metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m269-m270

catena-Poly[[bis­­[2-(2-pyrid­yl)-1-H-imidazole-κ2N2,N3]cadmium]-μ-benzene-1,3-di­carboxyl­ato-κ2O1:O3]

aFaculty of Life Sciences, Northeast Normal University, Changchun 130024, People's Republic of China, and bSchool of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, People's Republic of China
*Correspondence e-mail: jmslcj@sohu.com

(Received 5 January 2011; accepted 10 January 2011; online 29 January 2011)

In the title coordinaltion polymer, [Cd(C8H4O4)(C8H7N3)2]n, the CdII atom, lying on a twofold rotation axis, is six-coordinated by two carboxyl­ate O atoms from two benzene-1,3-dicarboxyl­ate (m-BDC) ligands and four N atoms from two chelating 2-(2-pyrid­yl)imidazole mol­ecules, forming a slightly distorted octa­hedral geometry. The m-BDC ligand is located over a twofold rotation axis. The CdII atoms are bridged by the m-BDC ligands, leading to a wave-shaped chain structure along [010]. N—H⋯O hydrogen bonds connect the chains.

Related literature

For general background to metal-organic frameworks, see: Chen et al. (2009[Chen, X., Wan, C., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518-6528.]); Rosi et al. (2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O' Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]); Su et al. (2004[Su, C. Y., Goforth, A. M., Smith, M. D., Pellechia, P. J. & zur Loye, H. C. (2004). J. Am. Chem. Soc. 126, 3576-3586.]); Xiao et al. (2006[Xiao, D.-R., Wang, E.-B., An, H.-Y., Li, Y.-G., Su, Z.-M. & Sun, C.-Y. (2006). Chem. Eur. J. 12, 6528-6541.]). For compounds based on benzene-1,3-dicarboxylate ligands, see: Banerjee et al. (2008[Banerjee, A., Mahata, P. & Natarajan, S. (2008). Eur. J. Inorg. Chem. 22, 3501-3514.]); Che et al. (2009[Che, G.-B., Wang, J., Liu, C.-B., Li, X.-Y., Liu, B., Sun, J., Liu, Y. & Lu, L. (2009). Inorg. Chim. Acta, 362, 2756-2761.]); Clegg & Russo (2009[Clegg, W. & Russo, L. (2009). Cryst. Growth Des. 9, 1158-1163.]); Li et al. (2008[Li, X., Liu, W., Zhang, H.-Y. & Wu, B.-L. (2008). J. Organomet. Chem. 693, 3295-3302.]); Su et al. (2009[Su, Z., Xu, J., Fan, J., Liu, D.-J., Chu, Q., Chen, M.-S., Chen, S.-S., Liu, G.-X., Wang, X.-F. & Sun, W.-Y. (2009). Cryst. Growth Des. 9, 2801-2811.]); Zhao (2008[Zhao, J. (2008). Acta Cryst. E64, m1335.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4O4)(C8H7N3)2]

  • Mr = 566.85

  • Orthorhombic, P n n a

  • a = 8.720 (5) Å

  • b = 20.102 (4) Å

  • c = 13.483 (5) Å

  • V = 2363.4 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 293 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.911, Tmax = 0.944

  • 11996 measured reflections

  • 2330 independent reflections

  • 1298 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.00

  • 2330 reflections

  • 164 parameters

  • 75 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.257 (3)
Cd1—N1 2.288 (4)
Cd1—N3 2.461 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O2i 0.95 (5) 1.80 (5) 2.741 (5) 166 (5)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Currently, the design and synthesis of metal-organic frameworks (MOFs) are of great interest owing to their intriguing variety of architectures and their tremendous potential applications in many fields (Chen et al., 2009; Rosi et al., 2003; Su et al., 2004; Xiao et al., 2006). As a multidentate ligand, benzene-1,3-dicarboxylic acid (m-H2BDC) has two carboxyl groups and, therefore, has been widely reported as a good candidate not only in the construction of various coordination polymers but also in the construction of MOFs with multi-dimension (Banerjee et al., 2008; Che et al., 2009; Clegg & Russo, 2009; Li et al., 2008; Su et al., 2009; Zhao, 2008).

In the title coordinaltion polymer (Fig. 1), the central CdII ion is six-coordinated by two carboxylate O atoms from two m-BDC ligands and four N atoms from two 2-(2-pyridyl)imidazole (2-PyIM) molecules (Table 1), forming a slightly distorted octahedral geometry. The CdII ions are bridged by the m-BDC ligands, leading to a wave-shaped chain structure, as shown in Fig. 2. N—H···O hydrogen bonds connect the chains (Table 2).

Related literature top

For general background to metal-organic frameworks, see: Chen et al. (2009); Rosi et al. (2003); Su et al. (2004); Xiao et al. (2006). For compounds with benzene-1,3-dicarboxylic acid, see: Banerjee et al. (2008); Che et al. (2009); Clegg & Russo (2009); Li et al. (2008); Su et al. (2009); Zhao (2008).

Experimental top

All chemicals were purchased from commercial sources and used without further purification. CdSO4.8H2O (0.033 mmol), m-H2BDC (0.1 mmol) and 2-PyIM (0.2 mmol) were dissolved in 15 ml of water. The mixture was stirred for 2 h at room temperature and then heated in a 30 ml Teflon-lined stainless steel autoclave for 3 d at 323 K. After the autoclave was cooled to room temperature, colorless block crystals were harvested.

Refinement top

C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atom on imidazole N2 was located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x+5/2, -y+1, z; (ii) x, -y+1/2, -z+3/2.]
[Figure 2] Fig. 2. View of the one-dimensional chain structure of the title compound.
catena-Poly[[bis[2-(2-pyridyl)-1-H-imidazole- κ2N2,N3]cadmium]-µ-benzene-1,3-dicarboxylato- κ2O1:O3] top
Crystal data top
[Cd(C8H4O4)(C8H7N3)2]F(000) = 1136
Mr = 566.85Dx = 1.593 Mg m3
Dm = 1.593 Mg m3
Dm measured by not measured
Orthorhombic, PnnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 2329 reflections
a = 8.720 (5) Åθ = 2.0–52.0°
b = 20.102 (4) ŵ = 0.97 mm1
c = 13.483 (5) ÅT = 293 K
V = 2363.4 (17) Å3Block, colorless
Z = 40.10 × 0.08 × 0.06 mm
Data collection top
Bruker APEX CCD
diffractometer
2330 independent reflections
Radiation source: fine-focus sealed tube1298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.911, Tmax = 0.944k = 2124
11996 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
2330 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.39 e Å3
75 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cd(C8H4O4)(C8H7N3)2]V = 2363.4 (17) Å3
Mr = 566.85Z = 4
Orthorhombic, PnnaMo Kα radiation
a = 8.720 (5) ŵ = 0.97 mm1
b = 20.102 (4) ÅT = 293 K
c = 13.483 (5) Å0.10 × 0.08 × 0.06 mm
Data collection top
Bruker APEX CCD
diffractometer
2330 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1298 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.944Rint = 0.060
11996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03475 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.39 e Å3
2330 reflectionsΔρmin = 0.69 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.96428 (5)0.25000.75000.05598 (19)
O11.1284 (4)0.33138 (14)0.7049 (2)0.0738 (8)
C21.2020 (5)0.44358 (18)0.6952 (3)0.0589 (10)
O21.1291 (4)0.39000 (15)0.8440 (2)0.0883 (10)
C90.7428 (5)0.1504 (2)0.6230 (4)0.0691 (12)
C31.25000.50000.7444 (4)0.0549 (13)
H31.25000.50000.81330.066*
N30.7725 (5)0.16257 (19)0.7191 (3)0.0692 (10)
N20.7945 (5)0.1991 (2)0.4546 (3)0.0759 (12)
C130.7096 (7)0.1223 (3)0.7857 (4)0.0919 (16)
H130.72930.13000.85250.110*
N10.9098 (5)0.24430 (17)0.5842 (3)0.0673 (10)
C80.8139 (5)0.1966 (2)0.5556 (3)0.0621 (11)
C60.9516 (6)0.2781 (3)0.4998 (4)0.0769 (15)
H61.01770.31440.49800.092*
C11.1489 (6)0.3835 (2)0.7533 (3)0.0630 (9)
C41.2024 (6)0.4443 (2)0.5936 (3)0.0934 (15)
H41.17020.40700.55870.112*
C100.6521 (6)0.0978 (3)0.5917 (4)0.0947 (16)
H100.63440.09030.52460.114*
C110.5901 (6)0.0577 (3)0.6615 (5)0.1110 (17)
H110.52920.02180.64290.133*
C120.6178 (8)0.0702 (3)0.7606 (4)0.1049 (17)
H120.57440.04350.80940.126*
C70.8821 (8)0.2507 (3)0.4193 (4)0.0852 (15)
H70.89190.26420.35370.102*
C51.25000.50000.5431 (5)0.158 (5)
H51.25000.50000.47410.189*
H1N0.735 (6)0.174 (3)0.409 (4)0.14 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0763 (3)0.0434 (3)0.0482 (3)0.0000.0000.0039 (2)
O10.0959 (19)0.0469 (15)0.0786 (16)0.0127 (15)0.0124 (16)0.0040 (14)
C20.086 (3)0.041 (2)0.0496 (19)0.006 (2)0.000 (2)0.0011 (18)
O20.139 (3)0.064 (2)0.061 (2)0.016 (2)0.000 (2)0.0127 (16)
C90.062 (3)0.063 (3)0.083 (3)0.002 (2)0.001 (3)0.001 (3)
C30.075 (3)0.046 (3)0.045 (3)0.000 (3)0.0000.000
N30.076 (3)0.066 (2)0.066 (2)0.011 (2)0.007 (2)0.0065 (19)
N20.094 (3)0.072 (3)0.062 (3)0.005 (2)0.018 (2)0.010 (2)
C130.101 (4)0.100 (4)0.075 (3)0.020 (4)0.006 (3)0.007 (3)
N10.088 (3)0.060 (2)0.054 (2)0.007 (2)0.008 (2)0.0039 (19)
C80.074 (3)0.056 (3)0.057 (3)0.006 (2)0.009 (2)0.002 (2)
C60.106 (4)0.061 (3)0.064 (3)0.011 (3)0.004 (3)0.012 (3)
C10.083 (2)0.0461 (18)0.0602 (19)0.0035 (17)0.000 (2)0.0019 (19)
C40.152 (4)0.071 (3)0.057 (2)0.041 (3)0.001 (3)0.010 (2)
C100.090 (4)0.099 (4)0.095 (4)0.028 (3)0.000 (3)0.003 (3)
C110.100 (4)0.125 (4)0.108 (3)0.033 (3)0.004 (3)0.001 (3)
C120.105 (4)0.114 (4)0.096 (3)0.033 (4)0.005 (3)0.009 (3)
C70.121 (4)0.082 (4)0.052 (3)0.004 (4)0.007 (3)0.014 (3)
C50.319 (13)0.108 (6)0.046 (4)0.116 (8)0.0000.000
Geometric parameters (Å, º) top
Cd1—O12.257 (3)C13—C121.360 (8)
Cd1—N12.288 (4)C13—H130.9300
Cd1—N32.461 (4)N1—C81.330 (5)
O1—C11.246 (5)N1—C61.376 (6)
C2—C41.370 (5)C6—C71.359 (7)
C2—C31.378 (4)C6—H60.9300
C2—C11.512 (6)C4—C51.374 (5)
O2—C11.243 (4)C4—H40.9300
C9—N31.343 (5)C10—C111.352 (7)
C9—C101.388 (6)C10—H100.9300
C9—C81.439 (6)C11—C121.380 (6)
C3—C2i1.378 (4)C11—H110.9300
C3—H30.9300C12—H120.9300
N3—C131.328 (6)C7—H70.9300
N2—C71.373 (6)C5—C4i1.374 (5)
N2—C81.374 (5)C5—H50.9300
N2—H1N0.95 (5)
O1ii—Cd1—O1101.29 (17)N3—C13—H13118.5
O1ii—Cd1—N1ii84.54 (13)C12—C13—H13118.5
O1—Cd1—N1ii111.01 (12)C8—N1—C6106.5 (4)
O1ii—Cd1—N1111.01 (12)C8—N1—Cd1116.8 (3)
O1—Cd1—N184.54 (13)C6—N1—Cd1136.8 (3)
N1ii—Cd1—N1156.0 (2)N1—C8—N2109.7 (4)
O1ii—Cd1—N387.64 (13)N1—C8—C9123.5 (4)
O1—Cd1—N3154.52 (13)N2—C8—C9126.7 (5)
N1ii—Cd1—N393.45 (13)C7—C6—N1110.0 (4)
N1—Cd1—N369.99 (13)C7—C6—H6125.0
O1ii—Cd1—N3ii154.52 (13)N1—C6—H6125.0
O1—Cd1—N3ii87.64 (13)O2—C1—O1125.7 (4)
N1ii—Cd1—N3ii69.99 (13)O2—C1—C2117.9 (4)
N1—Cd1—N3ii93.45 (13)O1—C1—C2116.4 (4)
N3—Cd1—N3ii94.41 (19)C2—C4—C5120.4 (5)
C1—O1—Cd1124.0 (3)C2—C4—H4119.8
C4—C2—C3118.1 (4)C5—C4—H4119.8
C4—C2—C1121.8 (4)C11—C10—C9118.1 (5)
C3—C2—C1120.1 (4)C11—C10—H10121.0
N3—C9—C10122.9 (4)C9—C10—H10121.0
N3—C9—C8114.1 (4)C10—C11—C12119.7 (6)
C10—C9—C8123.0 (5)C10—C11—H11120.2
C2—C3—C2i122.6 (5)C12—C11—H11120.2
C2—C3—H3118.7C13—C12—C11119.0 (5)
C2i—C3—H3118.7C13—C12—H12120.5
C13—N3—C9117.5 (4)C11—C12—H12120.5
C13—N3—Cd1127.0 (4)C6—C7—N2106.2 (4)
C9—N3—Cd1115.1 (3)C6—C7—H7126.9
C7—N2—C8107.7 (4)N2—C7—H7126.9
C7—N2—H1N119 (3)C4i—C5—C4120.5 (6)
C8—N2—H1N133 (3)C4i—C5—H5119.7
N3—C13—C12123.0 (5)C4—C5—H5119.7
O1ii—Cd1—O1—C1109.2 (4)N3—Cd1—N1—C6177.0 (5)
N1ii—Cd1—O1—C120.8 (4)N3ii—Cd1—N1—C683.6 (5)
N1—Cd1—O1—C1140.4 (4)C6—N1—C8—N20.4 (5)
N3—Cd1—O1—C1142.1 (4)Cd1—N1—C8—N2179.2 (3)
N3ii—Cd1—O1—C146.7 (4)C6—N1—C8—C9179.4 (4)
C4—C2—C3—C2i0.1 (3)Cd1—N1—C8—C91.1 (6)
C1—C2—C3—C2i179.3 (4)C7—N2—C8—N10.1 (6)
C10—C9—N3—C130.8 (7)C7—N2—C8—C9179.6 (4)
C8—C9—N3—C13179.5 (4)N3—C9—C8—N14.8 (6)
C10—C9—N3—Cd1172.1 (4)C10—C9—C8—N1175.0 (4)
C8—C9—N3—Cd17.6 (5)N3—C9—C8—N2174.9 (4)
O1ii—Cd1—N3—C1364.9 (4)C10—C9—C8—N25.3 (7)
O1—Cd1—N3—C13176.6 (4)C8—N1—C6—C70.5 (6)
N1ii—Cd1—N3—C1319.4 (4)Cd1—N1—C6—C7178.9 (4)
N1—Cd1—N3—C13178.3 (4)Cd1—O1—C1—O226.3 (7)
N3ii—Cd1—N3—C1389.6 (4)Cd1—O1—C1—C2153.4 (3)
O1ii—Cd1—N3—C9107.2 (3)C4—C2—C1—O2168.9 (5)
O1—Cd1—N3—C94.5 (5)C3—C2—C1—O210.2 (6)
N1ii—Cd1—N3—C9168.4 (3)C4—C2—C1—O110.9 (7)
N1—Cd1—N3—C96.2 (3)C3—C2—C1—O1170.0 (4)
N3ii—Cd1—N3—C998.2 (3)C3—C2—C4—C50.3 (7)
C9—N3—C13—C120.1 (8)C1—C2—C4—C5179.4 (4)
Cd1—N3—C13—C12172.1 (5)N3—C9—C10—C110.7 (8)
O1ii—Cd1—N1—C875.6 (3)C8—C9—C10—C11179.6 (5)
O1—Cd1—N1—C8175.6 (3)C9—C10—C11—C120.3 (9)
N1ii—Cd1—N1—C852.2 (3)N3—C13—C12—C111.1 (10)
N3—Cd1—N1—C83.6 (3)C10—C11—C12—C131.2 (9)
N3ii—Cd1—N1—C897.1 (3)N1—C6—C7—N20.4 (6)
O1ii—Cd1—N1—C6103.8 (5)C8—N2—C7—C60.2 (6)
O1—Cd1—N1—C63.7 (5)C2—C4—C5—C4i0.1 (3)
N1ii—Cd1—N1—C6128.4 (5)
Symmetry codes: (i) x+5/2, y+1, z; (ii) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2iii0.95 (5)1.80 (5)2.741 (5)166 (5)
Symmetry code: (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O4)(C8H7N3)2]
Mr566.85
Crystal system, space groupOrthorhombic, Pnna
Temperature (K)293
a, b, c (Å)8.720 (5), 20.102 (4), 13.483 (5)
V3)2363.4 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.911, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
11996, 2330, 1298
Rint0.060
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.00
No. of reflections2330
No. of parameters164
No. of restraints75
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.69

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.257 (3)Cd1—N32.461 (4)
Cd1—N12.288 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2i0.95 (5)1.80 (5)2.741 (5)166 (5)
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

References

First citationBanerjee, A., Mahata, P. & Natarajan, S. (2008). Eur. J. Inorg. Chem. 22, 3501–3514.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G.-B., Wang, J., Liu, C.-B., Li, X.-Y., Liu, B., Sun, J., Liu, Y. & Lu, L. (2009). Inorg. Chim. Acta, 362, 2756–2761.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X., Wan, C., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518–6528.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationClegg, W. & Russo, L. (2009). Cryst. Growth Des. 9, 1158–1163.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Liu, W., Zhang, H.-Y. & Wu, B.-L. (2008). J. Organomet. Chem. 693, 3295–3302.  Web of Science CSD CrossRef CAS Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O' Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. Y., Goforth, A. M., Smith, M. D., Pellechia, P. J. & zur Loye, H. C. (2004). J. Am. Chem. Soc. 126, 3576–3586.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSu, Z., Xu, J., Fan, J., Liu, D.-J., Chu, Q., Chen, M.-S., Chen, S.-S., Liu, G.-X., Wang, X.-F. & Sun, W.-Y. (2009). Cryst. Growth Des. 9, 2801–2811.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, D.-R., Wang, E.-B., An, H.-Y., Li, Y.-G., Su, Z.-M. & Sun, C.-Y. (2006). Chem. Eur. J. 12, 6528–6541.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, J. (2008). Acta Cryst. E64, m1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m269-m270
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds