organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N′-(4-hy­dr­oxy­benzyl­­idene)benzohydrazide

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: cooperationwell@126.com

(Received 31 December 2010; accepted 6 January 2011; online 12 January 2011)

The title compound, C14H11ClN2O2, was prepared by the reaction of 4-hy­droxy­benzaldehyde with 3-chloro­benzo­hydrazide in methanol. The dihedral angle between the two benzene rings is 38.2 (2)°. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming layers lying parallel to the bc plane.

Related literature

For background to Schiff base compounds derived from the reaction of aldehydes with benzohydrazides, see: Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]); Dinda et al. (2002[Dinda, R., Sengupta, P., Ghosh, S., Mayer-Figge, H. & Sheldrick, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 4434-4439.]). For the reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O2

  • Mr = 274.70

  • Orthorhombic, P 21 21 21

  • a = 7.547 (2) Å

  • b = 11.754 (3) Å

  • c = 14.912 (3) Å

  • V = 1322.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.945

  • 6281 measured reflections

  • 2834 independent reflections

  • 1754 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.094

  • S = 0.95

  • 2834 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1163 Friedel pairs

  • Flack parameter: −0.04 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.90 (3) 2.14 (2) 2.996 (3) 157 (3)
O1—H1⋯N1ii 0.82 2.55 3.004 (3) 116
O1—H1⋯O2ii 0.82 1.96 2.765 (3) 168
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, a number of Schiff bases derived from the reaction of aldehydes with benzohydrazides were prepared and structurally characterized (Pouralimardan et al., 2007; Dinda et al., 2002). As a continuation of the work, in the present paper, the title new Schiff base compound, Fig. 1, is reported.

The dihedral angle between the two benzene rings in the compound is 38.2 (2)°. All the bond lengths are within normal values (Allen et al., 1987). The molecules are linked through intermolecular N—H···O, O—H···N, and O—H···O hydrogen bonds (Table 1) to form two-dimensional layers along the bc plane (Fig. 2).

Related literature top

For background to Schiff base compounds derived from the reaction of

aldehydes with benzohydrazides, see: Pouralimardan et al. (2007); Dinda et al. (2002). For the reference bond lengths, see: Allen et al. (1987).

Experimental top

4-Hydroxybenzaldehyde (0.122 g, 1 mmol) and 3-chlorobenzohydrazide (0.171 g, 1 mmol) were dissolved in 30 ml absolute methanol. The mixture was stirred at reflux for 10 min, and cooled to room temperature. The clear colorless solution was left to slow evaporation in air for a week, yielding colorless block-shaped crystals, which were collected by filtration and washed with methanol.

Refinement top

The amino H atom was located from a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 Å, and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are drawn as dashed lines.
3-Chloro-N'-(4-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H11ClN2O2F(000) = 568
Mr = 274.70Dx = 1.379 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 965 reflections
a = 7.547 (2) Åθ = 2.6–25.0°
b = 11.754 (3) ŵ = 0.29 mm1
c = 14.912 (3) ÅT = 298 K
V = 1322.8 (6) Å3Block, colorless
Z = 40.23 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2834 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.937, Tmax = 0.945k = 1215
6281 measured reflectionsl = 1916
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
2834 reflectionsΔρmax = 0.18 e Å3
176 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1163 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (9)
Crystal data top
C14H11ClN2O2V = 1322.8 (6) Å3
Mr = 274.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.547 (2) ŵ = 0.29 mm1
b = 11.754 (3) ÅT = 298 K
c = 14.912 (3) Å0.23 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2834 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1754 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.945Rint = 0.051
6281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.18 e Å3
S = 0.95Δρmin = 0.21 e Å3
2834 reflectionsAbsolute structure: Flack (1983), 1163 Friedel pairs
176 parametersAbsolute structure parameter: 0.04 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05610 (14)0.59347 (8)0.39379 (5)0.0776 (4)
N10.1094 (3)0.7672 (2)0.03391 (13)0.0416 (7)
N20.1281 (4)0.7085 (2)0.04643 (14)0.0412 (7)
O10.1358 (3)1.14877 (15)0.33772 (12)0.0440 (6)
H10.07071.12290.37670.066*
O20.0407 (3)0.54505 (15)0.02189 (11)0.0471 (6)
C10.1340 (4)1.0781 (2)0.26470 (16)0.0335 (7)
C20.0762 (4)0.9674 (2)0.26936 (16)0.0363 (7)
H2A0.03660.93770.32360.044*
C30.0768 (4)0.9002 (2)0.19341 (15)0.0367 (7)
H30.03730.82540.19670.044*
C40.1361 (4)0.9437 (2)0.11182 (16)0.0323 (7)
C50.1936 (4)1.0556 (3)0.10858 (19)0.0396 (8)
H50.23351.08550.05450.047*
C60.1928 (4)1.1235 (3)0.18415 (18)0.0388 (8)
H60.23111.19860.18110.047*
C70.1441 (4)0.8728 (2)0.03118 (16)0.0372 (7)
H70.17530.90590.02320.045*
C80.0932 (4)0.5954 (3)0.04547 (16)0.0373 (7)
C90.1181 (4)0.5358 (2)0.13258 (17)0.0348 (7)
C100.0839 (4)0.5875 (3)0.21398 (16)0.0409 (7)
H100.04840.66320.21590.049*
C110.1026 (4)0.5266 (3)0.29184 (18)0.0488 (9)
C120.1566 (4)0.4149 (3)0.2914 (2)0.0557 (9)
H120.16860.37510.34500.067*
C130.1926 (4)0.3627 (3)0.2109 (2)0.0588 (10)
H130.23070.28750.20970.071*
C140.1721 (4)0.4225 (3)0.1316 (2)0.0468 (9)
H140.19450.38660.07720.056*
H20.186 (4)0.739 (2)0.0936 (15)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1069 (8)0.0920 (7)0.0338 (4)0.0111 (7)0.0067 (5)0.0092 (4)
N10.059 (2)0.0393 (16)0.0268 (12)0.0055 (14)0.0054 (13)0.0092 (10)
N20.0581 (18)0.0387 (16)0.0269 (13)0.0085 (14)0.0096 (13)0.0095 (11)
O10.0605 (16)0.0389 (12)0.0327 (11)0.0056 (12)0.0066 (10)0.0104 (9)
O20.0678 (15)0.0399 (12)0.0336 (10)0.0019 (12)0.0071 (10)0.0021 (9)
C10.0313 (16)0.0413 (18)0.0277 (14)0.0012 (15)0.0015 (12)0.0068 (13)
C20.0437 (19)0.0387 (18)0.0265 (14)0.0017 (16)0.0044 (13)0.0001 (12)
C30.0426 (19)0.0351 (17)0.0325 (14)0.0005 (16)0.0003 (13)0.0005 (13)
C40.0343 (17)0.0340 (17)0.0285 (14)0.0024 (15)0.0012 (13)0.0057 (12)
C50.049 (2)0.042 (2)0.0280 (15)0.0002 (15)0.0079 (13)0.0001 (14)
C60.047 (2)0.0332 (19)0.0365 (17)0.0042 (15)0.0003 (13)0.0009 (14)
C70.0416 (19)0.0413 (19)0.0285 (15)0.0012 (17)0.0040 (13)0.0015 (13)
C80.041 (2)0.0368 (18)0.0338 (15)0.0008 (17)0.0018 (13)0.0028 (13)
C90.0347 (19)0.0352 (17)0.0344 (15)0.0011 (16)0.0020 (13)0.0080 (12)
C100.0460 (19)0.0417 (18)0.0348 (15)0.0031 (16)0.0022 (13)0.0090 (14)
C110.047 (2)0.063 (2)0.0371 (17)0.0115 (19)0.0014 (15)0.0099 (15)
C120.052 (2)0.062 (2)0.054 (2)0.010 (2)0.0130 (17)0.0299 (19)
C130.058 (3)0.041 (2)0.077 (3)0.0030 (18)0.012 (2)0.019 (2)
C140.049 (2)0.039 (2)0.052 (2)0.0001 (17)0.0021 (15)0.0042 (16)
Geometric parameters (Å, º) top
Cl1—C111.747 (3)C5—C61.381 (4)
N1—C71.270 (3)C5—H50.9300
N1—N21.390 (3)C6—H60.9300
N2—C81.355 (4)C7—H70.9300
N2—H20.90 (3)C8—C91.488 (3)
O1—C11.370 (3)C9—C101.382 (3)
O1—H10.8200C9—C141.393 (4)
O2—C81.231 (3)C10—C111.371 (4)
C1—C21.375 (4)C10—H100.9300
C1—C61.387 (4)C11—C121.375 (4)
C2—C31.380 (3)C12—C131.376 (5)
C2—H2A0.9300C12—H120.9300
C3—C41.393 (3)C13—C141.383 (4)
C3—H30.9300C13—H130.9300
C4—C51.386 (4)C14—H140.9300
C4—C71.464 (3)
C7—N1—N2115.9 (2)N1—C7—H7119.3
C8—N2—N1117.3 (2)C4—C7—H7119.3
C8—N2—H2120 (2)O2—C8—N2122.9 (2)
N1—N2—H2121 (2)O2—C8—C9121.8 (3)
C1—O1—H1109.5N2—C8—C9115.4 (2)
O1—C1—C2122.5 (2)C10—C9—C14119.0 (3)
O1—C1—C6116.9 (3)C10—C9—C8122.4 (3)
C2—C1—C6120.6 (2)C14—C9—C8118.6 (2)
C1—C2—C3119.9 (2)C11—C10—C9119.7 (3)
C1—C2—H2A120.0C11—C10—H10120.1
C3—C2—H2A120.0C9—C10—H10120.1
C2—C3—C4120.5 (3)C10—C11—C12121.7 (3)
C2—C3—H3119.7C10—C11—Cl1118.8 (3)
C4—C3—H3119.7C12—C11—Cl1119.5 (2)
C5—C4—C3118.6 (2)C11—C12—C13119.2 (3)
C5—C4—C7119.9 (2)C11—C12—H12120.4
C3—C4—C7121.5 (3)C13—C12—H12120.4
C6—C5—C4121.2 (3)C12—C13—C14119.8 (3)
C6—C5—H5119.4C12—C13—H13120.1
C4—C5—H5119.4C14—C13—H13120.1
C5—C6—C1119.1 (3)C13—C14—C9120.6 (3)
C5—C6—H6120.5C13—C14—H14119.7
C1—C6—H6120.5C9—C14—H14119.7
N1—C7—C4121.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (3)2.14 (2)2.996 (3)157 (3)
O1—H1···N1ii0.822.553.004 (3)116
O1—H1···O2ii0.821.962.765 (3)168
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O2
Mr274.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.547 (2), 11.754 (3), 14.912 (3)
V3)1322.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.937, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
6281, 2834, 1754
Rint0.051
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.094, 0.95
No. of reflections2834
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.21
Absolute structureFlack (1983), 1163 Friedel pairs
Absolute structure parameter0.04 (9)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (3)2.144 (16)2.996 (3)157 (3)
O1—H1···N1ii0.822.553.004 (3)116
O1—H1···O2ii0.821.962.765 (3)168
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x, y+1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinda, R., Sengupta, P., Ghosh, S., Mayer-Figge, H. & Sheldrick, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 4434–4439.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds