organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzimidazol-2-yl)-4-nitro­phenol

aCollege of Marine Sciences, Zhejiang Ocean University, Zhoushan 316000, People's Republic of China
*Correspondence e-mail: jingya_sun@163.com

(Received 10 January 2011; accepted 11 January 2011; online 15 January 2011)

The title compound, C13H9N3O3, was prepared by the reaction of 5-nitro­salicyl­aldehyde with 1,2-diamino­benzene in methanol. The whole mol­ecule is approximately planar, with a mean deviation from the plane defined by the non-H atoms of 0.0311 (4) Å, and with a dihedral angle between the benzene ring and the benzimidazole ring system of 1.1 (3)°. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, adjacent mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming centrosymmetric dimers.

Related literature

For Schiff base compounds, see: Miura et al. (2009[Miura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.]); Zhao et al. (2010[Zhao, L., Cao, D. & Cui, J. (2010). Acta Cryst. E66, o2204.]); Karadağ et al. (2011)[Karadağ, A. T., Atalay, Ş. & Genç, H. (2011). Acta Cryst. E67, o95.]; Bingöl Alpaslan et al. (2010[Bingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3O3

  • Mr = 255.23

  • Monoclinic, P 21 /c

  • a = 8.117 (3) Å

  • b = 6.769 (2) Å

  • c = 20.842 (3) Å

  • β = 99.235 (2)°

  • V = 1130.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.980

  • 8933 measured reflections

  • 2469 independent reflections

  • 1283 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.153

  • S = 1.04

  • 2469 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 2.02 (1) 2.898 (3) 164 (3)
O1—H1⋯N1 0.82 1.85 2.590 (3) 149
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The condensation reaction between aldehydes with organic primary amines readily forms Schiff bases containing the typical –C=N– groups (Miura et al., 2009; Zhao et al., 2010; Karadağ et al., 2011; Bingöl Alpaslan et al., 2010). In this paper, the title compound (Fig. 1) was prepared by the reaction of 5-nitrosalicylaldehyde with 1,2-diaminobenzene in methanol.

The whole molecule of the compound is approximately planar, with mean deviation from the plane defined by the non-hydrogen atoms of 0.0311 (4) Å, and with the dihedral angle between the benzene ring and the Benzimidazole ring of 1.1 (3)°. All the bond lengths are within normal ranges (Allen et al., 1987). There is an intramolecular O—H···N hydrogen bond in the molecule (Table 1). In the crystal structure, adjacent two molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form a dimer (Fig. 2).

Related literature top

For Schiff base compounds, see: Miura et al. (2009); Zhao et al. (2010); Karadağ et al. (2011); Bingöl Alpaslan et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

5-Nitrosalicylaldehyde (1.0 mmol, 0.167 g) and 1,2-diaminobenzene (0.5 mmol, 0.054 g) were refluxed for 30 min in 30 ml me thanol, and cooled to room temperature to give colorless solid, which was isolated by filtration. Single crystals of the title compound were formed by recrystallization of the solid in methanol.

