metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa-μ2-chlorido-μ4-oxido-tetra­kis­[(3-methyl-5-phenyl-1H-pyrazole-κN2)copper(II)]

aCenter for Advanced Photovoltaics, Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD 57007, USA
*Correspondence e-mail: hongshan.he@sdstate.edu

(Received 19 December 2010; accepted 21 December 2010; online 8 January 2011)

The title compound, [Cu4Cl6O(C10H10N2)4], contains four CuII atoms which are bridged by six chloride anions. The central O atom is located on a crystallographic fourfold roto-inversion axis. Each CuII atom is coordinated by an N atom of a neutral monodentate 3-methyl-5-phenyl­pyrazole ligand, three Cl anions, and one O2− anion. The geometry at each CuII atom is distorted trigonal–bipyramidal, with the three Cl ions in the equatorial plane and the N and O atoms in the axial positions.

Related literature

For the formation of tris­pyrazolylborate anions, see: Tekeste & Vahrenkamp (2007[Tekeste, T. & Vahrenkamp, H. (2007). Inorg. Chim. Acta, 360, 1523-1528.]); Jacobsen & Cohen (2004[Jacobsen, F. E. & Cohen, S. M. (2004). Inorg. Chem. 43, 3038-3047.]); Puerta & Cohen (2003[Puerta, D. T. & Cohen, S. M. (2003). Inorg. Chem. 42, 3423-3430.]); Parkin (2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]). For the formation of dinuclear copper compounds, see: He & Sykes (2007[He, H. & Sykes, A. G. (2007). Acta Cryst. E63, m2448.]). For the formation of tetranuclear compounds, see: Keij et al. (1991[Keij, F. S., Haasnoot, J. G., Oosterling, A. J., Reedijk, J., O'Connor, C. J. & Zhang, J. H. (1991). Inorg. Chim. Acta, 181, 185-193.]); Liu et al. (2003[Liu, X.-M., Kilner, C. A. & Halcrow, M. A. (2003). Acta Cryst. C59, m100-m102.]); Chiarella et al. (2009[Chiarella, G. M., Melgarejo, D. Y. & Fackler, J. P. Jr (2009). Acta Cryst. C65, m228-m230.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4Cl6O(C10H10N2)4]

  • Mr = 1115.66

  • Tetragonal, P 4/n

  • a = 14.5460 (6) Å

  • c = 11.1686 (7) Å

  • V = 2363.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.564, Tmax = 0.564

  • 14047 measured reflections

  • 2072 independent reflections

  • 1184 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.194

  • S = 1.17

  • 2072 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

5-Methyl-3-phenylpyrazole has been widely used as starting material for the preparation of the trispyrazolylborate anion (Tekeste & Vahrenkamp, 2007; Jacobsen & Cohen, 2004; Puerta & Cohen, 2003; Parkin, 2004). It can form a dimeric complex (He & Sykes, 2007). Reported here is a new complex when it reacts with copper chloride.

In the title compound, (I), six chloride ions hold four copper ions together with an O atom encapsulated in the center (Fig. 1). The coordination geometry around each CuII is identical to each other with three Cl- in the equatorial positions and N and O atoms in the axial positions. The distances between Cu1 and three Cl atoms are 2.361 (2), 2.514 (3) and 2.377 (2) Å. The distances between Cu1 and O1 and N1 are 1.9052 (10) and 1.953 (8) Å, respectively. The N1, Cu1 and O1 atoms fall almost in a line with an angle of 177.9 (5)°. The oxygen atom is located on a crystallographic fourfold roto-inversion axis.

Related literature top

For the formation of trispyrazolylborate anions, see: Tekeste & Vahrenkamp (2007); Jacobsen & Cohen (2004); Puerta & Cohen (2003); Parkin (2004). For the formation of dimeric copper compounds, see: He & Sykes (2007). For the formation of tetracopper compounds, see: Keij et al. (1991); Liu et al. (2003); Chiarella et al. (2009).

Experimental top

5-Methyl-3-phenylpyrazole (16.0 mg, 0.1 mmol), prepared according to the literature (Puerta & Cohen, 2003), was dissolved in dichloromethane (10 ml) at room temperature. To this solution, copper(II) chloride dihydrate (8.7 mg, 0.05 mmol) in methanol (2 ml) was added. The resulting solution was stirred for two hours. The mixture was filtered and the filtrate kept at room temperature. Brown crystals were obtained after one week by slow evaporation.

Refinement top

All H atoms are geometrically constrained and refined in riding mode as follows: methyl d(C—H) = 0.96 Å, Uiso(H) = 1.5Ueq(C); aromatic d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C); d(N—H) = 0.86 Å, Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are drawn as small circles of arbitrary radii.
Hexa-µ2-chlorido-µ4-oxido-tetrakis[(3-methyl-5-phenyl-1H-pyrazole- κN2)copper(II)] top
Crystal data top
[Cu4Cl6O(C10H10N2)4]Dx = 1.568 Mg m3
Mr = 1115.66Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 16570 reflections
Hall symbol: -P 4aθ = 2.3–25.0°
a = 14.5460 (6) ŵ = 2.16 mm1
c = 11.1686 (7) ÅT = 293 K
V = 2363.1 (3) Å3Block, brown
Z = 20.30 × 0.30 × 0.30 mm
F(000) = 1124
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2072 independent reflections
Radiation source: fine-focus sealed tube1184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1717
Tmin = 0.564, Tmax = 0.564k = 1717
14047 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.194 w = 1/[σ2(Fo2) + (0.0526P)2 + 14.3478P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
2072 reflectionsΔρmax = 0.72 e Å3
136 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (8)
Crystal data top
[Cu4Cl6O(C10H10N2)4]Z = 2
Mr = 1115.66Mo Kα radiation
Tetragonal, P4/nµ = 2.16 mm1
a = 14.5460 (6) ÅT = 293 K
c = 11.1686 (7) Å0.30 × 0.30 × 0.30 mm
V = 2363.1 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2072 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1184 reflections with I > 2σ(I)
Tmin = 0.564, Tmax = 0.564Rint = 0.080
14047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0526P)2 + 14.3478P]
where P = (Fo2 + 2Fc2)/3
2072 reflectionsΔρmax = 0.72 e Å3
136 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72083 (7)0.14541 (7)0.90461 (11)0.0567 (5)
Cl20.57726 (15)0.14864 (15)1.0031 (3)0.0729 (8)
Cl10.75000.25000.7295 (3)0.0705 (10)
N20.6784 (5)0.0507 (5)0.6812 (8)0.070 (2)
H20.68900.10060.64240.084*
N10.6896 (5)0.0413 (5)0.8019 (8)0.063 (2)
O10.75000.25001.00000.052 (3)
C10.6666 (7)0.0801 (7)0.9515 (11)0.079 (3)
H1A0.69040.03371.00420.119*
H1B0.70460.13400.95600.119*
H1C0.60500.09540.97490.119*
C20.6663 (6)0.0449 (6)0.8269 (10)0.063 (3)
C30.6412 (7)0.0918 (7)0.7231 (11)0.075 (3)
H30.62320.15300.71770.090*
C40.6481 (7)0.0296 (7)0.6292 (11)0.072 (3)
C50.6268 (7)0.0344 (7)0.5035 (11)0.075 (3)
C60.5923 (10)0.1170 (9)0.4580 (14)0.120 (5)
H60.58540.16770.50790.143*
C70.5686 (12)0.1228 (12)0.3385 (15)0.139 (6)
H70.54760.17860.30840.166*
C80.5748 (10)0.0512 (12)0.2651 (15)0.122 (5)
H80.55710.05660.18540.146*
C90.6072 (10)0.0301 (11)0.3078 (14)0.120 (5)
H90.61160.08110.25790.144*
C100.6331 (9)0.0355 (9)0.4244 (13)0.104 (4)
H100.65680.09110.45160.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0436 (6)0.0403 (6)0.0863 (9)0.0028 (4)0.0010 (6)0.0064 (5)
Cl20.0424 (12)0.0602 (14)0.116 (2)0.0100 (10)0.0079 (13)0.0219 (14)
Cl10.088 (2)0.0405 (17)0.082 (2)0.0115 (16)0.0000.000
N20.074 (5)0.056 (5)0.081 (6)0.014 (4)0.002 (5)0.006 (4)
N10.051 (4)0.043 (4)0.096 (7)0.004 (3)0.011 (4)0.000 (4)
O10.039 (3)0.039 (3)0.077 (8)0.0000.0000.000
C10.065 (6)0.058 (6)0.114 (10)0.016 (5)0.001 (6)0.009 (6)
C20.046 (5)0.051 (5)0.092 (8)0.001 (4)0.009 (5)0.008 (5)
C30.076 (7)0.047 (5)0.102 (9)0.013 (5)0.000 (6)0.012 (6)
C40.066 (6)0.054 (6)0.097 (9)0.016 (5)0.009 (6)0.012 (6)
C50.073 (7)0.074 (7)0.078 (8)0.017 (5)0.013 (6)0.017 (6)
C60.149 (13)0.090 (9)0.119 (12)0.040 (9)0.014 (10)0.039 (8)
C70.180 (16)0.130 (14)0.106 (13)0.057 (12)0.008 (12)0.049 (11)
C80.108 (11)0.142 (14)0.115 (12)0.035 (10)0.011 (9)0.029 (12)
C90.128 (12)0.127 (12)0.104 (11)0.037 (10)0.004 (9)0.003 (10)
C100.122 (11)0.096 (9)0.095 (10)0.032 (8)0.014 (8)0.004 (8)
Geometric parameters (Å, º) top
Cu1—O11.9052 (10)C1—H1C0.9600
Cu1—N11.953 (8)C2—C31.394 (14)
Cu1—Cl22.361 (2)C3—C41.388 (14)
Cu1—Cl2i2.377 (2)C3—H30.9300
Cu1—Cl12.514 (3)C4—C51.439 (15)
Cl2—Cu1ii2.377 (2)C5—C101.350 (15)
Cl1—Cu1iii2.514 (3)C5—C61.397 (15)
N2—N11.365 (11)C6—C71.38 (2)
N2—C41.377 (11)C6—H60.9300
N2—H20.8600C7—C81.33 (2)
N1—C21.328 (10)C7—H70.9300
O1—Cu1iii1.9052 (10)C8—C91.359 (18)
O1—Cu1i1.9052 (10)C8—H80.9300
O1—Cu1ii1.9052 (10)C9—C101.358 (18)
C1—C21.482 (15)C9—H90.9300
C1—H1A0.9600C10—H100.9300
C1—H1B0.9600
O1—Cu1—N1177.9 (3)H1B—C1—H1C109.5
O1—Cu1—Cl285.45 (7)N1—C2—C3110.7 (10)
N1—Cu1—Cl294.8 (2)N1—C2—C1121.5 (10)
O1—Cu1—Cl2i84.98 (7)C3—C2—C1127.8 (9)
N1—Cu1—Cl2i96.7 (2)C4—C3—C2106.9 (8)
Cl2—Cu1—Cl2i120.86 (5)C4—C3—H3126.6
O1—Cu1—Cl185.08 (7)C2—C3—H3126.6
N1—Cu1—Cl193.0 (3)N2—C4—C3104.9 (9)
Cl2—Cu1—Cl1119.98 (8)N2—C4—C5121.4 (10)
Cl2i—Cu1—Cl1117.06 (8)C3—C4—C5133.6 (9)
Cu1—Cl2—Cu1ii81.32 (8)C10—C5—C6115.7 (12)
Cu1iii—Cl1—Cu177.85 (12)C10—C5—C4126.0 (10)
N1—N2—C4111.7 (8)C6—C5—C4118.3 (12)
N1—N2—H2124.1C7—C6—C5119.6 (15)
C4—N2—H2124.1C7—C6—H6120.2
C2—N1—N2105.8 (8)C5—C6—H6120.2
C2—N1—Cu1131.9 (8)C8—C7—C6122.0 (15)
N2—N1—Cu1122.0 (6)C8—C7—H7119.0
Cu1iii—O1—Cu1112.00 (7)C6—C7—H7119.0
Cu1iii—O1—Cu1i108.22 (3)C7—C8—C9119.3 (16)
Cu1—O1—Cu1i108.22 (3)C7—C8—H8120.3
Cu1iii—O1—Cu1ii108.22 (3)C9—C8—H8120.3
Cu1—O1—Cu1ii108.22 (3)C10—C9—C8118.9 (15)
Cu1i—O1—Cu1ii112.00 (7)C10—C9—H9120.6
C2—C1—H1A109.5C8—C9—H9120.6
C2—C1—H1B109.5C5—C10—C9124.4 (13)
H1A—C1—H1B109.5C5—C10—H10117.8
C2—C1—H1C109.5C9—C10—H10117.8
H1A—C1—H1C109.5
O1—Cu1—Cl2—Cu1ii1.12 (6)Cl1—Cu1—O1—Cu1ii119.21 (2)
N1—Cu1—Cl2—Cu1ii176.7 (3)N2—N1—C2—C30.8 (10)
Cl2i—Cu1—Cl2—Cu1ii82.50 (10)Cu1—N1—C2—C3174.0 (6)
Cl1—Cu1—Cl2—Cu1ii80.53 (11)N2—N1—C2—C1177.8 (8)
O1—Cu1—Cl1—Cu1iii0.0Cu1—N1—C2—C14.6 (13)
N1—Cu1—Cl1—Cu1iii179.1 (2)N1—C2—C3—C41.1 (11)
Cl2—Cu1—Cl1—Cu1iii81.86 (9)C1—C2—C3—C4177.3 (9)
Cl2i—Cu1—Cl1—Cu1iii81.80 (9)N1—N2—C4—C30.6 (11)
C4—N2—N1—C20.1 (10)N1—N2—C4—C5176.7 (9)
C4—N2—N1—Cu1174.1 (6)C2—C3—C4—N21.0 (11)
Cl2—Cu1—N1—C260.9 (8)C2—C3—C4—C5175.8 (11)
Cl2i—Cu1—N1—C261.0 (8)N2—C4—C5—C100.3 (18)
Cl1—Cu1—N1—C2178.7 (8)C3—C4—C5—C10176.0 (13)
Cl2—Cu1—N1—N2111.4 (6)N2—C4—C5—C6177.1 (11)
Cl2i—Cu1—N1—N2126.7 (6)C3—C4—C5—C60.7 (19)
Cl1—Cu1—N1—N29.0 (6)C10—C5—C6—C71 (2)
Cl2—Cu1—O1—Cu1iii120.66 (8)C4—C5—C6—C7178.0 (13)
Cl2i—Cu1—O1—Cu1iii117.77 (8)C5—C6—C7—C82 (3)
Cl1—Cu1—O1—Cu1iii0.0C6—C7—C8—C91 (3)
Cl2—Cu1—O1—Cu1i120.13 (9)C7—C8—C9—C101 (2)
Cl2i—Cu1—O1—Cu1i1.44 (8)C6—C5—C10—C91 (2)
Cl1—Cu1—O1—Cu1i119.21 (2)C4—C5—C10—C9175.8 (13)
Cl2—Cu1—O1—Cu1ii1.45 (8)C8—C9—C10—C52 (2)
Cl2i—Cu1—O1—Cu1ii123.01 (9)
Symmetry codes: (i) y+1, x1/2, z+2; (ii) y+1/2, x+1, z+2; (iii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu4Cl6O(C10H10N2)4]
Mr1115.66
Crystal system, space groupTetragonal, P4/n
Temperature (K)293
a, c (Å)14.5460 (6), 11.1686 (7)
V3)2363.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.16
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.564, 0.564
No. of measured, independent and
observed [I > 2σ(I)] reflections
14047, 2072, 1184
Rint0.080
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.194, 1.17
No. of reflections2072
No. of parameters136
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0526P)2 + 14.3478P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.72, 0.56

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

 

Acknowledgements

This material is based upon work supported by the National Science Foundation/EPSCoR grant No. 0903804 and by the State of South Dakota.

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiarella, G. M., Melgarejo, D. Y. & Fackler, J. P. Jr (2009). Acta Cryst. C65, m228–m230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHe, H. & Sykes, A. G. (2007). Acta Cryst. E63, m2448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobsen, F. E. & Cohen, S. M. (2004). Inorg. Chem. 43, 3038–3047.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKeij, F. S., Haasnoot, J. G., Oosterling, A. J., Reedijk, J., O'Connor, C. J. & Zhang, J. H. (1991). Inorg. Chim. Acta, 181, 185–193.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, X.-M., Kilner, C. A. & Halcrow, M. A. (2003). Acta Cryst. C59, m100–m102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPuerta, D. T. & Cohen, S. M. (2003). Inorg. Chem. 42, 3423–3430.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTekeste, T. & Vahrenkamp, H. (2007). Inorg. Chim. Acta, 360, 1523–1528.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds