organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N′-(3,5-di­bromo-2-hy­dr­oxy­benzyl­­idene)benzohydrazide methanol monosolvate

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: cooperationwell@126.com

(Received 31 December 2010; accepted 6 January 2011; online 12 January 2011)

The title Schiff base compound, C14H9Br2ClN2O2·CH3OH, features an intra­molecular O—H⋯N hydrogen bond, which contributes to the planarity of the mol­ecule: the dihedral angle between the two benzene rings is 4.6 (2)°. In the crystal, pairs of adjacent mol­ecules are linked through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, forming dimers. The methanol solvent mol­ecule is linked by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For Schiff base compounds derived from the reaction of aldehydes with benzohydrazides, see: Pouralimardan et al. (2007)[Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta 360, 1599-1608.]; Dinda et al. (2002[Dinda, R., Sengupta, P., Ghosh, S., Mayer-Figge, H. & Sheldrick, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 4434-4439.]); Podyachev et al. (2007[Podyachev, S. N., Litvinov, I. A., Shagidullin, R. R., Buzykin, B. I., Bauer, I., Osyanina, D. V., Avvakumova, L. V., Sudakova, S. N., Habicher, W. D. & Konovalov, A. I. (2007). Spectrochim. Acta Part A, 66, 250-261.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Br2ClN2O2·CH4O

  • Mr = 464.54

  • Triclinic, [P \overline 1]

  • a = 8.8560 (18) Å

  • b = 9.3810 (19) Å

  • c = 11.205 (2) Å

  • α = 95.634 (3)°

  • β = 110.952 (3)°

  • γ = 99.392 (3)°

  • V = 845.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.97 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.468, Tmax = 0.486

  • 7213 measured reflections

  • 3504 independent reflections

  • 2423 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.03

  • 3504 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.90 (4) 1.98 (2) 2.852 (4) 165 (5)
O3—H3⋯O2ii 0.82 1.98 2.769 (4) 161
O1—H1⋯N1 0.82 1.85 2.566 (4) 146
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, a number of Schiff bases derived from the reaction of aldehydes with benzohydrazides were prepared and structurally characterized (Pouralimardan et al., 2007; Dinda et al., 2002). As a continuation of the work, in the present paper, the structure of the title Schiff base compound, (Fig. 1) is reported.

In the title compound, there is an O—H···N hydrogen bond, which contributes to the planarity of the molecule. The dihedral angle between the two benzene rings is 4.6 (2)°. All the bond lengths are within normal values (Allen et al., 1987). The adjacent two molecules are linked through intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) to form a dimer (Fig. 2). The methanol solvate is linked by intermolecular O—H···O hydrogen bonds.

Related literature top

For Schiff base compounds derived from the reaction of aldehydes with benzohydrazides, see: Pouralimardan et al. (2007); Dinda et al. (2002); Podyachev et al. (2007). For reference bond lengths, see: Allen et al. (1987).

Experimental top

3,5-dibromo-2-hydroxybenzaldehyde (0.280 g, 1 mmol) and 3-chlorobenzohydrazide (0.171 g, 1 mmol) were dissolved in 30 ml absolute methanol. The mixture was stirred at reflux for 10 min, and cooled to room temperature. The clear colorless solution was left to slow evaporation in air for three days, yielding colorless block-shaped crystals, which were collected by filtration and washed with methanol.

Refinement top

The amino H atom was located from a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96 Å, and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C15 and O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are drawn as dashed lines.
3-Chloro-N'-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide methanol monosolvate top
Crystal data top
C14H9Br2ClN2O2·CH4OZ = 2
Mr = 464.54F(000) = 456
Triclinic, P1Dx = 1.825 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8560 (18) ÅCell parameters from 2168 reflections
b = 9.3810 (19) Åθ = 2.5–25.9°
c = 11.205 (2) ŵ = 4.97 mm1
α = 95.634 (3)°T = 298 K
β = 110.952 (3)°Block, colorless
γ = 99.392 (3)°0.18 × 0.17 × 0.17 mm
V = 845.2 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3504 independent reflections
Radiation source: fine-focus sealed tube2423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.468, Tmax = 0.486k = 1111
7213 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.050P)2 + 0.0441P]
where P = (Fo2 + 2Fc2)/3
3504 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.61 e Å3
1 restraintΔρmin = 0.71 e Å3
Crystal data top
C14H9Br2ClN2O2·CH4Oγ = 99.392 (3)°
Mr = 464.54V = 845.2 (3) Å3
Triclinic, P1Z = 2
a = 8.8560 (18) ÅMo Kα radiation
b = 9.3810 (19) ŵ = 4.97 mm1
c = 11.205 (2) ÅT = 298 K
α = 95.634 (3)°0.18 × 0.17 × 0.17 mm
β = 110.952 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3504 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2423 reflections with I > 2σ(I)
Tmin = 0.468, Tmax = 0.486Rint = 0.036
7213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.61 e Å3
3504 reflectionsΔρmin = 0.71 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29523 (6)0.00200 (5)1.38779 (5)0.0684 (2)
Br20.39950 (6)0.16848 (6)1.18451 (5)0.0754 (2)
Cl10.12376 (13)0.68386 (11)0.50390 (9)0.0538 (3)
N10.0467 (4)0.2942 (3)0.9916 (3)0.0375 (7)
N20.0405 (4)0.3784 (3)0.8978 (3)0.0386 (7)
O10.2266 (3)0.1922 (3)1.1849 (3)0.0496 (7)
H10.20780.24501.12950.074*
O20.3090 (3)0.4803 (3)1.0115 (3)0.0533 (7)
O30.2945 (3)0.6052 (3)0.2405 (3)0.0578 (8)
H30.30600.55300.18260.087*
C10.0709 (5)0.1171 (4)1.0859 (3)0.0338 (8)
C20.0834 (4)0.1111 (4)1.1785 (3)0.0346 (8)
C30.0872 (4)0.0173 (4)1.2683 (3)0.0388 (8)
C40.0538 (5)0.0650 (4)1.2702 (3)0.0439 (9)
H40.04840.12591.33160.053*
C50.2040 (5)0.0563 (4)1.1797 (4)0.0420 (9)
C60.2136 (5)0.0304 (4)1.0871 (3)0.0392 (8)
H60.31620.03151.02460.047*
C70.0839 (4)0.2091 (4)0.9867 (3)0.0356 (8)
H70.18560.20580.92120.043*
C80.1846 (4)0.4709 (4)0.9153 (3)0.0349 (8)
C90.1854 (4)0.5574 (4)0.8114 (3)0.0341 (8)
C100.0427 (4)0.5745 (3)0.7138 (3)0.0349 (8)
H100.06080.52740.70880.042*
C110.0560 (5)0.6615 (4)0.6248 (3)0.0388 (8)
C120.2061 (5)0.7299 (4)0.6284 (4)0.0503 (10)
H120.21260.78750.56670.060*
C130.3475 (5)0.7129 (5)0.7242 (4)0.0560 (11)
H130.45040.75980.72790.067*
C140.3379 (5)0.6269 (4)0.8146 (4)0.0459 (9)
H140.43450.61510.87850.055*
C150.4103 (6)0.5924 (6)0.3610 (4)0.0718 (14)
H15A0.51980.63380.36710.108*
H15B0.40200.49070.36910.108*
H15C0.38820.64380.42930.108*
H20.060 (3)0.383 (5)0.842 (4)0.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0442 (3)0.0852 (4)0.0707 (3)0.0200 (2)0.0048 (2)0.0458 (3)
Br20.0454 (3)0.0852 (4)0.0891 (4)0.0070 (2)0.0186 (3)0.0470 (3)
Cl10.0495 (6)0.0638 (6)0.0440 (6)0.0160 (5)0.0074 (5)0.0251 (5)
N10.0416 (18)0.0382 (16)0.0383 (17)0.0134 (14)0.0164 (15)0.0195 (13)
N20.0362 (18)0.0394 (16)0.0402 (18)0.0099 (14)0.0104 (15)0.0198 (14)
O10.0347 (15)0.0582 (17)0.0538 (17)0.0050 (13)0.0113 (13)0.0294 (13)
O20.0344 (15)0.078 (2)0.0455 (16)0.0117 (14)0.0079 (13)0.0314 (14)
O30.0395 (16)0.079 (2)0.0466 (17)0.0142 (15)0.0039 (14)0.0187 (15)
C10.042 (2)0.0317 (18)0.0286 (18)0.0103 (15)0.0115 (16)0.0120 (14)
C20.0297 (19)0.0355 (19)0.039 (2)0.0093 (15)0.0112 (17)0.0104 (15)
C30.036 (2)0.041 (2)0.0352 (19)0.0115 (17)0.0050 (17)0.0148 (16)
C40.046 (2)0.041 (2)0.046 (2)0.0125 (18)0.015 (2)0.0217 (18)
C50.037 (2)0.041 (2)0.046 (2)0.0011 (17)0.0141 (19)0.0136 (17)
C60.033 (2)0.042 (2)0.040 (2)0.0082 (17)0.0081 (17)0.0134 (16)
C70.033 (2)0.0370 (19)0.0334 (19)0.0102 (16)0.0061 (16)0.0127 (15)
C80.0312 (19)0.0416 (19)0.036 (2)0.0130 (16)0.0136 (17)0.0146 (15)
C90.036 (2)0.0349 (19)0.0340 (19)0.0109 (16)0.0136 (17)0.0081 (15)
C100.032 (2)0.039 (2)0.0345 (19)0.0081 (16)0.0123 (17)0.0110 (16)
C110.043 (2)0.038 (2)0.036 (2)0.0135 (17)0.0119 (18)0.0121 (16)
C120.054 (3)0.054 (2)0.056 (2)0.018 (2)0.028 (2)0.029 (2)
C130.037 (2)0.068 (3)0.070 (3)0.008 (2)0.026 (2)0.031 (2)
C140.031 (2)0.057 (2)0.052 (2)0.0115 (18)0.0152 (19)0.0227 (19)
C150.045 (3)0.104 (4)0.055 (3)0.007 (3)0.005 (2)0.031 (3)
Geometric parameters (Å, º) top
Br1—C31.889 (3)C4—H40.9300
Br2—C51.895 (4)C5—C61.368 (5)
Cl1—C111.743 (4)C6—H60.9300
N1—C71.274 (4)C7—H70.9300
N1—N21.367 (4)C8—C91.484 (4)
N2—C81.359 (5)C9—C141.387 (5)
N2—H20.90 (4)C9—C101.389 (4)
O1—C21.342 (4)C10—C111.374 (4)
O1—H10.8200C10—H100.9300
O2—C81.218 (4)C11—C121.363 (6)
O3—C151.404 (5)C12—C131.373 (6)
O3—H30.8200C12—H120.9300
C1—C61.392 (5)C13—C141.373 (5)
C1—C21.403 (5)C13—H130.9300
C1—C71.457 (4)C14—H140.9300
C2—C31.396 (5)C15—H15A0.9600
C3—C41.366 (5)C15—H15B0.9600
C4—C51.375 (5)C15—H15C0.9600
C7—N1—N2120.4 (3)O2—C8—N2121.2 (3)
C8—N2—N1115.9 (3)O2—C8—C9121.3 (3)
C8—N2—H2125 (3)N2—C8—C9117.4 (3)
N1—N2—H2118 (3)C14—C9—C10118.8 (3)
C2—O1—H1109.5C14—C9—C8117.5 (3)
C15—O3—H3109.5C10—C9—C8123.7 (3)
C6—C1—C2119.2 (3)C11—C10—C9119.4 (3)
C6—C1—C7119.5 (3)C11—C10—H10120.3
C2—C1—C7121.3 (3)C9—C10—H10120.3
O1—C2—C3118.8 (3)C12—C11—C10121.7 (3)
O1—C2—C1123.0 (3)C12—C11—Cl1119.3 (3)
C3—C2—C1118.3 (3)C10—C11—Cl1119.0 (3)
C4—C3—C2122.0 (3)C11—C12—C13119.2 (3)
C4—C3—Br1119.6 (3)C11—C12—H12120.4
C2—C3—Br1118.4 (3)C13—C12—H12120.4
C3—C4—C5118.8 (3)C12—C13—C14120.4 (4)
C3—C4—H4120.6C12—C13—H13119.8
C5—C4—H4120.6C14—C13—H13119.8
C6—C5—C4121.2 (3)C13—C14—C9120.5 (4)
C6—C5—Br2120.2 (3)C13—C14—H14119.7
C4—C5—Br2118.6 (3)C9—C14—H14119.7
C5—C6—C1120.4 (4)O3—C15—H15A109.5
C5—C6—H6119.8O3—C15—H15B109.5
C1—C6—H6119.8H15A—C15—H15B109.5
N1—C7—C1118.7 (3)O3—C15—H15C109.5
N1—C7—H7120.6H15A—C15—H15C109.5
C1—C7—H7120.6H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.90 (4)1.98 (2)2.852 (4)165 (5)
O3—H3···O2ii0.821.982.769 (4)161
O1—H1···N10.821.852.566 (4)146
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC14H9Br2ClN2O2·CH4O
Mr464.54
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.8560 (18), 9.3810 (19), 11.205 (2)
α, β, γ (°)95.634 (3), 110.952 (3), 99.392 (3)
V3)845.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.97
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.468, 0.486
No. of measured, independent and
observed [I > 2σ(I)] reflections
7213, 3504, 2423
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.03
No. of reflections3504
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.71

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.90 (4)1.976 (17)2.852 (4)165 (5)
O3—H3···O2ii0.821.982.769 (4)161
O1—H1···N10.821.852.566 (4)146
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinda, R., Sengupta, P., Ghosh, S., Mayer-Figge, H. & Sheldrick, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 4434–4439.  Web of Science CSD CrossRef Google Scholar
First citationPodyachev, S. N., Litvinov, I. A., Shagidullin, R. R., Buzykin, B. I., Bauer, I., Osyanina, D. V., Avvakumova, L. V., Sudakova, S. N., Habicher, W. D. & Konovalov, A. I. (2007). Spectrochim. Acta Part A, 66, 250–261.  CSD CrossRef CAS Google Scholar
First citationPouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds