metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) chloride 2-phenyl-4-selenazole-5-carboxylate decahydrate

Jin-Bei Shen,^a Xin Lv,^a Ji-Fei Chen,^a Yu-Feng Zhou^a and Guo-Liang Zhao^{a,b}*

^aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and ^bZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China Correspondence e-mail: sky53@zjnu.cn

Received 21 December 2010; accepted 6 January 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.047; *wR* factor = 0.140; data-to-parameter ratio = 13.7.

The asymmetric unit of the title salt, $[Zn(C_{12}H_8N_2)_3]$ - $(C_{10}H_6NO_2Se)Cl\cdot10H_2O$, contains a $[Zn(phen)_3]^{2+}$ cation (phen is 1,10-phenanthroline), uncoordinated chloride and 2-phenyl-4-selenazole-5-carboxylate anions and ten uncoordinated water molecules. The central Zn^{II} ion is six-coordinated by six N atoms from three phen ligands in a distorted octahedral geometry. An extensive $O-H\cdots O$, $O-H\cdots N$ and $O-H\cdots Cl$ hydrogen-bonding network stabilizes the crystal structure.

Related literature

For the synthesis of the organic ligand, 2-phenyl-4-selenazole-5-carboxylic acid, see: Zhao *et al.* (2010). For related structures, see: Srivastava & Robins (1983); Boritzki *et al.* (1985); Wang *et al.* (2006).

Experimental

Crystal data

$Zn(C_{12}H_8N_2)_3](C_{10}H_6NO_2Se)Cl$	
10H ₂ O	
$M_r = 1072.71$	
Triclinic, P1	
a = 12.4837 (9) Å	
b = 13.8935 (10) Å	
c = 15.8221 (12) Å	
$\alpha = 77.618 \ (4)^{\circ}$	

Data collection

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.140$ S = 1.068371 reflections 613 parameters $\beta = 89.642 (4)^{\circ}$ $\gamma = 63.375 (4)^{\circ}$ $V = 2383.4 (3) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.40 \text{ mm}^{-1}$ T = 296 K $0.64 \times 0.35 \times 0.17 \text{ mm}$

33787 measured reflections 8371 independent reflections 6305 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$

30 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.81 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.74 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1WA\cdots O2W^{i}$	0.85	2.05	2.898 (5)	179
$O1W-H1WB\cdots O9W^{ii}$	0.85	1.98	2.830 (6)	180
O4W−H4WA···N7 ⁱⁱ	0.85	2.22	3.044 (5)	163
O4W−H4WA···O1 ⁱⁱ	0.85	2.40	2.921 (7)	120
$O5W-H5WA\cdots O6W^{iii}$	0.85	1.91	2.762 (6)	178
O6W−H6WA···Cl1 ⁱⁱⁱ	0.85	2.24	3.076 (5)	168
O7W−H7WB···Cl1 ^{iv}	0.85	2.54	3.391 (5)	179
$O8W - H8WB \cdots O7W^{v}$	0.85	1.97	2.817 (7)	180
$O2W - H2WA \cdots O9W^{vi}$	0.85	1.96	2.806 (5)	179
O2W−H2WB···Cl1 ^{vii}	0.85	2.28	3.129 (3)	180
O4W−H4WB···O1	0.85	1.98	2.809 (6)	166
$O5W - H5WB \cdot \cdot \cdot O3W$	0.85	2.07	2.915 (6)	173
$O6W - H6WB \cdots O2$	0.85	2.05	2.892 (6)	171
O7W−H7WA···Cl1	0.85	2.24	3.006 (5)	150
$O8W-H8WA\cdots O2$	0.85	1.97	2.819 (5)	172
$O9W - H9WA \cdots O8W$	0.85	2.05	2.864 (8)	161
$O9W - H9WB \cdots O10W$	0.85	2.18	3.030 (8)	178
$O10W - H10W \cdot \cdot \cdot O4W$	0.85	2.02	2.866 (8)	173
O10W−H10E···O2	0.85	2.08	2.925 (6)	171

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z + 2; (v) x, y, z - 1; (vi) x - 1, y, z + 1; (vii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This project was supported by the Natural Science of Fundation of Zhejiang (Y4080256) and the Zhejiang students' science and technology innovation plan (young talent plan).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2778).

References

- Boritzki, T. J., Berry, D. A., Besserer, J. A., Cook, P. D., Fry, D. W., Leopold, W. R. & Jackson, R. C. (1985). *Biochem. Pharmacol.* 34, 1109–1114.
- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Srivastava, P. C. & Robins, R. K. (1983). J. Med. Chem. 26, 445-448.
- Wang, X. L., Zhang, X. Y., Ma, Y. & Wang, E. B. (2006). J. Northeast Normal Univ. 38, 68–72.
- Zhao, G.-L., Shi, X., Zhang, J. P., Liu, J.-F., Xian, H.-D. & Shao, L. X. (2010). *Chem. Sci. China*, **40**, 1525–1535.

supporting information

Acta Cryst. (2011). E67, m186-m187 [doi:10.1107/S1600536811000729]

Tris(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) chloride 2-phenyl-4-selenazole-5carboxylate decahydrate

Jin-Bei Shen, Xin Lv, Ji-Fei Chen, Yu-Feng Zhou and Guo-Liang Zhao

S1. Comment

Derivatives of selenazole are important in chemistry and biochemistry due to their biological activity (Srivastava *et al.*, 1983; Boritzki *et al.*, 1985). Interested in this field, we have been engaged in a major effort directed toward the development of syntheses of new selenazole carboxylic acid and their transition metal complexes. We have reported our partial research results previously (Zhao *et al.*, 2010). Herein, we describe the structure of the title Zn^{II} complex.

The local coordination geometry around each Zn center (Fig. 1 and Fig. 2) is a slightly distorted octahedron defined by six nitrogen atoms from three different 1,10-phenanthroline (phen) ligands while the organic ligand 2-phenyl-4-selenazole carboxylic acid (H*L*) loses its one proton and changes to *L* which fail to coordinate to zinc atom. That is, the compound consists of $[Zn(phen)_3]^{2+}$ cations, two un-coordinating anions: Cl⁻and *L* and ten water molecules. The bonds between Zn^{II} and N atoms from 1, 10-phenanthroline are 2.155 (3)Å - 2.185 (3)Å, which are similar to related compounds in the literatures (Wang *et al.* 2006). The three phen ligands around zinc is respectively plane, the four N atoms of phen form the equatorial plane, and N4 and N5 atoms occupy the apical positions.

The hydrogen bonds and $\pi \cdots \pi$ weak non-covalent interactions lend stability to the structure. The hydrogen bonds are listed in Table 2 and the stacking plot of this compound is shown in Fig. 3. Complex molecules are linked in a line through water molecules by hydrogen bonds and different lines are interlocked with benzene rings using $\pi \cdots \pi$ stacking.

S2. Experimental

Reagents and solvents used were of commercially available quality and without purification before using. The compound (1) was obtained by adding $ZnCl_2$ (0.136 g,1 mmol) to 2-phenyl-4-selenazole carboxylic acid (0.252 g,1 mmol),1,10-phenanthroline (0.396 g, 2 mmol) in ethanol solution. The mixture was stirred at room temperature for 8 h to obtain a colourless solution which was filtered and the filtrate kept for evaporating. colourless crystal of the title complex formed after 40 days.

S3. Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å $(U_{iso}(H) = 1.2U_{eq}(C))$]. Water H atoms bonded to O atoms were located in difference Fourier maps and refined with O —H distance restraints of 0.83 (2) and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title complex, showing the atom- labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The coordination environment of the Zn^{II} atom, showing the octahedral structurem.

Figure 3

The stacking plot of the title compound, showing H-bond interactions (dashed lines) and π ... π stacking interactions.

Tris(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) chloride 2-phenyl-4-selenazole-5-carboxylate decahydrate

Crystal data $[Zn(C_{12}H_8N_2)_3](C_{10}H_6NO_2Se)Cl \cdot 10H_2O$ $M_r = 1072.71$ Triclinic. P1	Z = 2 F(000) = 1104 $D_{\rm x} = 1.495 \text{ Mg m}^{-3}$
Hall symbol: -P 1 a = 12.4837 (9) Å b = 13.8935 (10) Å c = 15.8221 (12) Å a = 77.618 (4)° $\beta = 89.642$ (4)° $\gamma = 63.375$ (4)° V = 2383.4 (3) Å ³	Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 8933 reflections $\theta = 1.8-25.0^{\circ}$ $\mu = 1.40 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.64 \times 0.35 \times 0.17 \text{ mm}$
Data collectionBruker APEXII area-detector diffractometerRadiation source: fine-focus sealed tubeGraphite monochromator φ and ω scansAbsorption correction: multi-scan $(SADABS; Sheldrick, 1996)$ $T_{min} = 0.562, T_{max} = 0.790$	33787 measured reflections 8371 independent reflections 6305 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -14 \rightarrow 14$ $k = -16 \rightarrow 16$ $l = -18 \rightarrow 18$

Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.140$	neighbouring sites
S = 1.06	H-atom parameters constrained
8371 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0806P)^2 + 0.8651P]$
613 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
30 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.81 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.74 \ m e \ m A^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.19692 (3)	0.30045 (3)	0.77746 (2)	0.03857 (14)
Se1	0.43865 (4)	0.23586 (4)	0.49471 (3)	0.07071 (17)
N1	0.1832 (3)	0.4178 (2)	0.85189 (18)	0.0424 (7)
N3	0.1650 (2)	0.2219 (2)	0.68130 (18)	0.0415 (7)
N4	0.1851 (2)	0.4125 (2)	0.65436 (17)	0.0390 (6)
C43	0.5785 (3)	0.1029 (3)	0.5404 (2)	0.0471 (9)
N2	0.0048 (3)	0.3822 (2)	0.79275 (18)	0.0412 (7)
C18	0.1620 (3)	0.3806 (3)	0.5840 (2)	0.0385 (8)
N5	0.2362 (3)	0.1535 (3)	0.87845 (18)	0.0446 (7)
N6	0.3907 (3)	0.2104 (2)	0.78710 (18)	0.0428 (7)
C29	0.3519 (3)	0.0743 (3)	0.8845 (2)	0.0429 (8)
C17	0.1493 (3)	0.2808 (3)	0.5982 (2)	0.0405 (8)
C5	-0.0267 (3)	0.4672 (3)	0.8330 (2)	0.0398 (8)
C33	0.4351 (3)	0.1060 (3)	0.8375 (2)	0.0411 (8)
C4	-0.1461 (3)	0.5338 (3)	0.8457 (2)	0.0484 (9)
N7	0.6756 (3)	0.1018 (3)	0.5097 (2)	0.0532 (8)
C21	0.1516 (3)	0.4420 (3)	0.4983 (2)	0.0470 (9)
C16	0.1221 (3)	0.2475 (3)	0.5270 (2)	0.0490 (9)
C40	0.5741 (3)	0.0113 (3)	0.6027 (2)	0.0479 (9)
C36	0.4676 (3)	0.2405 (4)	0.7452 (3)	0.0534 (10)
H36A	0.4381	0.3118	0.7101	0.064*
C6	0.0684 (3)	0.4867 (3)	0.8636 (2)	0.0420 (8)
C25	0.1598 (4)	0.1265 (4)	0.9235 (2)	0.0565 (10)
H25A	0.0806	0.1805	0.9209	0.068*
C13	0.1554 (3)	0.1289 (3)	0.6952 (3)	0.0480 (9)

H13A	0.1675	0.0875	0.7520	0.058*
C24	0.2010 (3)	0.5024 (3)	0.6411 (2)	0.0505 (9)
H24A	0.2170	0.5243	0.6891	0.061*
C32	0.5577 (3)	0.0283 (3)	0.8460 (2)	0.0505 (9)
C1	-0.0815 (3)	0.3633 (3)	0.7646 (2)	0.0479 (9)
H1A	-0.0605	0.3052	0.7373	0.057*
C11	0.2502 (4)	0.5211 (4)	0.9210 (3)	0.0649 (12)
H11A	0.3144	0.5312	0.9392	0.078*
C28	0.3934 (4)	-0.0346(3)	0.9353 (2)	0.0526 (9)
C12	0.2705 (4)	0.4352 (3)	0.8807 (2)	0.0531 (9)
H12A	0.3495	0.3879	0.8738	0.064*
C14	0.1281 (4)	0.0904 (4)	0.6283 (3)	0.0623 (11)
H14A	0.1219	0.0247	0.6408	0.075*
C3	-0.2354(3)	0.5099 (4)	0.8149 (3)	0.0576 (10)
H3A	-0.3157	0.5515	0.8227	0.069*
C41	0.4668 (4)	0.0119 (4)	0.6252(3)	0.0572 (10)
H41A	0 3944	0.0727	0.6000	0.069*
C31	0 5950 (4)	-0.0802(4)	0.8985 (3)	0.0669(12)
H31A	0.6759	-0.1316	0.9042	0.080*
02	0.7391(3)	0.2748(3)	0.3355(2)	0.0776 (9)
C9	0.7391(3) 0.0390(4)	0.2745(3)	0.9999(2) 0.9049(2)	0.0770(9)
C44	0.6545(4)	0.1973(3)	0.9019(2) 0.4470(3)	0.0531(10)
C34	0.6337(4)	0.1979(3) 0.0650(4)	0.8007(3)	0.0630(12)
H34A	0.7154	0.0167	0.8045	0.076*
C20	0.7134 0.1236 (3)	0.0107 0.4051 (4)	0.30+5 0.4277(2)	0.076
H20A	0.1158	0.4455	0.4277(2)	0.067*
C2	-0.2036(3)	0.4265 (4)	0.3711 0.7740 (3)	0.007
H2A	-0.2619	0.4111	0.7524	0.068*
C26	0.201)	0.9111 0.0196 (4)	0.7524 0.9748 (3)	0.000
H26A	0.1339 (3)	0.0190 (4)	0.9748 (3)	0.0094 (13)
C45	0.1377 0.5393 (4)	0.0033 0.2780 (4)	0.4200 (3)	0.065
H45A	0.5393 (4)	0.3456	0.4290 (3)	0.0004 (11)
C46	0.5144 0.7594 (4)	0.3430 0.2044 (4)	0.3050	0.060
C40	0.7394(4) 0.5170(5)	-0.1111(4)	0.4003(4)	0.0093(12)
	0.5170 (5)	-0.1834	0.9403 (3)	0.0079(12)
1130A C22	0.3444 0.1704 (3)	0.1834 0.5354 (4)	0.3723 0.4878 (3)	0.081°
	0.1704 (3)	0.5354 (4)	0.4878 (3)	0.0505 (10)
1122A C25	0.1003	0.3770 0.1602 (4)	0.4323 0.7516 (2)	0.008°
	0.3900 (4)	0.1095 (4)	0.7316 (5)	0.0031 (11)
ПЭЭА С20	0.0423	0.1955	0.7223	0.070°
U39	0.0810 (4)	-0.0817(4)	0.0421 (5)	0.0593 (11)
H39A	0.7555	-0.0843	0.0285	$0.0/1^{+}$
C23	0.1947 (4)	0.5654 (4)	0.5584 (3)	0.0599 (10)
н23А С42	0.20/1	0.02//	0.3318	$0.0/2^{*}$
C42	0.4650 (4)	-0.0738 (4)	0.6844 (3)	0.0633 (11)
H42A	0.3917	-0.0734	0.6991	0.076*
C15	0.1106 (4)	0.1492 (4)	0.5446 (3)	0.0612 (11)
HI5A	0.0911	0.1246	0.4995	0.073*
C7	-0.1715 (4)	0.6205 (3)	0.8894 (3)	0.0625 (11)

H7A	-0.2506	0.6642	0.8987	0.075*
C19	0.1083(3)	0.3126(4)	0.4414(3)	0.073(11)
H19A	0.0886	0.2915	0 3942	0.069*
C10	0.1353 (5)	0.5901 (4)	0.9334(3)	0.0633 (11)
H10A	0.1206	0.6473	0.9606	0.076*
C27	0.3092(5)	-0.0600(4)	0.9797(3)	0.070
H27A	0.3320	-0.1314	1 0127	0.081*
C8	-0.0838(4)	0.6399 (3)	0.9172(3)	0.061
H8A	-0.1032	0.6973	0.9451	0.078*
01	0.8605 (3)	0 1404 (4)	0.9451 0.4456 (3)	0.1188 (16)
C37	0.5696 (5)	-0.1658(4)	0.7214(3)	0.0678(12)
H37A	0.5681	-0.2255	0.7214 (5)	0.0078 (12)
C38	0.5081	-0.1683(4)	0.7005 (3)	0.061
	0.0784 (4)	-0.1083(4) -0.2205	0.7003 (3)	0.0072(12)
CI1	0.7301 0.57072 (16)	-0.2293	0.7203	0.081°
CII O2W	0.37973(10)	0.37700(19)	0.91079(13)	0.1333(7)
	0.8109 (3)	0.2373 (3)	0.0383 (2)	0.0912 (11)
H3WA	0.8472	0.2030	0.6890	0.13/*
H3WB	0.8205	0.2095	0.5942	0.13/*
UIW	0.9146 (4)	0.1104 (3)	0.8120 (3)	0.1032 (12)
HIWA	0.8967	0.1422	0.8541	0.155*
HIWB	0.9591	0.0409	0.8288	0.155*
O4W	1.0793 (4)	0.0140 (4)	0.3841 (3)	0.1190 (15)
H4WA	1.1390	-0.0158	0.4228	0.178*
H4WB	1.0199	0.0472	0.4113	0.178*
O5W	0.5718 (4)	0.4248 (4)	0.5881 (3)	0.1123 (13)
H5WA	0.5347	0.4502	0.6298	0.168*
H5WB	0.6384	0.3665	0.6041	0.168*
O6W	0.5449 (4)	0.4965 (4)	0.2741 (3)	0.1146 (14)
H6WA	0.5182	0.5230	0.2206	0.172*
H6WB	0.6067	0.4337	0.2885	0.172*
O7W	0.4968 (4)	0.3559 (4)	1.0895 (3)	0.1256 (16)
H7WA	0.5454	0.3512	1.0509	0.188*
H7WB	0.4776	0.4228	1.0899	0.188*
O8W	0.7050 (5)	0.1907 (4)	0.1966 (3)	0.1297 (16)
H8WA	0.7207	0.2171	0.2358	0.195*
H8WB	0.6421	0.2405	0.1642	0.195*
O9W	0.9370 (6)	0.1210 (4)	0.1330 (3)	0.160 (2)
H9WA	0.8672	0.1309	0.1461	0.240*
H9WB	0.9456	0.1509	0.1723	0.240*
O10W	0.9719 (5)	0.2306 (6)	0.2694 (3)	0.155 (2)
H10W	1.0099	0.1656	0.3016	0.233*
H10E	0.9087	0.2362	0.2930	0.233*
O2W	-0.1445 (3)	0.2174 (2)	0.95610 (18)	0.0604 (7)
H2WA	-0.1192	0.1879	1.0096	0.091*
H2WB	-0.2194	0.2607	0.9438	0.091*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0347 (2)	0.0370 (2)	0.0420 (2)	-0.01497 (18)	0.00388 (16)	-0.00878 (17)
Se1	0.0395 (2)	0.0629 (3)	0.0806 (3)	-0.0045 (2)	0.0095 (2)	-0.0029 (2)
N1	0.0410 (16)	0.0416 (17)	0.0411 (15)	-0.0164 (14)	0.0033 (13)	-0.0085 (13)
N3	0.0361 (15)	0.0433 (18)	0.0481 (17)	-0.0183 (14)	0.0080 (13)	-0.0165 (14)
N4	0.0354 (15)	0.0371 (16)	0.0425 (15)	-0.0157 (13)	0.0010 (12)	-0.0074 (13)
C43	0.0333 (18)	0.049 (2)	0.052 (2)	-0.0101 (17)	0.0014 (16)	-0.0186 (18)
N2	0.0404 (16)	0.0392 (17)	0.0434 (16)	-0.0186 (14)	0.0043 (13)	-0.0074 (13)
C18	0.0265 (16)	0.041 (2)	0.0422 (18)	-0.0105 (15)	0.0058 (13)	-0.0100 (15)
N5	0.0433 (17)	0.0469 (18)	0.0429 (16)	-0.0221 (15)	0.0024 (13)	-0.0058 (13)
N6	0.0393 (16)	0.0419 (18)	0.0472 (16)	-0.0190 (14)	0.0048 (13)	-0.0098 (14)
C29	0.050(2)	0.042 (2)	0.0384 (18)	-0.0218 (18)	-0.0036 (15)	-0.0111 (16)
C17	0.0262 (16)	0.046 (2)	0.046 (2)	-0.0111 (15)	0.0071 (14)	-0.0174 (16)
C5	0.0414 (19)	0.0333 (19)	0.0374 (17)	-0.0126 (16)	0.0058 (15)	-0.0039 (15)
C33	0.0406 (19)	0.039 (2)	0.0416 (18)	-0.0138 (16)	-0.0036 (15)	-0.0146 (16)
C4	0.047 (2)	0.037 (2)	0.046 (2)	-0.0092 (17)	0.0084 (16)	-0.0028 (16)
N7	0.0403 (17)	0.050 (2)	0.068 (2)	-0.0178 (15)	0.0035 (15)	-0.0182 (17)
C21	0.0305 (18)	0.051 (2)	0.045 (2)	-0.0086 (16)	0.0049 (15)	-0.0067 (17)
C16	0.0325 (18)	0.059 (3)	0.055 (2)	-0.0146 (18)	0.0052 (16)	-0.0284 (19)
C40	0.040 (2)	0.051 (2)	0.048 (2)	-0.0142 (18)	0.0057 (16)	-0.0190 (18)
C36	0.046 (2)	0.056 (3)	0.061 (2)	-0.026 (2)	0.0084 (18)	-0.0108 (19)
C6	0.053 (2)	0.0327 (19)	0.0343 (17)	-0.0168 (17)	0.0033 (15)	-0.0026 (14)
C25	0.062 (3)	0.063 (3)	0.054 (2)	-0.038 (2)	0.0082 (19)	-0.008 (2)
C13	0.044 (2)	0.041 (2)	0.063 (2)	-0.0216 (18)	0.0098 (17)	-0.0150 (18)
C24	0.054 (2)	0.048 (2)	0.051 (2)	-0.027 (2)	-0.0037 (17)	-0.0061 (18)
C32	0.044 (2)	0.046 (2)	0.053 (2)	-0.0093 (18)	-0.0050 (17)	-0.0198 (18)
C1	0.041 (2)	0.049 (2)	0.055 (2)	-0.0230 (18)	0.0069 (17)	-0.0091 (17)
C11	0.079 (3)	0.067 (3)	0.062 (3)	-0.046 (3)	-0.006 (2)	-0.012 (2)
C28	0.069 (3)	0.041 (2)	0.047 (2)	-0.026 (2)	-0.0056 (19)	-0.0085 (17)
C12	0.055 (2)	0.057 (3)	0.052 (2)	-0.030 (2)	-0.0011 (18)	-0.0116 (19)
C14	0.058 (3)	0.058 (3)	0.088 (3)	-0.035 (2)	0.017 (2)	-0.034 (2)
C3	0.037 (2)	0.052 (3)	0.071 (3)	-0.0132 (18)	0.0131 (18)	-0.005 (2)
C41	0.041 (2)	0.061 (3)	0.065 (3)	-0.017 (2)	0.0060 (18)	-0.019 (2)
C31	0.062 (3)	0.041 (2)	0.075 (3)	-0.002 (2)	-0.017 (2)	-0.017 (2)
O2	0.075 (2)	0.083 (2)	0.080 (2)	-0.0430 (19)	0.0178 (18)	-0.0158 (19)
C9	0.069 (3)	0.033 (2)	0.046 (2)	-0.0183 (19)	0.0025 (18)	-0.0083 (16)
C44	0.049 (2)	0.053 (3)	0.061 (2)	-0.024 (2)	0.0054 (18)	-0.020 (2)
C34	0.036 (2)	0.071 (3)	0.074 (3)	-0.011 (2)	0.005 (2)	-0.032 (3)
C20	0.045 (2)	0.066 (3)	0.043 (2)	-0.012 (2)	0.0055 (17)	-0.0138 (19)
C2	0.040 (2)	0.059 (3)	0.069 (3)	-0.026 (2)	0.0050 (18)	-0.006 (2)
C26	0.090 (4)	0.074 (3)	0.060 (3)	-0.057 (3)	0.007 (2)	-0.003 (2)
C45	0.057 (3)	0.055 (3)	0.076 (3)	-0.018 (2)	0.008 (2)	-0.011 (2)
C46	0.060 (3)	0.063 (3)	0.095 (4)	-0.035 (3)	0.009 (3)	-0.023 (3)
C30	0.090 (3)	0.037 (2)	0.063 (3)	-0.018 (2)	-0.016 (2)	-0.008 (2)
C22	0.048 (2)	0.061 (3)	0.049 (2)	-0.022 (2)	0.0046 (18)	0.0008 (19)
C35	0.043 (2)	0.078 (3)	0.073 (3)	-0.028 (2)	0.017 (2)	-0.026 (3)

C39	0.041 (2)	0.064 (3)	0.058 (2)	-0.012 (2)	0.0080 (18)	-0.013 (2)
C23	0.059 (3)	0.049 (2)	0.070 (3)	-0.029 (2)	0.004 (2)	-0.003 (2)
C42	0.062 (3)	0.065 (3)	0.065 (3)	-0.029 (2)	0.011 (2)	-0.018 (2)
C15	0.053 (2)	0.068 (3)	0.073 (3)	-0.027 (2)	0.006 (2)	-0.036 (2)
C7	0.057 (3)	0.045 (2)	0.062 (3)	-0.004 (2)	0.015 (2)	-0.009 (2)
C19	0.042 (2)	0.075 (3)	0.048 (2)	-0.014 (2)	0.0008 (17)	-0.028 (2)
C10	0.089 (3)	0.044 (2)	0.058 (2)	-0.030 (2)	-0.002 (2)	-0.015 (2)
C27	0.097 (4)	0.051 (3)	0.056 (2)	-0.043 (3)	-0.013 (2)	0.005 (2)
C8	0.078 (3)	0.038 (2)	0.060 (3)	-0.008 (2)	0.008 (2)	-0.0154 (19)
01	0.049 (2)	0.100 (3)	0.180 (4)	-0.034 (2)	0.011 (2)	0.020 (3)
C37	0.084 (3)	0.063 (3)	0.058 (3)	-0.033 (3)	0.019 (2)	-0.017 (2)
C38	0.057 (3)	0.057 (3)	0.063 (3)	-0.009 (2)	0.005 (2)	-0.005 (2)
C11	0.0872 (11)	0.1591 (19)	0.1237 (14)	-0.0427 (12)	0.0137 (10)	-0.0052 (12)
O3W	0.096 (3)	0.092 (3)	0.098 (3)	-0.048 (2)	0.028 (2)	-0.035 (2)
O1W	0.107 (3)	0.078 (3)	0.112 (3)	-0.030 (2)	0.015 (2)	-0.025 (2)
O4W	0.082 (3)	0.157 (4)	0.128 (3)	-0.056 (3)	-0.011 (2)	-0.051 (3)
O5W	0.109 (3)	0.104 (3)	0.110 (3)	-0.034 (3)	0.023 (3)	-0.033 (3)
O6W	0.107 (3)	0.090 (3)	0.119 (3)	-0.029 (3)	0.023 (3)	-0.008 (2)
O7W	0.088 (3)	0.120 (4)	0.152 (4)	-0.031 (3)	0.036 (3)	-0.037 (3)
O8W	0.145 (4)	0.154 (5)	0.108 (3)	-0.076 (4)	0.011 (3)	-0.047 (3)
O9W	0.207 (6)	0.100 (4)	0.105 (3)	-0.013 (4)	-0.001 (4)	-0.020 (3)
O10W	0.115 (4)	0.222 (6)	0.128 (4)	-0.096 (4)	0.022 (3)	0.003 (4)
O2W	0.0598 (17)	0.0520 (17)	0.0704 (18)	-0.0283 (14)	0.0021 (14)	-0.0102 (14)

Geometric parameters (Å, °)

Zn1—N1	2.155 (3)	C3—C2	1.351 (6)
Zn1—N6	2.156 (3)	C3—H3A	0.9300
Zn1—N5	2.163 (3)	C41—C42	1.378 (6)
Zn1—N4	2.176 (3)	C41—H41A	0.9300
Zn1—N2	2.184 (3)	C31—C30	1.348 (7)
Zn1—N3	2.185 (3)	C31—H31A	0.9300
Se1—C45	1.840 (5)	O2—C46	1.260 (6)
Se1—C43	1.880 (4)	C9—C10	1.405 (6)
N1-C12	1.320 (5)	C9—C8	1.428 (6)
N1—C6	1.360 (5)	C44—C45	1.353 (6)
N3—C13	1.323 (4)	C44—C46	1.488 (6)
N3—C17	1.355 (4)	C34—C35	1.348 (6)
N4—C24	1.323 (5)	C34—H34A	0.9300
N4—C18	1.360 (4)	C20—C19	1.354 (6)
C43—N7	1.298 (5)	C20—H20A	0.9300
C43—C40	1.456 (6)	C2—H2A	0.9300
N2-C1	1.320 (4)	C26—C27	1.356 (7)
N2C5	1.363 (4)	C26—H26A	0.9300
C18—C21	1.410 (5)	C45—H45A	0.9300
C18—C17	1.435 (5)	C46—O1	1.240 (6)
N5-C25	1.324 (5)	C30—H30A	0.9300
N5-C29	1.356 (5)	C22—C23	1.354 (6)

N6-C36	1 330 (5)	С22—Н22А	0 9300
N6-C33	1 355 (5)	C35_H35A	0.9300
C_{29} C_{28}	1.303(5)	C_{39} C_{38}	1 368 (6)
C_{29} C_{20}	1.400(5) 1.444(5)	C39_H39A	0.9300
C17 C16	1.444(5) 1.402(5)	C23 H23A	0.9300
C_{5} C_{4}	1.402(5)	C42 C27	1 358 (6)
C_{3}	1.399(3) 1.430(5)	$C_{42} = C_{57}$	1.558 (0)
C_{3}^{3} C_{2}^{3}	1.439(3) 1.408(5)	C_{42} H_{15A}	0.9300
$C_{33} = C_{32}$	1.408(3)	$C7$ C^{9}	1.337(6)
C4 - C3	1.414(0) 1.420(6)	$C_{-}C_{0}$	1.337(0)
C4—C/	1.429 (0)	$C_{$	0.9300
N = C44	1.395 (3)	C10_H19A	0.9300
$C_{21} = C_{22}$	1.390 (0)		0.9300
$C_{21} = C_{20}$	1.430 (5)	$C_2/-H_2/A$	0.9300
	1.407 (6)	C8—H8A	0.9300
	1.422 (6)	C37—C38	1.382 (6)
C40—C41	1.380 (5)	C3/—H3/A	0.9300
C40—C39	1.403 (6)	C38—H38A	0.9300
C36—C35	1.395 (6)	O3W—H3WA	0.8496
С36—Н36А	0.9300	O3W—H3WB	0.8502
С6—С9	1.410 (5)	O1W—H1WA	0.8502
C25—C26	1.402 (6)	O1W—H1WB	0.8501
C25—H25A	0.9300	O4W—H4WA	0.8501
C13—C14	1.390 (6)	O4W—H4WB	0.8500
C13—H13A	0.9300	O5W—H5WA	0.8502
C24—C23	1.390 (6)	O5W—H5WB	0.8498
C24—H24A	0.9300	O6W—H6WA	0.8503
C32—C34	1.393 (6)	O6W—H6WB	0.8500
C32—C31	1.420 (6)	O7W—H7WA	0.8500
C1—C2	1.403 (5)	O7W—H7WB	0.8502
C1—H1A	0.9300	O8W—H8WA	0.8498
C11—C10	1.364 (7)	O8W—H8WB	0.8500
C11—C12	1.396 (6)	O9W—H9WA	0.8500
C11—H11A	0.9300	O9W—H9WB	0.8499
C28—C27	1.394 (6)	O10W—H10W	0.8500
C28—C30	1.418 (6)	O10W—H10E	0.8500
C12—H12A	0.9300	O2W—H2WA	0.8500
C14—C15	1.360 (6)	O2W—H2WB	0.8503
C14—H14A	0.9300		
N1—Zn1—N6	98.12 (11)	N1—C12—C11	123.3 (4)
N1—Zn1—N5	102.04 (11)	N1—C12—H12A	118.3
N6—Zn1—N5	77.29 (11)	C11—C12—H12A	118.3
N1— $Zn1$ — $N4$	92.98 (11)	C15—C14—C13	119.8 (4)
N6—Zn1—N4	93 51 (11)	C15—C14—H14A	120.1
N5 - Zn1 - N4	163.28 (11)	C13—C14—H14A	120.1
N1 - 7n1 - N2	76 97 (11)	$C_{2}-C_{3}-C_{4}$	119 8 (4)
$N_{6} - 7n_{1} - N_{2}^{2}$	169 86 (10)	$C_2 = C_3 = H_3 A$	120.1
$N_{5} = 7n_{1} = N_{2}^{2}$	94 92 (11)	C4-C3-H3A	120.1
11.7 2.111-112	JT.J2 (11)		120.1

N4—Zn1—N2	95.59 (10)	C42—C41—C40	121.2 (4)
N1—Zn1—N3	163.66 (11)	C42—C41—H41A	119.4
N6—Zn1—N3	95.37 (10)	C40—C41—H41A	119.4
N5—Zn1—N3	89.87 (11)	C30—C31—C32	122.1 (4)
N4—Zn1—N3	76.98 (11)	С30—С31—Н31А	119.0
N2—Zn1—N3	91.04 (10)	С32—С31—Н31А	119.0
C45—Se1—C43	85.43 (19)	С10—С9—С6	116.7 (4)
C12—N1—C6	117.7 (3)	C10—C9—C8	124.0 (4)
C12— $N1$ — $Zn1$	128.0 (3)	C6—C9—C8	119.2 (4)
C6—N1—Zn1	114.1 (2)	C45—C44—N7	116.9 (4)
C13 - N3 - C17	118.3 (3)	C45—C44—C46	124.9 (4)
C13 - N3 - Zn1	128.1 (3)	N7—C44—C46	118.2 (4)
C17 - N3 - 7n1	1135(2)	C_{35} C_{34} C_{32}	1211(4)
$C_{24} N_{4} C_{18}$	118.4(3)	C35—C34—H34A	119 5
$C_{24} N_{4} T_{n1}$	128 3 (2)	C32—C34—H34A	119.5
C18 - N4 - 7n1	1132(2)	C19-C20-C21	121.6 (4)
N7-C43-C40	124.8 (3)	C19 - C20 - H20A	119.2
N7 - C43 - Se1	1134(3)	C_{21} C_{20} H_{20A}	119.2
C40-C43-Se1	121 8 (3)	C_{3} C_{2} C_{1}	119.2
C_{1} N2 C_{5}	121.0(3)	$C_3 C_2 H_2 \Delta$	120.4
C1 - N2 - C3	128.6 (2)	C1 - C2 - H2A	120.4
$C_{1} = N_{2} = Z_{n1}$	1133(2)	C_{27} C_{26} C_{25}	1196(4)
N4-C18-C21	121.9(3)	$C_{27} = C_{26} = H_{26A}$	120.2
N4-C18-C17	121.9(3) 1185(3)	C_{25} C_{26} H_{26A}	120.2
$C_{21} - C_{18} - C_{17}$	119.7 (3)	$C_{25} = C_{20} = H_{20} R$	120.2 110.7(3)
$C_{25} N_{5} C_{29}$	117.7(3) 117.9(3)	C44— $C45$ — $H45A$	124 7
$C_{25} = N_{5} = C_{25}$	117.9(3) 128 4 (3)	Se1 (45) H45A	124.7
$C_{29} = N_{5} = Z_{11}$	1120.4(3)	01 - C46 - 02	124.7 125.0(5)
$C_{25} = N_{5} = C_{33}$	112.9(2) 117.9(3)	01 - C46 - C44	125.0(5) 116.9(5)
$C_{36} N_{6} T_{71}$	128 7 (3)	$0^{2}-C_{46}-C_{44}$	110.9(3)
$C_{33} N_{6} T_{10}$	1120.7(3)	C_{31} C_{30} C_{28}	120.8(4)
N5-C29-C28	123.0(3)	$C_{31} - C_{30} - H_{30A}$	119.6
N5-C29-C33	1173(3)	C_{28} C_{30} H_{30A}	119.6
C_{28} C_{29} C_{33}	119.7 (3)	C_{23} C_{22} C_{21}	120.0(4)
N_{3} $-C_{17}$ $-C_{16}$	122 5 (3)	C_{23} C_{22} C_{21} C_{23} C_{22} H_{22} H_{22}	120.0 (1)
N3-C17-C18	1177(3)	C21—C22—H22A	120.0
$C_{16} - C_{17} - C_{18}$	119.7 (3)	C_{34} C_{35} C_{36}	1190(4)
N_{2} C5 C4	122.6 (3)	C34—C35—H35A	120.5
$N_2 - C_5 - C_6$	1174(3)	C36—C35—H35A	120.5
C4-C5-C6	1200(3)	C_{38} C_{39} C_{40}	120.2(4)
N6-C33-C32	123.0(3)	C38—C39—H39A	119.9
N6-C33-C29	117 8 (3)	C40—C39—H39A	119.9
C_{32} C_{33} C_{29}	119.2 (3)	C_{22} C_{23} C_{24}	119.5 (4)
C5-C4-C3	117.3 (3)	C22—C23—H23A	120.3
C5—C4—C7	119.1 (4)	C24—C23—H23A	120.3
C3—C4—C7	123.6 (4)	C37—C42—C41	120.3 (4)
C43—N7—C44	113.6 (3)	C37—C42—H42A	119.8
C22—C21—C18	117.5 (3)	C41—C42—H42A	119.8

C^{22} — C^{21} — C^{20}	123 9 (4)	C14 - C15 - C16	119 2 (4)
C_{18} C_{21} C_{20} C_{20}	1125.5(1)	C_{14} C_{15} H_{15A}	120.4
$C_{10} = C_{21} = C_{20}$	117.4(4)	C_{16} C_{15} H_{15A}	120.4
C17 - C16 - C19	117.4(4)	C° C^{-} C^{-}	120.4
$C_{17} = C_{10} = C_{19}$	119.0(4)	C_{0}	121.3 (4)
C15 - C10 - C19	123.0 (4)	$C_{A} = C_{A} = H_{A}$	119.4
C41 - C40 - C39	117.9 (4)	C4 - C / - H / A	119.4
C41 - C40 - C43	122.3 (4)	C20—C19—C16	120.7 (4)
C39—C40—C43	119.8 (3)	С20—С19—Н19А	119.7
N6—C36—C35	122.6 (4)	С16—С19—Н19А	119.7
N6—C36—H36A	118.7	C11—C10—C9	119.8 (4)
С35—С36—Н36А	118.7	C11—C10—H10A	120.1
N1—C6—C9	123.2 (3)	C9—C10—H10A	120.1
N1—C6—C5	117.8 (3)	C26—C27—C28	119.8 (4)
C9—C6—C5	119.0 (3)	С26—С27—Н27А	120.1
N5-C25-C26	122.5 (4)	С28—С27—Н27А	120.1
N5—C25—H25A	118.8	C7—C8—C9	121.4 (4)
C26—C25—H25A	118.8	С7—С8—Н8А	119.3
N3-C13-C14	122.7 (4)	C9—C8—H8A	119.3
N3-C13-H13A	118.6	C42 - C37 - C38	119.7 (4)
C14 $C13$ $H13A$	118.6	$C_{42} = C_{37} = H_{37} \Delta$	120.2
N4 C24 C23	122.8 (4)	$C_{42} = C_{57} = H_{57} K$	120.2
N4 - C24 + C23	122.0 (4)	$C_{30} = C_{37} = H_{37} = H_{37}$	120.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118.0	$C_{39} = C_{38} = C_{37}$	120.0 (4)
C23—C24—H24A	116.0	C39—C38—H38A	119.7
$C_{34} - C_{32} - C_{33}$	116.3 (4)	C3/C38H38A	119.7
C34—C32—C31	124.8 (4)	H3WA—O3W—H3WB	125.7
C33—C32—C31	118.8 (4)	H1WA—O1W—H1WB	112.6
N2—C1—C2	123.1 (4)	H4WA—O4W—H4WB	103.4
N2—C1—H1A	118.4	H5WA—O5W—H5WB	114.4
C2—C1—H1A	118.4	H6WA—O6W—H6WB	118.3
C10—C11—C12	119.2 (4)	H7WA—O7W—H7WB	95.6
C10-C11-H11A	120.4	H8WA—O8W—H8WB	109.3
C12—C11—H11A	120.4	H9WA—O9W—H9WB	92.4
C27—C28—C29	117.1 (4)	H10W—O10W—H10E	88.7
C27—C28—C30	123.6 (4)	H2WA—O2W—H2WB	117.0
C29—C28—C30	119.3 (4)		
029 020 030	119.5 (1)		
$N6_7n1_N1_C12$	91(3)	N4—C18—C21—C20	-1782(3)
$N_{5} = Zn_{1} = N_{1} = C1_{2}$	9.1 (5) 97.8 (3)	$C_{17} = C_{18} = C_{21} = C_{20}$	170.2(3)
$N_{1} = N_{1} = N_{1} = C_{12}$	-94.0(3)	$N_{2} = C_{17} = C_{16} = C_{21} = C_{20}$	2.3(5)
N4— $ZIII$ — NI — $CI2$	-64.9(3)	N_{3} C_{17} C_{10} C_{15}	0.3(3)
$N_2 = Z_{\Pi} = N_1 = C_{\Pi} = C_{\Pi}$	-1/9.9(3)	C18 - C17 - C16 - C13	-1/9.9(3)
N3—Zn1—N1—C12	-136.2 (4)	N3-C1/-C16-C19	-1/9.2(3)
N6—Zn1—N1—C6	-176.4 (2)	C18—C17—C16—C19	0.5 (5)
N5—Zn1—N1—C6	-97.8 (2)	N7—C43—C40—C41	-172.0 (4)
N4—Zn1—N1—C6	89.6 (2)	Se1—C43—C40—C41	6.7 (5)
N2—Zn1—N1—C6	-5.4 (2)	N7—C43—C40—C39	8.1 (6)
N3—Zn1—N1—C6	38.2 (5)	Se1-C43-C40-C39	-173.2 (3)
N1—Zn1—N3—C13	-126.9 (4)	C33—N6—C36—C35	-0.3 (5)
N6—Zn1—N3—C13	87.5 (3)	Zn1—N6—C36—C35	-173.8 (3)

N5—Zn1—N3—C13	10.3 (3)	C12—N1—C6—C9	-0.2 (5)
N4—Zn1—N3—C13	179.9 (3)	Zn1—N1—C6—C9	-175.3(3)
N2—Zn1—N3—C13	-84.6 (3)	C12—N1—C6—C5	-179.4(3)
N1—Zn1—N3—C17	50.6 (5)	Zn1—N1—C6—C5	5.5 (4)
N6—Zn1—N3—C17	-95.0(2)	N2—C5—C6—N1	-1.3(5)
N5—Zn1—N3—C17	-172.2(2)	C4—C5—C6—N1	178.2 (3)
N4—Zn1—N3—C17	-2.6(2)	N2—C5—C6—C9	179.4 (3)
N2—Zn1—N3—C17	92.9 (2)	C4—C5—C6—C9	-1.1 (5)
N1—Zn1—N4—C24	16.8 (3)	C29—N5—C25—C26	-1.5 (6)
N6-Zn1-N4-C24	-81.5 (3)	Zn1—N5—C25—C26	167.0 (3)
N5—Zn1—N4—C24	-137.3(4)	C17—N3—C13—C14	-1.1(5)
N2—Zn1—N4—C24	94.0 (3)	Zn1—N3—C13—C14	176.2 (3)
N3— $Zn1$ — $N4$ — $C24$	-176.2(3)	C18—N4—C24—C23	0.1 (5)
N1— $Zn1$ — $N4$ — $C18$	-165.4(2)	Zn1—N4—C24—C23	177.9 (3)
N6-Zn1-N4-C18	96.3 (2)	N6—C33—C32—C34	1.4 (5)
N5— $Zn1$ — $N4$ — $C18$	40.5 (5)	C29—C33—C32—C34	-178.4(3)
N2— $Zn1$ — $N4$ — $C18$	-88.2(2)	N6-C33-C32-C31	-178.2(3)
N_3 — Zn_1 — N_4 — C_{18}	1.6 (2)	C_{29} C_{33} C_{32} C_{31}	2.0 (5)
C45—Se1—C43—N7	1.8 (3)	$C_{5}-N_{2}-C_{1}-C_{2}$	0.2(5)
C45—Se1—C43—C40	-177.1(3)	Zn1-N2-C1-C2	-175.9(3)
N1— $Zn1$ — $N2$ — $C1$	-179.0(3)	N5-C29-C28-C27	0.8 (5)
N6-Zn1-N2-C1	-117.1 (6)	C33-C29-C28-C27	179.5 (3)
N5— $Zn1$ — $N2$ — $C1$	-77.7 (3)	N5-C29-C28-C30	-177.8(3)
N4— $Zn1$ — $N2$ — $C1$	89.3 (3)	C_{33} C_{29} C_{28} C_{30}	0.9 (5)
N_3 — Zn_1 — N_2 — C_1	12.2 (3)	C6-N1-C12-C11	-1.0(6)
N1— $Zn1$ — $N2$ — $C5$	4.8 (2)	Zn1—N1—C12—C11	173.4 (3)
N6-Zn1-N2-C5	66.7 (7)	C10-C11-C12-N1	1.3 (6)
N5— $Zn1$ — $N2$ — $C5$	106.0 (2)	N3-C13-C14-C15	0.3 (6)
N4— $Zn1$ — $N2$ — $C5$	-87.0(2)	C5-C4-C3-C2	-0.9(6)
N3— $Zn1$ — $N2$ — $C5$	-164.0(2)	C7—C4—C3—C2	179.9 (4)
C_{24} N4 C_{18} C_{21}	-1.6(5)	C39-C40-C41-C42	-0.1(6)
Zn1-N4-C18-C21	-179.7(2)	C43—C40—C41—C42	-180.0(4)
C24—N4—C18—C17	177.7 (3)	C34—C32—C31—C30	-179.5(4)
Zn1—N4—C18—C17	-0.4(3)	C33—C32—C31—C30	0.1 (6)
N1—Zn1—N5—C25	83.7 (3)	N1—C6—C9—C10	0.9 (5)
N6—Zn1—N5—C25	179.5 (3)	C5—C6—C9—C10	-179.9(3)
N4—Zn1—N5—C25	-122.7 (4)	N1—C6—C9—C8	-177.6(3)
N2—Zn1—N5—C25	6.0 (3)	C5—C6—C9—C8	1.6 (5)
N3—Zn1—N5—C25	-85.0(3)	C43—N7—C44—C45	2.2 (5)
N1—Zn1—N5—C29	-107.3(2)	C43—N7—C44—C46	-179.1(3)
N6—Zn1—N5—C29	-11.6 (2)	C33—C32—C34—C35	-0.2 (6)
N4—Zn1—N5—C29	46.2 (5)	C31—C32—C34—C35	179.5 (4)
N2—Zn1—N5—C29	175.0 (2)	C22—C21—C20—C19	178.7 (4)
N3—Zn1—N5—C29	84.0 (2)	C18—C21—C20—C19	-0.7 (5)
N1—Zn1—N6—C36	-75.9 (3)	C4—C3—C2—C1	1.4 (6)
N5—Zn1—N6—C36	-176.5 (3)	N2-C1-C2-C3	-1.1 (6)
N4—Zn1—N6—C36	17.6 (3)	N5-C25-C26-C27	0.4 (7)
N2—Zn1—N6—C36	-136.1 (6)	N7—C44—C45—Se1	-0.7 (5)

N3—Zn1—N6—C36	94.9 (3)	C46—C44—C45—Se1	-179.3 (3)
N1—Zn1—N6—C33	110.4 (2)	C43—Se1—C45—C44	-0.5 (3)
N5—Zn1—N6—C33	9.8 (2)	C45—C44—C46—O1	159.8 (5)
N4—Zn1—N6—C33	-156.1 (2)	N7—C44—C46—O1	-18.7 (6)
N2—Zn1—N6—C33	50.1 (7)	C45—C44—C46—O2	-19.6 (7)
N3—Zn1—N6—C33	-78.9 (2)	N7—C44—C46—O2	161.9 (4)
C25—N5—C29—C28	0.8 (5)	C32—C31—C30—C28	-1.7 (6)
Zn1—N5—C29—C28	-169.4 (3)	C27—C28—C30—C31	-177.3 (4)
C25—N5—C29—C33	-177.9 (3)	C29—C28—C30—C31	1.2 (6)
Zn1—N5—C29—C33	11.9 (4)	C18—C21—C22—C23	-1.6 (5)
C13—N3—C17—C16	0.8 (5)	C20—C21—C22—C23	179.0 (4)
Zn1—N3—C17—C16	-176.9 (2)	C32—C34—C35—C36	-1.2 (6)
C13—N3—C17—C18	-179.0 (3)	N6-C36-C35-C34	1.5 (6)
Zn1—N3—C17—C18	3.3 (3)	C41—C40—C39—C38	0.3 (6)
N4—C18—C17—N3	-2.0 (4)	C43—C40—C39—C38	-179.8 (4)
C21-C18-C17-N3	177.3 (3)	C21—C22—C23—C24	0.2 (6)
N4—C18—C17—C16	178.2 (3)	N4—C24—C23—C22	0.6 (6)
C21-C18-C17-C16	-2.4 (5)	C40—C41—C42—C37	-0.6 (6)
C1—N2—C5—C4	0.3 (5)	C13—C14—C15—C16	0.9 (6)
Zn1—N2—C5—C4	177.0 (3)	C17—C16—C15—C14	-1.2 (5)
C1—N2—C5—C6	179.8 (3)	C19—C16—C15—C14	178.4 (4)
Zn1—N2—C5—C6	-3.5 (4)	C5—C4—C7—C8	0.9 (6)
C36—N6—C33—C32	-1.1 (5)	C3—C4—C7—C8	-179.9 (4)
Zn1—N6—C33—C32	173.3 (3)	C21-C20-C19-C16	-1.3 (6)
C36—N6—C33—C29	178.6 (3)	C17—C16—C19—C20	1.4 (5)
Zn1—N6—C33—C29	-6.9 (4)	C15-C16-C19-C20	-178.2 (4)
N5-C29-C33-N6	-3.4 (4)	C12-C11-C10-C9	-0.5 (6)
C28—C29—C33—N6	177.8 (3)	C6—C9—C10—C11	-0.5 (6)
N5—C29—C33—C32	176.3 (3)	C8—C9—C10—C11	178.0 (4)
C28—C29—C33—C32	-2.4 (5)	C25—C26—C27—C28	1.3 (7)
N2—C5—C4—C3	0.0 (5)	C29—C28—C27—C26	-1.8 (6)
C6—C5—C4—C3	-179.4 (3)	C30—C28—C27—C26	176.8 (4)
N2—C5—C4—C7	179.3 (3)	C4—C7—C8—C9	-0.4 (7)
C6—C5—C4—C7	-0.2 (5)	C10—C9—C8—C7	-179.3 (4)
C40—C43—N7—C44	176.2 (3)	C6—C9—C8—C7	-0.9 (6)
Se1—C43—N7—C44	-2.6 (4)	C41—C42—C37—C38	1.1 (7)
N4—C18—C21—C22	2.4 (5)	C40—C39—C38—C37	0.2 (7)
C17—C18—C21—C22	-176.9 (3)	C42—C37—C38—C39	-0.9 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
$O1W$ —H1 WA ···O2 W^{i}	0.85	2.05	2.898 (5)	179
O1W— $H1WB$ ··· $O9W$ ⁱⁱ	0.85	1.98	2.830 (6)	180
O4 <i>W</i> —H4 <i>W</i> A····N7 ⁱⁱ	0.85	2.22	3.044 (5)	163
O4 <i>W</i> —H4 <i>W</i> A···O1 ⁱⁱ	0.85	2.40	2.921 (7)	120
O5W— $H5WA$ ··· $O6W$ ⁱⁱⁱ	0.85	1.91	2.762 (6)	178
O6W—H6WA…Cl1 ⁱⁱⁱ	0.85	2.24	3.076 (5)	168

supporting information

O7 <i>W</i> —H7 <i>WB</i> ···Cl1 ^{iv}	0.85	2.54	3.391 (5)	179	
$O8W$ — $H8WB$ ··· $O7W^{v}$	0.85	1.97	2.817 (7)	180	
$O2W$ — $H2WA$ ···O $9W^{vi}$	0.85	1.96	2.806 (5)	179	
O2W—H2WB····Cl1 ^{vii}	0.85	2.28	3.129 (3)	180	
O4 <i>W</i> —H4 <i>WB</i> ···O1	0.85	1.98	2.809 (6)	166	
O5 <i>W</i> —H5 <i>WB</i> ···O3 <i>W</i>	0.85	2.07	2.915 (6)	173	
O6 <i>W</i> —H6 <i>WB</i> ···O2	0.85	2.05	2.892 (6)	171	
O7 <i>W</i> —H7 <i>WA</i> ···Cl1	0.85	2.24	3.006 (5)	150	
O8 <i>W</i> —H8 <i>WA</i> ···O2	0.85	1.97	2.819 (5)	172	
O9 <i>W</i> —H9 <i>WA</i> ···O8 <i>W</i>	0.85	2.05	2.864 (8)	161	
O9W—H9WB…O10W	0.85	2.18	3.030 (8)	178	
O10 <i>W</i> —H10 <i>W</i> ···O4 <i>W</i>	0.85	2.02	2.866 (8)	173	
O10 <i>W</i> —H10 <i>E</i> ···O2	0.85	2.08	2.925 (6)	171	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+2, -*y*, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+2; (v) *x*, *y*, *z*-1; (vi) *x*-1, *y*, *z*+1; (vii) *x*-1, *y*, *z*.