organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Aminopyridinium-3-sulfonate monohydrate

Zhi-Biao Zhu,^a Shan Gao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 15 November 2010; accepted 14 January 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.137; data-to-parameter ratio = 12.1.

The reaction of 4-aminopyridine and oleum yielded the title hydrated zwitterion, C5H6N2O3S·H2O. There are two formula units in the asymmetric unit. The H and non-H atoms of both zwitterions lie on a mirror plane except for one sulfonate O atom. The water molecules are also situated on a mirror plane. In the crystal, the zwitterions and water molecules are linked by $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds, generating a three-dimensional network.

Related literature

The analogous reaction of 4-hydroxypyridine with oleum yielded hydronium 4-oxo-1,4-dihydropyridine-3-sulfonate dihydrate and 4-hydroxypyridinium-3-sulfonate; see: Zhu et al. (2009, 2011).

Experimental

Crystal data	
$C_5H_6N_2O_3S \cdot H_2O$ $M_r = 192.19$ Orthorhombic, <i>Pnma</i>	a = 31.6739 (13) Å b = 6.5824 (3) Å c = 7.3204 (3) Å

V = 1526.23 (11) Å³ 7 - 8Mo $K\alpha$ radiation

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.921, \ T_{\max} = 0.939$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.137$ S = 1.171898 reflections 157 parameters

 $\mu = 0.40 \text{ mm}^{-1}$

 $0.21 \times 0.19 \times 0.16 \text{ mm}$

22965 measured reflections

1898 independent reflections

1325 reflections with $I > 2\sigma(I)$

All H-atom parameters refined

T = 293 K

 $R_{\rm int} = 0.049$

8 restraints

 $\Delta \rho_{\rm max} = 0.4 \hat{5} \ e \ \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.49$ e Å⁻³

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O1w ⁱ	0.88 (2)	1.99 (2)	2.820 (4)	158 (3)
$N2-H22\cdots O2^{ii}$	0.88 (2)	2.01(2)	2.886 (3)	172 (3)
N3-H3···O1w ⁱⁱⁱ	0.88 (2)	2.15 (3)	2.871 (4)	139 (3)
$N4-H42\cdots O4^{iv}$	0.88 (2)	1.99 (2)	2.869 (3)	173 (4)
O1w−H1w···O1	0.84(2)	1.99 (2)	2.826 (3)	173 (3)
O2w−H2w···O3	0.85 (2)	2.02 (2)	2.864 (2)	171 (3)
a				L

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, y, z - 1; (iii) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$; (iv) x, y, z + 1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903) and the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2250).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Zhu, Z.-B., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, 02687.

Zhu, Z.-B., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o11.

supporting information

Acta Cryst. (2011). E67, o456 [doi:10.1107/S1600536811002145]

4-Aminopyridinium-3-sulfonate monohydrate

Zhi-Biao Zhu, Shan Gao and Seik Weng Ng

S1. Comment

A previous reaction of 4-hydroxpyridine and oleum gave the salt, hydronium 4-oxo-1,4-dihydropyridine-3-sulfonate dihydrate (Zhu *et al.*, 2009); a later repeat of the synthesis gave zwitterionic 4-hydroxypyridinium-3-sulfonate (Zhu *et al.*, 2011). The studies were extended to 4-aminopyridine which upon reaction with oleum gave zwitterionic 4-aminopyridinium-3-sulfonate as a monohydrate (Scheme I, Fig. 1). The bonds in the ring are delocalized bonds. Adjacent zwitterions and water molecues are linked by N–H…O and O–H…O hydrogen bonds into a three-dimensional network (Tablel 1).

S2. Experimental

4-Aminopyridine (10 mmol) was dissolved in 20% oleum (10 ml). The solution was heated to 393 K for 4 days. After it was cooled, the excess oleum was decanted. Recrystallization of the solid from water gave colorless crystals.

S3. Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The amino and water H atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and N–H 0.88±0.01 Å; their temperature factors were tied by a factor of $1.2-1.5U_{eq}(N,O)$.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the two independent molecules of $C_5H_6N_2O_3SH_2O$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

4-Aminopyridinium-3-sulfonate monohydrate

Crystal data

 $C_{5}H_{6}N_{2}O_{3}S \cdot H_{2}O$ $M_{r} = 192.19$ Orthorhombic, *Pnma* Hall symbol: -P 2ac 2n a = 31.6739 (13) Å b = 6.5824 (3) Å c = 7.3204 (3) Å V = 1526.23 (11) Å³ Z = 8

Data collection

Rigaku R-AXIS RAPID	22965 measured reflections
diffractometer	1898 independent reflections
Radiation source: fine-focus sealed tube	1325 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.049$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
ω scans	$h = -41 \rightarrow 41$
Absorption correction: multi-scan	$k = -8 \longrightarrow 8$
(ABSCOR; Higashi, 1995)	$l = -9 \rightarrow 8$
$T_{\min} = 0.921, \ T_{\max} = 0.939$	
Refinement	
Refinement on F^2	Secondary atom site location: different

F(000) = 800

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 0.40 \text{ mm}^{-1}$ T = 293 K

Prism, colorless

 $0.21\times0.19\times0.16~mm$

 $D_x = 1.673 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 13913 reflections

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 1.17	All H-atom parameters refined
1898 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0795P)^2]$
157 parameters	where $P = (F_o^2 + 2F_c^2)/3$
8 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.55812 (2)	0.2500	0.86929 (9)	0.0348 (3)	
S2	0.66689 (2)	0.2500	0.36003 (10)	0.0360 (3)	
01	0.58140 (6)	0.4293 (3)	0.8206 (3)	0.0647 (6)	
O2	0.54212 (8)	0.2500	1.0518 (3)	0.0712 (10)	
O1W	0.62156 (8)	0.7500	1.0095 (3)	0.0451 (6)	
H1W	0.6107 (9)	0.648 (4)	0.959 (4)	0.068*	
O2W	0.67561 (10)	-0.2500	0.6401 (4)	0.0573 (8)	
H2W	0.6649 (10)	-0.151 (4)	0.582 (4)	0.086*	
03	0.64409 (5)	0.0686 (3)	0.4112 (2)	0.0496 (5)	
O4	0.68205 (8)	0.2500	0.1750 (3)	0.0570 (8)	
N1	0.43845 (8)	0.2500	0.7058 (4)	0.0413 (7)	
H1	0.4151 (7)	0.2500	0.770 (4)	0.050*	
N2	0.55273 (8)	0.2500	0.4434 (3)	0.0366 (7)	

0.5763 (6)	0.2500	0.505 (4)	0.044*
0.5522 (11)	0.2500	0.3234 (14)	0.044*
0.78781 (8)	0.2500	0.5065 (4)	0.0416 (7)
0.8121 (6)	0.2500	0.449 (4)	0.050*
0.67536 (8)	0.2500	0.7841 (4)	0.0443 (8)
0.6504 (6)	0.2500	0.731 (5)	0.053*
0.6752 (12)	0.2500	0.9046 (15)	0.053*
0.47379 (9)	0.2500	0.8053 (4)	0.0367 (8)
0.4717	0.2500	0.9320	0.044*
0.51300 (9)	0.2500	0.7265 (4)	0.0296 (7)
0.51604 (9)	0.2500	0.5320 (4)	0.0285 (7)
0.47767 (9)	0.2500	0.4337 (4)	0.0330 (7)
0.4783	0.2500	0.3067	0.040*
0.44023 (11)	0.2500	0.5209 (4)	0.0408 (8)
0.4153	0.2500	0.4535	0.049*
0.78747 (10)	0.2500	0.6914 (5)	0.0449 (9)
0.8129	0.2500	0.7549	0.054*
0.75061 (10)	0.2500	0.7851 (4)	0.0399 (8)
0.7510	0.2500	0.9121	0.048*
0.71128 (9)	0.2500	0.6911 (4)	0.0344 (7)
0.71321 (10)	0.2500	0.4964 (4)	0.0332 (7)
0.75175 (10)	0.2500	0.4121 (4)	0.0368 (8)
0.7529	0.2500	0.2852	0.044*
	0.5763 (6) 0.5522 (11) 0.78781 (8) 0.8121 (6) 0.67536 (8) 0.6504 (6) 0.6752 (12) 0.47379 (9) 0.4717 0.51300 (9) 0.51604 (9) 0.47767 (9) 0.4783 0.44023 (11) 0.4153 0.78747 (10) 0.8129 0.75061 (10) 0.7510 0.71128 (9) 0.71321 (10) 0.7529	0.5763(6) 0.2500 $0.5522(11)$ 0.2500 $0.78781(8)$ 0.2500 $0.8121(6)$ 0.2500 $0.67536(8)$ 0.2500 $0.6752(12)$ 0.2500 $0.6752(12)$ 0.2500 $0.47379(9)$ 0.2500 0.4717 0.2500 $0.51300(9)$ 0.2500 $0.47767(9)$ 0.2500 0.4783 0.2500 0.4783 0.2500 0.4783 0.2500 0.4783 0.2500 $0.78747(10)$ 0.2500 0.7510 0.2500 0.7510 0.2500 0.75110 0.2500 $0.71128(9)$ 0.2500 $0.75175(10)$ 0.2500 0.7529 0.2500	0.5763(6) 0.2500 $0.505(4)$ $0.5522(11)$ 0.2500 $0.3234(14)$ $0.78781(8)$ 0.2500 $0.5065(4)$ $0.8121(6)$ 0.2500 $0.449(4)$ $0.67536(8)$ 0.2500 $0.7841(4)$ $0.6504(6)$ 0.2500 $0.731(5)$ $0.6752(12)$ 0.2500 $0.9046(15)$ $0.47379(9)$ 0.2500 $0.8053(4)$ 0.4717 0.2500 0.9320 $0.51300(9)$ 0.2500 $0.7265(4)$ $0.51604(9)$ 0.2500 $0.5320(4)$ $0.47767(9)$ 0.2500 $0.4337(4)$ 0.4783 0.2500 $0.5209(4)$ $0.44023(11)$ 0.2500 $0.5209(4)$ 0.4153 0.2500 0.7549 $0.75061(10)$ 0.2500 $0.7851(4)$ 0.7510 0.2500 $0.911(4)$ $0.71128(9)$ 0.2500 $0.4121(4)$ 0.7529 0.2500 0.2852

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0304 (4)	0.0518 (6)	0.0223 (4)	0.000	-0.0034 (3)	0.000
S2	0.0287 (4)	0.0574 (6)	0.0219 (4)	0.000	-0.0017 (3)	0.000
01	0.0602 (11)	0.0694 (15)	0.0644 (12)	-0.0289 (10)	-0.0289 (10)	0.0189 (10)
O2	0.0466 (15)	0.144 (3)	0.0225 (12)	0.000	-0.0016 (11)	0.000
O1W	0.0354 (13)	0.0573 (18)	0.0428 (14)	0.000	0.0008 (10)	0.000
O2W	0.0606 (18)	0.065 (2)	0.0457 (16)	0.000	-0.0179 (12)	0.000
03	0.0365 (9)	0.0631 (13)	0.0493 (10)	-0.0121 (9)	-0.0081 (7)	0.0079 (9)
O4	0.0438 (14)	0.104 (2)	0.0237 (11)	0.000	-0.0003 (10)	0.000
N1	0.0255 (13)	0.059 (2)	0.0388 (15)	0.000	0.0049 (11)	0.000
N2	0.0287 (13)	0.0584 (19)	0.0227 (12)	0.000	-0.0021 (11)	0.000
N3	0.0240 (13)	0.055 (2)	0.0452 (16)	0.000	0.0040 (11)	0.000
N4	0.0337 (15)	0.076 (2)	0.0228 (13)	0.000	0.0004 (11)	0.000
C1	0.0335 (16)	0.050(2)	0.0265 (14)	0.000	0.0026 (13)	0.000
C2	0.0280 (14)	0.0379 (19)	0.0227 (14)	0.000	-0.0013 (11)	0.000
C3	0.0303 (15)	0.0324 (18)	0.0227 (13)	0.000	0.0013 (11)	0.000
C4	0.0311 (15)	0.041 (2)	0.0267 (14)	0.000	-0.0032 (12)	0.000
C5	0.0325 (16)	0.054 (2)	0.0363 (17)	0.000	-0.0078 (13)	0.000
C6	0.0307 (16)	0.058 (2)	0.0461 (18)	0.000	-0.0103 (15)	0.000
C7	0.0372 (17)	0.052 (2)	0.0304 (16)	0.000	-0.0086 (14)	0.000
C8	0.0314 (16)	0.045 (2)	0.0270 (14)	0.000	-0.0013 (12)	0.000
C9	0.0279 (15)	0.046 (2)	0.0261 (14)	0.000	0.0004 (11)	0.000

						5
C10	0.0333 (16)	0.045 (2)	0.0322 (16)	0.000	0.0038 (13)	0.000
Geomet	ric parameters (Å,	°)				
S1—02	2	1.429 ((2)	N3—H3	0.	88 (2)
S101		1.436 ((2)	N4—C8	1.	326 (4)
S101	i	1.436 (2)	N4—H41	0.	88 (2)
S1—C2		1.771 ((3)	N4—H42	0.	88 (2
S2—O4	Ļ	1.437 ((2)	C1—C2	1.	369 (4)
S2—O3		1.4451	(18)	C1—H1A	0.	9300
S2—O3	i	1.4451	(18)	C2—C3	1.	427 (4)
S2—C9	1	1.775 ((3)	C3—C4	1.	412 (4)
01W—	H1W	0.84 (3)	C4—C5	1.	347 (4)
O2W—	H2W	0.85 (2	2)	C4—H4	0.	9300
N1—C1	l	1.335 ((4)	С5—Н5	0.	9300
N1-C5	5	1.355 ((4)	C6—C7	1.	354 (5)
N1—H	1	0.878 (10)	С6—Н6	0.	9300
N2—C3	3	1.331 ((4)	C7—C8	1.	423 (4)
N2—H2	21	0.87 (2	() ()	С7—Н7	0.	9300
N2—H2	22	0.88 (2	() ()	C8—C9	1.	427 (4)
N3—C1	10	1.335 ((4)	C9—C10	1.	368 (4)
N3—Ce	5	1.354 ((4)	С10—Н10	0.	9300
			. /			
02—S1	01	114.46	(10)	C1—C2—C3	11	8.8 (3)
O2—S1	01 ⁱ	114.46	(10)	C1—C2—S1	11	8.9 (2)
01—S1	01 ⁱ	110.5 (2)	C3—C2—S1	12	22.3 (2)
02—S1	—C2	105.40	(14)	N2—C3—C4	12	20.2 (2)
01—S1	—C2	105.54	(9)	N2—C3—C2	12	23.0 (3)
01 ⁱ —S1	l—C2	105.54	(9)	C4—C3—C2	11	6.8 (3)
04—S2	2—03	114.29	(9)	C5—C4—C3	12	21.1 (3)
04—S2	2—03 ⁱ	114.29	(9)	С5—С4—Н4	11	9.5
O3—S2	2—03 ⁱ	111.47	(16)	С3—С4—Н4	11	9.5
04—S2	с—С9	104.71	(14)	C4—C5—N1	12	20.7 (3)
O3—S2	с—С9	105.51	(8)	С4—С5—Н5	11	9.7
03 ⁱ —S2	2—С9	105.51	(8)	N1—C5—H5	11	9.7
C1—N1	l—C5	120.7 ((3)	N3—C6—C7	12	20.9 (3)
C1—N1	I—H1	114 (2))	N3—C6—H6	11	9.6
C5—N1	I—H1	125 (2))	С7—С6—Н6	11	9.6
C3—N2	2—H21	120 (2))	C6—C7—C8	12	20.7 (3)
C3—N2	2—H22	118 (2))	С6—С7—Н7	11	9.7
H21—N	J2—H22	122 (3)	С8—С7—Н7	11	9.7
C10—N	V3—C6	120.7	(3)	N4—C8—C7	12	20.2 (3)
C10—N	₩3—Н3	120 (2)	N4—C8—C9	12	23.4 (3)
C6—N3	3—Н3	119 (2))	С7—С8—С9	11	6.4 (3)
C8—N4	4—H41	123 (3))	С10—С9—С8	11	9.3 (3)
C8—N4	1—H42	121 (3)	C10—C9—S2	11	9.0 (2)
H41—N	J4—H42	116 (4))	C8—C9—S2	12	21.8 (2)
N1—C1	l—C2	122.0 ((3)	N3—C10—C9	12	22.0 (3)

supporting information

N1—C1—H1A	119.0	N3—C10—H10	119.0
C2—C1—H1A	119.0	C9—C10—H10	119.0
C5—N1—C1—C2	0.0	C10—N3—C6—C7	0.0
N1—C1—C2—C3	0.0	N3—C6—C7—C8	0.0
N1-C1-C2-S1	180.0	C6C7C8N4	180.0
O2—S1—C2—C1	0.0	C6—C7—C8—C9	0.0
O1—S1—C2—C1	-121.49 (11)	N4C8C10	180.0
O1 ⁱ —S1—C2—C1	121.49 (11)	C7—C8—C9—C10	0.0
O2—S1—C2—C3	180.0	N4	0.0
O1—S1—C2—C3	58.51 (11)	C7—C8—C9—S2	180.0
O1 ⁱ —S1—C2—C3	-58.51 (11)	O4—S2—C9—C10	0.0
C1—C2—C3—N2	180.0	O3—S2—C9—C10	120.95 (9)
S1—C2—C3—N2	0.0	O3 ⁱ —S2—C9—C10	-120.95 (9)
C1—C2—C3—C4	0.0	O4—S2—C9—C8	180.0
S1—C2—C3—C4	180.0	O3—S2—C9—C8	-59.05 (9)
N2—C3—C4—C5	180.0	O3 ⁱ —S2—C9—C8	59.05 (9)
C2—C3—C4—C5	0.0	C6—N3—C10—C9	0.0
C3—C4—C5—N1	0.0	C8—C9—C10—N3	0.0
C1—N1—C5—C4	0.0	S2—C9—C10—N3	180.0

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…O1w ⁱⁱ	0.88 (2)	1.99 (2)	2.820 (4)	158 (3)
N2—H22···O2 ⁱⁱⁱ	0.88 (2)	2.01 (2)	2.886 (3)	172 (3)
N3—H3···O1w ^{iv}	0.88 (2)	2.15 (3)	2.871 (4)	139 (3)
N4— $H42$ ···O4 ^v	0.88 (2)	1.99 (2)	2.869 (3)	173 (4)
O1w—H1w…O1	0.84 (2)	1.99 (2)	2.826 (3)	173 (3)
O2w—H2w···O3	0.85 (2)	2.02 (2)	2.864 (2)	171 (3)

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+2; (iii) *x*, *y*, *z*-1; (iv) -*x*+3/2, -*y*+1, *z*-1/2; (v) *x*, *y*, *z*+1.