metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2,2'-Bipyridyl- $\kappa^2 N, N'$)chlorido(DLthreoninato- $\kappa^2 N, O^1$)copper(II) monohydrate

Yi-Han Tan,^a Siang-Guan Teoh,^a Mohd Mustaqim Rosli^b and Hoong-Kun Fun^b*‡

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 7 January 2011; accepted 19 January 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.033; w*R* factor = 0.086; data-to-parameter ratio = 17.0.

In the title compound, $[Cu(C_4H_8NO_3)Cl(C_{10}H_8N_2)]\cdot H_2O$, the Cu^{II} atom is in a slightly distorted square-pyramidal coordination geometry with the basal plane defined by the two N atoms of the bipyridine ligand and the N and O atoms from the threoninate ion and the apical site occupied by the Cl atom. In the crystal, intermolecular $O-H\cdots O$, $N-H\cdots O$, $O-H\cdots Cl$, $C-H\cdots O$ and $C-H\cdots Cl$ interactions link the molecules into a three-dimensional network. A π - π interaction with a centroid–centroid distance of 3.461 (1) Å is also present.

Related literature

For background to superoxide dismutase activity, see: Kumar & Arunachalam (2007); Patel *et al.* (2006); Rao *et al.* (2007); Zhang *et al.* (2004). For a related structure, see: Tan *et al.* (2010).

Experimental

Crystal data [Cu(C₄H₈NO₃)Cl(C₁₀H₈N₂)]·H₂O

 M_2O $M_r = 391.30$

‡ Thomson Reuters ResearcherID: A-3561-2009.

Data collection

Bruker SMART APEXII CCD	14209 measured reflections
area-detector diffractometer	3767 independent reflections
Absorption correction: multi-scan	3262 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.026$
$T_{\min} = 0.585, \ T_{\max} = 0.864$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of
$wR(F^2) = 0.086$	independent and constrained
S = 1.05	refinement
3767 reflections	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
221 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.39 \times 0.33 \times 0.10 \text{ mm}$

 $\mu = 1.54 \text{ mm}^{-1}$

T = 297 K

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 01W - H1W1 \cdots 03^{i} \\ 01W - H2W1 \cdots C11^{ii} \\ N3 - H1N3 \cdots 02^{iii} \\ N3 - H2N3 \cdots 01W \\ 03 - H1O3 \cdots C11^{iv} \\ C3 - H3A \cdots 02^{v} \\ \vdots \end{array}$	0.77 0.84 0.85 (3) 0.80 (3) 0.88 (4) 0.93	2.12 2.38 2.20 (2) 2.26 (3) 2.29 (4) 2.55	2.875 (3) 3.213 (2) 2.978 (3) 3.051 (3) 3.118 (2) 3.219 (4)	168 170 152 (3) 167 (3) 156 (3) 130
$C4-H4A\cdots Cl1^{vi}$	0.93	2.67	3.555 (2)	160

Symmetry codes: (i) x + 1, y, z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) x - 1, y, z; (v) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (vi) -x + 1, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank Universiti Sains Malaysia (USM) for the RU research grant (No. PKIMIA/815002). YHT thanks USM for the award of a USM Fellowship. HKF and MMR thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2663).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kumar, R. S. & Arunachalam, S. (2007). Polyhedron, 26, 3255-3262.
- Patel, R. N., Singh, N., Shukla, K. K., Gundla, V. L. N. & Chauhan, U. K. (2006). Spectrochim. Acta Part A, 63, 21–26.
- Rao, R., Patra, A. K. & Chetana, P. R. (2007). Polyhedron, 26, 5331-5338.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tan, Y.-H., Teoh, S.-G., Sek, K.-L., Loh, W.-S. & Fun, H.-K. (2010). Acta Cryst. E66, m595–m596.
- Zhang, S. C., Zhu, Y. G., Tu, C., Wei, H. Y., Yang, Z., Lin, L. P., Ding, J., Zhang, J. F. & Guo, Z. J. (2004). J. Inorg. Biochem. 98, 2099–2106.

supporting information

Acta Cryst. (2011). E67, m262 [doi:10.1107/S1600536811002583]

$(2,2'-Bipyridyl-\kappa^2N,N')$ chlorido (DL-threoninato- κ^2N,O^1) copper(II) monohydrate

Yi-Han Tan, Siang-Guan Teoh, Mohd Mustaqim Rosli and Hoong-Kun Fun

S1. Comment

Some copper complexes with amino acid ligands have been studied for the behavior of copper enzymes. Several reports showed that copper complexes of amino acids exhibit effective antitumor and artificial nuclease activities as they cleave DNA efficiently by oxidative and hydrolytic pathways. Copper(II) complexes play an important role in naturally occurring biological systems and act as pharmaceutical agents. Copper complexes containing polypyridyl ligands have received great attention as they exhibit a variety of biological properties such as antimycobaterial, anticandida, antitumor and antimicrobial activities. Mixed ligands copper complexes were reported to exhibit superoxide dismutase activity (Patel *et al.*, 2006; Zhang *et al.*, 2004; Kumar & Arunachalam, 2007; Rao *et al.*, 2007; Tan *et al.*, 2010). In the title compound, DL-threonine has been selected as it is a bio-essential amino acid.

All parameters in compound, (Fig. 1), are within normal range. The Cu^{II} is in a slightly distorted square-pyramidal coordination geometry, with the basal plane being defined by N1 and N2 atoms from the bipyridine group and N3 and O1 atoms from the threoninato group. The apical position is occupied by atom Cl1. The N3—H2N3…O1W interaction linked the water molecule with the main compound.

In the crystal structure (Fig. 2), intermolecular O1W—H1W1···O3ⁱ, O1W—H2W1···C11ⁱⁱ, N3—H1N3···O2ⁱⁱⁱ, O3— H1O3···C11^{iv}, C3—H3A···O2^v and C4—H4A···C11^{vi} (Table 1) interactions link the molecules into a three-dimensional network. The crystal packing is further stabilized by a π - π stacking interaction with Cg1···Cg2 distance of 3.461 (1) Å (Cg1 = centroid of Cu1/N1/N2/C5/C6 and Cg2 = centroid of N1/C1–C5).

S2. Experimental

To an ethanolic solution (10 mL) of copper(II) chloride dihydrate (0.1708 g, 1 mmol), an ethanolic solution (10 mL) of DL-threonine (0.1191 g, 1 mmol) as well as an ethanolic solution (10 mL) of 2,2'-bipyridyl (0.1561 g, 1 mmol) were added. The pH of the resulting solution was then adjusted to pH 8 by adding a few drops of NaOH aqueous solution. The blue precipitate formed was filtered and single crystals suitable for X-ray diffraction were obtained by recrystallization of the complex.

S3. Refinement

The water molecule's hydrogen atoms were located in a difference map and refined using a riding model, with $U_{iso}(H) = 1.5U_{eq}(O)$. H atoms attached to N and other O atoms were located in a difference Fourier map and were freely refined. The remaining H atoms were positioned geometrically [C—H = 0.93 to 0.98 Å] and refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating-group model was applied for the methyl group.

Figure 1

The molecular structure, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

The crystal packing of (I) viewed along the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

(2,2'-Bipyridyl- $\kappa^2 N, N'$)chlorido(DL-threoninato- $\kappa^2 N, O^1$)copper(II) monohydrate

Crystal data $[Cu(C_4H_8NO_3)Cl(C_{10}H_8N_2)]\cdot H_2O$ $M_r = 391.30$

Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.3 - 27.7^{\circ}$

 $\mu = 1.54 \text{ mm}^{-1}$

 $0.39 \times 0.33 \times 0.10 \text{ mm}$

 $\theta_{\rm max} = 27.7^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$

14209 measured reflections 3767 independent reflections 3262 reflections with $I > 2\sigma(I)$

T = 297 K

Block, blue

 $R_{\rm int} = 0.026$

 $h = -9 \rightarrow 9$ $k = -15 \rightarrow 15$ $l = -22 \rightarrow 23$

Cell parameters from 6390 reflections

a = 7.4825 (1) Å b = 12.0378 (2) Å c = 18.2083 (3) Å $\beta = 99.097 (1)^{\circ}$ $V = 1619.44 (4) \text{ Å}^{3}$ Z = 4 F(000) = 804 $D_{x} = 1.605 \text{ Mg m}^{-3}$

Data collection

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix. Tun	
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
3767 reflections	and constrained refinement
221 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0357P)^2 + 1.3397P]$
0 restraints	where $P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or e	quivalent isotropic	displacement	parameters ($(Å^2)$)
	1	1 1	1	1 1	· /	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.21099 (4)	0.51646 (2)	0.150342 (15)	0.03011 (9)	
C11	0.50867 (8)	0.61287 (6)	0.20278 (4)	0.04414 (16)	
01	0.0535 (2)	0.63696 (14)	0.17196 (9)	0.0410 (4)	
O2	-0.0305 (3)	0.72701 (15)	0.26746 (11)	0.0485 (5)	
03	-0.1859 (3)	0.46636 (18)	0.29026 (12)	0.0496 (5)	
N1	0.1999 (2)	0.57032 (16)	0.04640 (10)	0.0313 (4)	
N2	0.3031 (2)	0.37847 (15)	0.10406 (10)	0.0311 (4)	
N3	0.1738 (3)	0.45802 (17)	0.24897 (11)	0.0323 (4)	

C1	0.1465 (3)	0.6719 (2)	0.02282 (15)	0.0426 (6)
H1A	0.1111	0.7221	0.0565	0.051*
C2	0.1426 (4)	0.7044 (2)	-0.04996 (15)	0.0489 (7)
H2A	0.1038	0.7753	-0.0652	0.059*
C3	0.1965 (4)	0.6308 (3)	-0.09978 (14)	0.0471 (6)
H3A	0.1946	0.6513	-0.1491	0.056*
C4	0.2534 (3)	0.5266 (2)	-0.07581 (13)	0.0411 (6)
H4A	0.2920	0.4760	-0.1086	0.049*
C5	0.2525 (3)	0.49774 (19)	-0.00186 (12)	0.0301 (5)
C6	0.3081 (3)	0.38790 (19)	0.03022 (12)	0.0310 (5)
C7	0.3610 (3)	0.3007 (2)	-0.01053 (14)	0.0414 (6)
H7A	0.3630	0.3085	-0.0612	0.050*
C8	0.4109 (4)	0.2015 (2)	0.02508 (17)	0.0484 (6)
H8A	0.4470	0.1417	-0.0014	0.058*
C9	0.4068 (4)	0.1920 (2)	0.10013 (16)	0.0446 (6)
H9A	0.4409	0.1261	0.1251	0.054*
C10	0.3511 (3)	0.2820 (2)	0.13779 (14)	0.0381 (5)
H10A	0.3469	0.2752	0.1884	0.046*
C11	0.0373 (3)	0.64663 (19)	0.24007 (14)	0.0351 (5)
C12	0.1085 (3)	0.5511 (2)	0.29117 (13)	0.0339 (5)
H12A	0.2128	0.5791	0.3256	0.041*
C13	-0.0346 (4)	0.5158 (2)	0.33788 (14)	0.0407 (6)
H13A	-0.0767	0.5817	0.3617	0.049*
C14	0.0338 (5)	0.4324 (3)	0.39667 (17)	0.0614 (8)
H14A	-0.0561	0.4205	0.4281	0.092*
H14B	0.1429	0.4596	0.4260	0.092*
H14C	0.0584	0.3635	0.3736	0.092*
O1W	0.5123 (3)	0.36924 (19)	0.34690 (13)	0.0643 (6)
H1W1	0.6010	0.3869	0.3342	0.096*
H2W1	0.5185	0.3006	0.3382	0.096*
H1N3	0.098 (4)	0.405 (2)	0.2438 (14)	0.033 (7)*
H2N3	0.264 (4)	0.428 (2)	0.2692 (16)	0.042 (8)*
H1O3	-0.246 (5)	0.523 (3)	0.268 (2)	0.064 (11)*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
Cul	0.03619 (16)	0.03037 (15)	0.02525 (15)	0.00142 (11)	0.00949 (11)	-0.00088 (11)
Cl1	0.0391 (3)	0.0492 (4)	0.0433 (3)	-0.0077 (3)	0.0043 (2)	-0.0089 (3)
01	0.0500 (10)	0.0394 (9)	0.0360 (9)	0.0098 (8)	0.0146 (8)	0.0018 (7)
02	0.0594 (11)	0.0371 (9)	0.0529 (11)	0.0046 (8)	0.0214 (9)	-0.0086 (8)
03	0.0383 (10)	0.0506 (12)	0.0613 (13)	-0.0045 (9)	0.0120 (9)	0.0059 (10)
N1	0.0314 (9)	0.0358 (10)	0.0264 (9)	-0.0004 (8)	0.0038 (7)	0.0018 (8)
N2	0.0334 (9)	0.0323 (9)	0.0284 (9)	-0.0017 (8)	0.0074 (7)	0.0000 (8)
N3	0.0340 (10)	0.0322 (10)	0.0318 (10)	-0.0010 (9)	0.0087 (8)	0.0000 (8)
C1	0.0444 (13)	0.0397 (13)	0.0442 (14)	0.0064 (11)	0.0084 (11)	0.0057 (11)
C2	0.0480 (15)	0.0513 (16)	0.0450 (15)	0.0035 (12)	0.0002 (12)	0.0189 (13)
C3	0.0434 (14)	0.0672 (18)	0.0286 (12)	-0.0052 (13)	0.0000 (10)	0.0143 (12)

C4	0.0388 (12)	0.0556 (16)	0.0283 (12)	-0.0054 (11)	0.0037 (10)	-0.0008 (11)
C5	0.0273 (10)	0.0385 (12)	0.0239 (10)	-0.0059 (9)	0.0025 (8)	-0.0022 (9)
C6	0.0273 (10)	0.0367 (12)	0.0297 (11)	-0.0046 (9)	0.0069 (8)	-0.0040 (9)
C7	0.0449 (13)	0.0467 (14)	0.0339 (13)	-0.0029 (11)	0.0105 (10)	-0.0108 (11)
C8	0.0500 (15)	0.0401 (14)	0.0576 (17)	0.0005 (12)	0.0157 (13)	-0.0156 (13)
C9	0.0458 (14)	0.0355 (13)	0.0540 (16)	0.0019 (11)	0.0127 (12)	0.0035 (12)
C10	0.0411 (12)	0.0370 (12)	0.0379 (13)	0.0020 (10)	0.0117 (10)	0.0037 (10)
C11	0.0320 (11)	0.0324 (11)	0.0426 (13)	-0.0046 (9)	0.0107 (10)	-0.0066 (10)
C12	0.0337 (11)	0.0369 (12)	0.0320 (12)	-0.0043 (9)	0.0081 (9)	-0.0071 (10)
C13	0.0483 (14)	0.0429 (13)	0.0333 (13)	-0.0021 (11)	0.0144 (11)	-0.0018 (10)
C14	0.077 (2)	0.0639 (19)	0.0447 (17)	0.0044 (17)	0.0156 (15)	0.0145 (15)
O1W	0.0566 (12)	0.0612 (13)	0.0791 (16)	-0.0010 (10)	0.0234 (11)	0.0110 (12)

Geometric parameters (Å, °)

Cu1—O1	1.9477 (17)	C4—C5	1.392 (3)
Cu1—N3	1.989 (2)	C4—H4A	0.9300
Cu1—N1	1.9898 (18)	C5—C6	1.479 (3)
Cu1—N2	2.0317 (19)	C6—C7	1.379 (3)
Cu1—Cl1	2.5588 (7)	C7—C8	1.382 (4)
01—C11	1.270 (3)	С7—Н7А	0.9300
O2—C11	1.234 (3)	C8—C9	1.376 (4)
O3—C13	1.441 (3)	C8—H8A	0.9300
O3—H1O3	0.88 (4)	C9—C10	1.381 (4)
N1—C1	1.336 (3)	С9—Н9А	0.9300
N1-C5	1.342 (3)	C10—H10A	0.9300
N2-C10	1.336 (3)	C11—C12	1.522 (3)
N2—C6	1.356 (3)	C12—C13	1.529 (3)
N3—C12	1.484 (3)	C12—H12A	0.9800
N3—H1N3	0.85 (3)	C13—C14	1.498 (4)
N3—H2N3	0.80 (3)	C13—H13A	0.9800
C1—C2	1.377 (4)	C14—H14A	0.9600
C1—H1A	0.9300	C14—H14B	0.9600
C2—C3	1.373 (4)	C14—H14C	0.9600
C2—H2A	0.9300	O1W—H1W1	0.7668
C3—C4	1.373 (4)	O1W—H2W1	0.8436
С3—НЗА	0.9300		
O1—Cu1—N3	84.58 (8)	C4—C5—C6	124.1 (2)
O1—Cu1—N1	90.79 (7)	N2—C6—C7	121.7 (2)
N3—Cu1—N1	169.53 (9)	N2—C6—C5	114.61 (19)
O1—Cu1—N2	161.51 (8)	C7—C6—C5	123.7 (2)
N3—Cu1—N2	100.98 (8)	C6—C7—C8	119.0 (2)
N1—Cu1—N2	80.67 (8)	С6—С7—Н7А	120.5
O1—Cu1—Cl1	96.05 (6)	C8—C7—H7A	120.5
N3—Cu1—Cl1	93.51 (7)	C9—C8—C7	119.4 (2)
N1—Cu1—Cl1	96.32 (6)	C9—C8—H8A	120.3
N2—Cu1—Cl1	101.14 (5)	C7—C8—H8A	120.3

C11—O1—Cu1	114 81 (15)	C8—C9—C10	1189(2)
$C_{13} = O_{3} = H_{1}O_{3}$	105 (2)	C8—C9—H9A	120.5
C1 - N1 - C5	109(2) 1193(2)	C10-C9-H9A	120.5
C1 - N1 - Cu1	119.3(2) 124 71 (17)	N_{2} C_{10} C_{9}	120.3 122.3(2)
C_{5} N1 C_{11}	124.71(17) 116.00(15)	$N_2 = C_{10} = C_2$	122.5 (2)
C_{10} N2 C_{6}	110.00(13)	C_{0} C_{10} H_{10A}	110.9
$C_{10} = N_2 = C_0$	110.0(2) 127.17(16)	C_{2} C_{11} C_{1}	110.9 125.1(2)
$C_{10} = N_2 = C_{11}$	127.17(10) 114.02(15)	02 - 01 - 01	123.1(2)
$C_0 = N_2 = C_0 I$	114.05(15)	02 - C11 - C12	116.2(2)
C12 = N3 = C01	107.76 (15)	01 - C12 - C12	110.7(2)
C12—N3—H1N3	110.7 (17)	N3-C12-C11	111.47 (19)
Cul—N3—HIN3	110.6 (17)	N3—C12—C13	113.29 (19)
C12—N3—H2N3	115 (2)	C11—C12—C13	109.98 (19)
Cu1—N3—H2N3	110 (2)	N3—C12—H12A	107.3
H1N3—N3—H2N3	102 (3)	C11—C12—H12A	107.3
N1—C1—C2	121.9 (3)	C13—C12—H12A	107.3
N1—C1—H1A	119.0	O3—C13—C14	107.4 (2)
C2—C1—H1A	119.0	O3—C13—C12	109.4 (2)
C3—C2—C1	119.2 (3)	C14—C13—C12	113.2 (2)
C3—C2—H2A	120.4	O3—C13—H13A	108.9
C1—C2—H2A	120.4	C14—C13—H13A	108.9
C4—C3—C2	119.2 (2)	C12—C13—H13A	108.9
С4—С3—НЗА	120.4	C13—C14—H14A	109.5
С2—С3—НЗА	120.4	C13—C14—H14B	109.5
C3—C4—C5	119.1 (2)	H14A—C14—H14B	109.5
C3—C4—H4A	120.4	C13—C14—H14C	109.5
C5—C4—H4A	120.4	H14A—C14—H14C	109.5
N1—C5—C4	121.2 (2)	H14B—C14—H14C	109.5
N1—C5—C6	114.65 (19)	H1W1—O1W—H2W1	97.9
N3—Cu1—O1—C11	18.27 (17)	C1—N1—C5—C6	-179.8(2)
N1—Cu1—O1—C11	-171.14 (17)	Cu1—N1—C5—C6	0.9 (2)
N2—Cu1—O1—C11	126.9 (2)	C3—C4—C5—N1	-1.0(4)
Cl1—Cu1—O1—C11	-74.70 (16)	C3-C4-C5-C6	179.2 (2)
01-Cu1-N1-C1	17 4 (2)	$C10 - N^2 - C6 - C7$	01(3)
N_3 — Cu_1 — N_1 — C_1	81.0 (5)	Cu1 - N2 - C6 - C7	-177.65(17)
N_2 — Cu_1 — N_1 — C_1	-1790(2)	C10-N2-C6-C5	1800(2)
C_{11} C_{11} N_{1} N_{1} C_{1}	-7873(19)	C_{11} N2 C6 C5	22(2)
O1 Cu1 N1 C5	-163.29(16)	$N_1 = C_5 = C_6 = N_2$	-20(3)
$N_{1} = C_{11} = N_{1} = C_{2}$	-00.7(5)	C_{4} C5 C6 N2	2.0(3)
$N_2 = C_{11} = N_1 = C_2$	99.7(3)	$C_{4} C_{5} C_{6} C_{7}$	177.8(2)
$\frac{11}{1000000000000000000000000000000000$	0.25(15)	$NI = C_{3} = C_{6} = C_{7}$	177.0(2)
CII - CUI - NI - CS	100.54 (15)	C4-C5-C6-C7	-2.4(4)
OI = CuI = N2 = CI0	-115.5(3)	$N_2 - C_0 - C_7 - C_8$	-0.3(4)
N3 - Cu1 - N2 - C10	-9.4(2)	$C_{5} - C_{6} - C_{7} - C_{8}$	1/9.8 (2)
N1 - Cu1 - N2 - C10	-1/8.9(2)	$C_0 - C_1 - C_8 - C_9$	0.0 (4)
C11—Cu1—N2—C10	86.41 (19)	C/C8C9C10	0.6 (4)
01—Cu1—N2—C6	62.1 (3)	C6—N2—C10—C9	0.5 (4)
N3—Cu1—N2—C6	168.12 (15)	Cu1—N2—C10—C9	177.91 (18)
N1—Cu1—N2—C6	-1.37 (15)	C8—C9—C10—N2	-0.8 (4)

Cl1—Cu1—N2—C6	-96.04 (15)	Cu1—O1—C11—O2	167.49 (19)
O1—Cu1—N3—C12	-18.87 (15)	Cu1—O1—C11—C12	-12.2 (3)
N1—Cu1—N3—C12	-83.0 (5)	Cu1—N3—C12—C11	17.4 (2)
N2—Cu1—N3—C12	178.96 (15)	Cu1—N3—C12—C13	142.08 (18)
Cl1—Cu1—N3—C12	76.88 (15)	O2-C11-C12-N3	176.1 (2)
C5—N1—C1—C2	0.5 (4)	O1—C11—C12—N3	-4.2 (3)
Cu1—N1—C1—C2	179.73 (19)	O2—C11—C12—C13	49.6 (3)
N1—C1—C2—C3	-0.6 (4)	O1—C11—C12—C13	-130.7 (2)
C1—C2—C3—C4	-0.1 (4)	N3—C12—C13—O3	-57.7 (3)
C2—C3—C4—C5	0.9 (4)	C11—C12—C13—O3	67.8 (3)
C1—N1—C5—C4	0.4 (3)	N3-C12-C13-C14	62.1 (3)
Cu1—N1—C5—C4	-178.95 (17)	C11—C12—C13—C14	-172.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
01 <i>W</i> —H1 <i>W</i> 1···O3 ⁱ	0.77	2.12	2.875 (3)	168
O1 <i>W</i> —H2 <i>W</i> 1···Cl1 ⁱⁱ	0.84	2.38	3.213 (2)	170
N3—H1 <i>N</i> 3····O2 ⁱⁱⁱ	0.85 (3)	2.20(2)	2.978 (3)	152 (3)
N3—H2 <i>N</i> 3····O1 <i>W</i>	0.80 (3)	2.26 (3)	3.051 (3)	167 (3)
O3—H1O3····Cl1 ^{iv}	0.88 (4)	2.29 (4)	3.118 (2)	156 (3)
C3— $H3A$ ···O2 ^v	0.93	2.55	3.219 (4)	130
C4—H4A···Cl1 ^{vi}	0.93	2.67	3.555 (2)	160

Symmetry codes: (i) x+1, y, z; (ii) -x+1, y-1/2, -z+1/2; (iii) -x, y-1/2, -z+1/2; (iv) x-1, y, z; (v) x, -y+3/2, z-1/2; (vi) -x+1, -y+1, -z.