Refinement top

H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 Å, and O–H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compounds with atom labels and the 30% probability displacement ellipsoids. Intramolecular O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are shown as dashed lines.
2-(1H-Benzimidazol-2-yl)-4-nitrophenol top
Crystal data top
C13H9N3O3F(000) = 528
Mr = 255.23Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1124 reflections
a = 8.117 (3) Åθ = 2.5–24.5°
b = 6.769 (2) ŵ = 0.11 mm1
c = 20.842 (3) ÅT = 298 K
β = 99.235 (2)°Block, yellow
V = 1130.2 (5) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2469 independent reflections
Radiation source: fine-focus sealed tube1283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.978, Tmax = 0.980k = 88
8933 measured reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.1494P]
where P = (Fo2 + 2Fc2)/3
2469 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C13H9N3O3V = 1130.2 (5) Å3
Mr = 255.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.117 (3) ŵ = 0.11 mm1
b = 6.769 (2) ÅT = 298 K
c = 20.842 (3) Å0.20 × 0.20 × 0.18 mm
β = 99.235 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2469 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1283 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.980Rint = 0.061
8933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0681 restraint
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
2469 reflectionsΔρmin = 0.14 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7974 (3)0.7492 (3)0.12518 (10)0.0680 (7)
H10.81720.77760.08890.102*
O20.4484 (3)0.0641 (3)0.07368 (10)0.0687 (7)
O30.4555 (3)0.0423 (3)0.17662 (11)0.0764 (8)
N10.8286 (3)0.7006 (4)0.00445 (12)0.0547 (7)
N20.7411 (3)0.4267 (3)0.04913 (12)0.0495 (7)
N30.4870 (3)0.0226 (4)0.12571 (12)0.0520 (7)
C10.6985 (3)0.4551 (4)0.06634 (13)0.0425 (7)
C20.7228 (4)0.5722 (4)0.12303 (15)0.0477 (8)
C30.6712 (4)0.5046 (5)0.17926 (14)0.0562 (9)
H30.68780.58280.21640.067*
C40.5966 (4)0.3252 (4)0.18085 (14)0.0492 (8)
H40.56320.27990.21890.059*
C50.5710 (3)0.2113 (4)0.12517 (14)0.0425 (7)
C60.6205 (3)0.2741 (4)0.06832 (13)0.0423 (7)
H60.60160.19500.03140.051*
C70.7560 (3)0.5267 (4)0.00778 (14)0.0461 (7)
C80.8628 (4)0.7151 (4)0.05876 (14)0.0484 (8)
C90.8092 (3)0.5440 (4)0.09285 (15)0.0475 (7)
C100.8259 (4)0.5165 (5)0.15689 (15)0.0594 (9)
H100.79020.40110.17910.071*
C110.8983 (4)0.6692 (5)0.18671 (16)0.0645 (10)
H110.91140.65650.23000.077*
C120.9518 (4)0.8413 (5)0.15324 (18)0.0694 (10)
H120.99960.94140.17470.083*
C130.9354 (4)0.8666 (5)0.08904 (17)0.0645 (9)
H130.97190.98160.06680.077*
H20.698 (4)0.307 (2)0.0610 (15)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0862 (18)0.0561 (14)0.0638 (17)0.0234 (12)0.0183 (14)0.0113 (11)
O20.1090 (19)0.0552 (13)0.0445 (14)0.0268 (12)0.0203 (13)0.0100 (11)
O30.122 (2)0.0662 (15)0.0487 (14)0.0165 (14)0.0369 (14)0.0101 (12)
N10.0620 (18)0.0552 (15)0.0460 (17)0.0161 (13)0.0055 (13)0.0067 (13)
N20.0588 (17)0.0435 (14)0.0465 (16)0.0102 (12)0.0096 (13)0.0012 (13)
N30.0713 (18)0.0478 (15)0.0403 (16)0.0029 (13)0.0192 (13)0.0019 (13)
C10.0475 (18)0.0399 (16)0.0387 (17)0.0038 (14)0.0033 (14)0.0005 (13)
C20.0458 (18)0.0434 (17)0.052 (2)0.0057 (14)0.0037 (15)0.0061 (15)
C30.070 (2)0.058 (2)0.0413 (19)0.0124 (17)0.0117 (16)0.0126 (16)
C40.061 (2)0.0553 (19)0.0328 (17)0.0008 (16)0.0108 (15)0.0021 (15)
C50.0489 (18)0.0390 (15)0.0393 (18)0.0027 (14)0.0058 (14)0.0026 (13)
C60.0547 (18)0.0418 (16)0.0302 (16)0.0045 (14)0.0061 (13)0.0025 (13)
C70.0497 (18)0.0412 (16)0.0462 (19)0.0073 (14)0.0038 (14)0.0028 (15)
C80.0494 (19)0.0516 (18)0.0422 (19)0.0055 (15)0.0014 (15)0.0085 (15)
C90.0442 (18)0.0535 (18)0.0447 (19)0.0026 (15)0.0070 (14)0.0107 (15)
C100.063 (2)0.065 (2)0.050 (2)0.0030 (17)0.0071 (16)0.0009 (17)
C110.069 (2)0.082 (3)0.045 (2)0.003 (2)0.0157 (18)0.0130 (19)
C120.070 (2)0.075 (2)0.064 (3)0.009 (2)0.0121 (19)0.028 (2)
C130.070 (2)0.061 (2)0.062 (2)0.0165 (18)0.0115 (18)0.0127 (18)
Geometric parameters (Å, º) top
O1—C21.340 (3)C3—H30.9300
O1—H10.8200C4—C51.381 (4)
O2—N31.228 (3)C4—H40.9300
O3—N31.213 (3)C5—C61.378 (4)
N1—C71.323 (3)C6—H60.9300
N1—C81.393 (4)C8—C131.384 (4)
N2—C71.354 (3)C8—C91.392 (4)
N2—C91.388 (3)C9—C101.376 (4)
N2—H20.902 (10)C10—C111.385 (4)
N3—C51.449 (3)C10—H100.9300
C1—C61.383 (4)C11—C121.391 (5)
C1—C21.410 (4)C11—H110.9300
C1—C71.458 (4)C12—C131.376 (5)
C2—C31.384 (4)C12—H120.9300
C3—C41.360 (4)C13—H130.9300
C2—O1—H1109.5C5—C6—H6120.1
C7—N1—C8105.7 (2)C1—C6—H6120.1
C7—N2—C9107.5 (2)N1—C7—N2112.1 (2)
C7—N2—H2132 (2)N1—C7—C1123.0 (3)
C9—N2—H2121 (2)N2—C7—C1124.9 (2)
O3—N3—O2122.7 (3)C13—C8—C9120.3 (3)
O3—N3—C5119.4 (3)C13—C8—N1130.4 (3)
O2—N3—C5117.9 (2)C9—C8—N1109.3 (2)
C6—C1—C2118.4 (3)C10—C9—N2132.1 (3)
C6—C1—C7121.9 (2)C10—C9—C8122.5 (3)
C2—C1—C7119.6 (2)N2—C9—C8105.4 (3)
O1—C2—C3117.6 (3)C9—C10—C11116.7 (3)
O1—C2—C1122.2 (3)C9—C10—H10121.7
C3—C2—C1120.2 (3)C11—C10—H10121.7
C4—C3—C2120.8 (3)C10—C11—C12121.4 (3)
C4—C3—H3119.6C10—C11—H11119.3
C2—C3—H3119.6C12—C11—H11119.3
C3—C4—C5119.1 (3)C13—C12—C11121.4 (3)
C3—C4—H4120.5C13—C12—H12119.3
C5—C4—H4120.5C11—C12—H12119.3
C6—C5—C4121.7 (3)C12—C13—C8117.7 (3)
C6—C5—N3118.8 (2)C12—C13—H13121.1
C4—C5—N3119.6 (3)C8—C13—H13121.1
C5—C6—C1119.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.02 (1)2.898 (3)164 (3)
O1—H1···N10.821.852.590 (3)149
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H9N3O3
Mr255.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.117 (3), 6.769 (2), 20.842 (3)
β (°) 99.235 (2)
V3)1130.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.978, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
8933, 2469, 1283
Rint0.061
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.153, 1.04
No. of reflections2469
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.902 (10)2.020 (14)2.898 (3)164 (3)
O1—H1···N10.821.852.590 (3)149
Symmetry code: (i) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaradağ, A. T., Atalay, Ş. & Genç, H. (2011). Acta Cryst. E67, o95.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMiura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, L., Cao, D. & Cui, J. (2010). Acta Cryst. E66, o2204.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds