9)178.6 (16)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H10N+·C7H4NO4·H2O
Mr364.35
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)7.4842 (3), 8.6850 (3), 13.0305 (4)
α, β, γ (°)100.266 (3), 93.851 (2), 97.766 (2)
V3)822.16 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.23 × 0.17
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
11632, 4403, 4034
Rint0.011
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.105, 1.07
No. of reflections4403
No. of parameters308
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.48, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O50.869 (17)1.958 (17)2.7604 (10)152.9 (16)
O4—H4A···N20.869 (17)2.182 (17)2.6646 (10)114.6 (14)
O5—H5A···O10.849 (18)2.016 (18)2.8421 (10)164.0 (16)
O5—H5B···O2i0.845 (18)2.134 (18)2.9255 (10)155.8 (16)
N1—H1···O21.031 (17)1.555 (18)2.5859 (9)178.6 (16)
Symmetry code: (i) x+1, y, z.
 

References

First citationAghabozorg, H., Attar Gharamaleki, J., Parvizi, M. & Derikvand, Z. (2010). Acta Cryst. E66, m83–m84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAttar Gharamaleki, J., Derikvand, Z. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, o2231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerikvand, Z., Aghabozorg, H. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o1173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDerikvand, Z., Attar Gharamaleki, J. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1316–m1317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaameri, Z., Shan, N. & Jones, W. (2001). Acta Cryst. E57, o945–o946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds