organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(2-Morpholino­eth­­oxy)phen­yl]acetamide monohydrate

aDepartment of Physics, Saveetha School of Engineering, Saveetha University, Chennai-5, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College (w) (Autonomous), Thanjavur-7, India, cCrystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli-24, India, and dUniversity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-14, India

(Received 16 December 2010; accepted 21 December 2010; online 8 January 2011)

In the title compound, C14H20N2O3·H2O, the geometry about the morpholine N atom implies sp3 hybridization. In the crystal, symmetry-related mol­ecules are linked by inter­molecular N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, forming infinite chains along the b axis. The chain structure is further stabilized by intra­molecular C—H⋯O inter­actions.

Related literature

For related structures, see: Ahmad et al. (2009[Ahmad, K., Thomas, N. F., Din, M. F., Awang, K. & Ng, S. W. (2009). Acta Cryst. E65, o1289.]); Fun et al. (2010[Fun, H.-K., Goh, J. H., Das, N. K., Sen, D. & Goswami, S. (2010). Acta Cryst. E66, o2500.]); Gowda et al. (2009a[Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o964.],b[Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o1039.]); Ma et al. (2009[Ma, P.-H., Zhou, K.-Z., Sun, M.-L., Zhao, X.-M. & Xiao, X. (2009). Acta Cryst. E65, o1314.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N2O3·H2O

  • Mr = 282.34

  • Triclinic, [P \overline 1]

  • a = 7.0560 (3) Å

  • b = 10.2859 (6) Å

  • c = 10.7234 (6) Å

  • α = 87.572 (3)°

  • β = 73.326 (3)°

  • γ = 79.876 (3)°

  • V = 733.92 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS GmbH, Karlsruhe, Germany.]) Tmin = 0.603, Tmax = 0.705

  • 17239 measured reflections

  • 3723 independent reflections

  • 2697 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.138

  • S = 1.05

  • 3723 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.860 (18) 2.157 (18) 3.0148 (17) 174.8 (14)
O6—H6A⋯O5 0.82 (2) 2.06 (3) 2.8640 (18) 165 (2)
O6—H6B⋯N2 0.86 (3) 2.11 (2) 2.9586 (17) 171 (2)
C4—H4⋯O1 0.93 (3) 2.32 2.890 (2) 120
Symmetry code: (i) x-2, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ZORTEP (Zsolnai, 1997[Zsolnai, L. (1997). ZORTEP97. University of Heidelberg, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acetamide is important in the field of medicine as many biologically active compounds are synthesized by using acetamide. Benzanilides and benzamides exhibit wide range of biological activity and are extensively used in organic synthesis. Various N–substituted benzamides exhibit potent antiemetic activity (Ma et al., 2009). As a part of studying the ring and side-chain substitutions on the crystal structures of chemically and biologically important class of compounds such as acetanilides, we report herein the crystal structure of the title compound(I). The conformation of the N—H bond in the structure of the title compound(I), is anti to the CO bond and to the phenyl ring as it has been observed in the related structures containing acetamide derivatives (Gowda et al.,2009a; Gowda et al.,2009b; Ahmad et al., 2009; Ma et al., 2009; Fun et al., 2010). Atom N1 has a trigonal configuration, the sum of three bond angles around them being 360°, whereas N2 atom is sp3 hybridized. The mean plane through the acetamide unit is inclined at a dihedral angle of 13.01 (11)° with respect to phenyl ring and 42.46 (8)° with respect to morpholine ring. The torsion angles and the least squares plane confirm that the morpholino ring is planar with the largest out-of-plane displacement of N2 (0.2458 (9) Å) and the phenyl ring is also planar with the root mean square deviation of 0.0034 Å.The morpholinoethoxy substitution at C6 [C4—C5—C6—O3=179.86 (13)°] is in anti-periplanar position. The exocyclic angle C2—N1—C3 [128.45 (11)°] deviates significantly from the normal value of 120°. This may be due to the intramolecular non-bonded interactions between atom O1 and H4 at C4 (O1······.H4 = 2.3159 Å). The widening of the exocyclic angle C5—C6—O3 [125.00 (12)°] deviate significantly from the normal value of 120° might be due to the consequence of repulsion between H5 and H9B at C9 (H5···H9B=2.3233 Å). The exocyclic angle O3—C9—C10 [103.45 (11)°] deviates by ca 6° from the tetrahedral value because of the intramolecular non-bonded interaction between O3 and H10A at C10 (O3···H10A = 2.3848 Å). The widening of the exocyclic angle C9—C10—N2[113.88 (11)°] from the normal value of 109° may be due to the repulsion between H9B and H11A [H9B···H11A = 2.3257 Å]. In the crystal structure, symmetry related molecules are linked by linear intermolecular N—H···O, O—H···O and O—H···N hydrogen bonds to form an infinite one-dimensional chain along the b axis.

Related literature top

For related structures, see: Ahmad et al. (2009); Fun et al. (2010); Gowda et al. (2009a,b); Ma et al. (2009).

Experimental top

N-[4-Hydroxyphenyl]acetamide (1.0 g, 6.62 mmol) was dissolved in ethyl methyl ketone (100 ml) and anhydrous potassium carbonate (3.0–4.0 g) was added. The reaction mixture was refluxed for 2 hrs. To it 4-(2-chloroethyl) morpholine hydrochloride (1.0 g, 6.68 mmol) was added and the reaction mixture was further refluxed with continuous stirring for 7 h. Reaction was monitored with the help of TLC. The slurry obtained was filtered, the solvent was removed under reduced pressure and the solid obtained was crystallized from a mixture of ethyl acetate and ether to afford the title compound(I) (1.43 g, 81.81%), mp 100–102°C.

Refinement top

Water H atoms were located in a difference Fourier maps and were included in the structure-factor calculations and isotropically refined. All the other H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93(aromatic),0.96(methyl) and 0.97Å (methylene),N—H = 0.86Å and refined using a riding model with Uiso(H) = 1.2Ueq or 1.5Ueq (parent atom).In the absence of significant anomalous scattering effects,Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ZORTEP (Zsolnai, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound with intermolecular N—H···O, O—H···O and O—H···N hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. Crystal Packing of the title compound viewed along the b axis.
N-[4-(2-Morpholinoethoxy)phenyl]acetamide monohydrate top
Crystal data top
C14H20N2O3·H2OV = 733.92 (7) Å3
Mr = 282.34Z = 2
Triclinic, P1F(000) = 304
a = 7.0560 (3) ÅDx = 1.278 Mg m3
b = 10.2859 (6) ÅMo Kα radiation, λ = 0.71073 Å
c = 10.7234 (6) ŵ = 0.09 mm1
α = 87.572 (3)°T = 293 K
β = 73.326 (3)°Block, colourless
γ = 79.876 (3)°0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3723 independent reflections
Radiation source: fine-focus sealed tube2697 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
multi–scanθmax = 28.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 69
Tmin = 0.603, Tmax = 0.705k = 1313
17239 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.1005P]
where P = (Fo2 + 2Fc2)/3
3723 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H20N2O3·H2Oγ = 79.876 (3)°
Mr = 282.34V = 733.92 (7) Å3
Triclinic, P1Z = 2
a = 7.0560 (3) ÅMo Kα radiation
b = 10.2859 (6) ŵ = 0.09 mm1
c = 10.7234 (6) ÅT = 293 K
α = 87.572 (3)°0.30 × 0.25 × 0.20 mm
β = 73.326 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3723 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2697 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.705Rint = 0.028
17239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
3723 reflectionsΔρmin = 0.19 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0978 (2)0.87498 (15)0.43055 (17)0.0553 (4)
H1A1.19060.82710.41030.083*
H1B1.07260.94510.36920.083*
H1C1.15400.91150.51690.083*
C20.9045 (2)0.78313 (14)0.42318 (14)0.0469 (3)
C30.54229 (18)0.74747 (11)0.30094 (12)0.0375 (3)
C40.47022 (19)0.64413 (12)0.37122 (13)0.0424 (3)
H40.55570.61670.44720.051*
C50.27177 (19)0.58104 (12)0.32949 (13)0.0429 (3)
H50.22460.51230.37780.051*
C60.14488 (19)0.62023 (13)0.21659 (14)0.0455 (3)
C70.2163 (2)0.72379 (15)0.14592 (15)0.0541 (4)
H70.13110.75060.06960.065*
C80.4117 (2)0.78676 (13)0.18802 (14)0.0465 (3)
H80.45750.85670.14030.056*
C90.1304 (2)0.45012 (14)0.22585 (16)0.0514 (4)
H9A0.05720.37900.22430.062*
H9B0.12410.46760.31520.062*
C100.3450 (2)0.41666 (14)0.14270 (15)0.0492 (3)
H10A0.34670.41950.05190.059*
H10B0.41830.48360.15640.059*
C110.4840 (2)0.28395 (14)0.29775 (15)0.0494 (3)
H11A0.35640.29870.36490.059*
H11B0.55640.35420.30400.059*
C120.6040 (2)0.15244 (16)0.31893 (16)0.0588 (4)
H12A0.62790.15260.40360.071*
H12B0.52760.08290.31800.071*
C130.7573 (2)0.12794 (15)0.09625 (16)0.0567 (4)
H13A0.68110.05940.09170.068*
H13B0.88510.10960.02960.068*
C140.6448 (2)0.25923 (15)0.07117 (15)0.0516 (4)
H14A0.72180.32790.07410.062*
H14B0.62570.25900.01490.062*
N10.74111 (16)0.81708 (11)0.33615 (12)0.0437 (3)
N20.44861 (14)0.28678 (10)0.16958 (11)0.0406 (3)
O10.89898 (17)0.68586 (13)0.49128 (14)0.0801 (4)
O30.05217 (15)0.56571 (11)0.16672 (11)0.0655 (3)
O50.79129 (15)0.12632 (12)0.22060 (12)0.0651 (3)
O61.21505 (19)0.07084 (12)0.18771 (14)0.0651 (3)
H10.757 (2)0.8870 (18)0.2907 (16)0.055 (4)*
H6A1.095 (4)0.100 (2)0.202 (2)0.081 (6)*
H6B1.275 (4)0.138 (2)0.177 (2)0.092 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0363 (7)0.0512 (8)0.0731 (10)0.0017 (6)0.0114 (6)0.0060 (7)
C20.0388 (7)0.0432 (7)0.0555 (8)0.0029 (5)0.0119 (6)0.0080 (6)
C30.0352 (6)0.0306 (6)0.0449 (7)0.0010 (5)0.0115 (5)0.0012 (5)
C40.0393 (6)0.0372 (6)0.0455 (7)0.0012 (5)0.0082 (5)0.0086 (5)
C50.0402 (6)0.0348 (6)0.0498 (7)0.0009 (5)0.0123 (5)0.0101 (5)
C60.0352 (6)0.0399 (7)0.0545 (8)0.0027 (5)0.0085 (5)0.0079 (6)
C70.0410 (7)0.0529 (8)0.0569 (9)0.0004 (6)0.0037 (6)0.0215 (7)
C80.0418 (7)0.0398 (7)0.0541 (8)0.0004 (5)0.0136 (6)0.0156 (6)
C90.0386 (7)0.0436 (7)0.0610 (9)0.0055 (5)0.0063 (6)0.0141 (6)
C100.0376 (7)0.0450 (7)0.0563 (8)0.0026 (5)0.0073 (6)0.0121 (6)
C110.0454 (7)0.0464 (7)0.0543 (8)0.0016 (6)0.0163 (6)0.0011 (6)
C120.0510 (8)0.0591 (9)0.0628 (9)0.0069 (7)0.0214 (7)0.0086 (7)
C130.0365 (7)0.0506 (8)0.0714 (10)0.0036 (6)0.0033 (6)0.0010 (7)
C140.0355 (7)0.0531 (8)0.0559 (8)0.0011 (6)0.0027 (6)0.0044 (6)
N10.0365 (5)0.0343 (6)0.0546 (7)0.0021 (4)0.0099 (5)0.0088 (5)
N20.0289 (5)0.0398 (6)0.0479 (6)0.0017 (4)0.0076 (4)0.0042 (4)
O10.0478 (6)0.0771 (8)0.0989 (10)0.0024 (6)0.0066 (6)0.0474 (7)
O30.0381 (5)0.0613 (7)0.0755 (7)0.0121 (5)0.0012 (5)0.0308 (6)
O50.0370 (5)0.0686 (7)0.0857 (8)0.0073 (5)0.0218 (5)0.0077 (6)
O60.0418 (6)0.0487 (6)0.1051 (10)0.0033 (5)0.0256 (6)0.0132 (6)
Geometric parameters (Å, º) top
C1—C21.5007 (19)C9—H9B0.9700
C1—H1A0.9600C10—N21.4655 (16)
C1—H1B0.9600C10—H10A0.9700
C1—H1C0.9600C10—H10B0.9700
C2—O11.2151 (17)C11—N21.4638 (18)
C2—N11.3483 (17)C11—C121.510 (2)
C3—C41.3851 (17)C11—H11A0.9700
C3—C81.3883 (18)C11—H11B0.9700
C3—N11.4103 (15)C12—O51.4250 (19)
C4—C51.3884 (17)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.3760 (19)C13—O51.420 (2)
C5—H50.9300C13—C141.497 (2)
C6—O31.3632 (15)C13—H13A0.9700
C6—C71.3873 (18)C13—H13B0.9700
C7—C81.3707 (18)C14—N21.4695 (16)
C7—H70.9300C14—H14A0.9700
C8—H80.9300C14—H14B0.9700
C9—O31.4236 (16)N1—H10.860 (18)
C9—C101.5079 (18)O6—H6A0.82 (2)
C9—H9A0.9700O6—H6B0.86 (3)
C2—C1—H1A109.5N2—C10—H10B108.8
C2—C1—H1B109.5C9—C10—H10B108.8
H1A—C1—H1B109.5H10A—C10—H10B107.7
C2—C1—H1C109.5N2—C11—C12110.39 (12)
H1A—C1—H1C109.5N2—C11—H11A109.6
H1B—C1—H1C109.5C12—C11—H11A109.6
O1—C2—N1123.54 (13)N2—C11—H11B109.6
O1—C2—C1121.51 (13)C12—C11—H11B109.6
N1—C2—C1114.95 (12)H11A—C11—H11B108.1
C4—C3—C8118.57 (11)O5—C12—C11111.16 (13)
C4—C3—N1124.49 (12)O5—C12—H12A109.4
C8—C3—N1116.94 (11)C11—C12—H12A109.4
C3—C4—C5120.70 (12)O5—C12—H12B109.4
C3—C4—H4119.6C11—C12—H12B109.4
C5—C4—H4119.6H12A—C12—H12B108.0
C6—C5—C4120.00 (12)O5—C13—C14110.89 (13)
C6—C5—H5120.0O5—C13—H13A109.5
C4—C5—H5120.0C14—C13—H13A109.5
O3—C6—C5125.00 (12)O5—C13—H13B109.5
O3—C6—C7115.48 (12)C14—C13—H13B109.5
C5—C6—C7119.51 (12)H13A—C13—H13B108.0
C8—C7—C6120.36 (12)N2—C14—C13110.03 (11)
C8—C7—H7119.8N2—C14—H14A109.7
C6—C7—H7119.8C13—C14—H14A109.7
C7—C8—C3120.84 (12)N2—C14—H14B109.7
C7—C8—H8119.6C13—C14—H14B109.7
C3—C8—H8119.6H14A—C14—H14B108.2
O3—C9—C10103.45 (11)C2—N1—C3128.45 (11)
O3—C9—H9A111.1C2—N1—H1118.1 (11)
C10—C9—H9A111.1C3—N1—H1113.3 (11)
O3—C9—H9B111.1C11—N2—C10111.50 (11)
C10—C9—H9B111.1C11—N2—C14107.90 (11)
H9A—C9—H9B109.0C10—N2—C14108.26 (10)
N2—C10—C9113.88 (11)C6—O3—C9118.64 (10)
N2—C10—H10A108.8C13—O5—C12109.68 (11)
C9—C10—H10A108.8H6A—O6—H6B106 (2)
C8—C3—C4—C50.1 (2)C9—C10—N2—C1168.97 (16)
N1—C3—C4—C5179.93 (12)C9—C10—N2—C14172.48 (13)
C3—C4—C5—C60.6 (2)C13—C14—N2—C1158.35 (15)
C4—C5—C6—O3179.86 (13)C13—C14—N2—C10179.16 (13)
C4—C5—C6—C70.7 (2)C5—C6—O3—C97.5 (2)
O3—C6—C7—C8179.30 (14)C7—C6—O3—C9173.29 (14)
C5—C6—C7—C80.0 (2)C10—C9—O3—C6177.79 (13)
C6—C7—C8—C30.7 (2)C14—C13—O5—C1259.49 (16)
C4—C3—C8—C70.8 (2)C11—C12—O5—C1358.19 (17)
N1—C3—C8—C7179.40 (13)O1—C2—N1—C34.2 (3)
O3—C9—C10—N2169.50 (12)C1—C2—N1—C3175.68 (13)
N2—C11—C12—O558.19 (16)C2—N1—C3—C415.1 (2)
O5—C13—C14—N260.57 (16)C2—N1—C3—C8165.11 (14)
O1—C2—N1—C34.2 (3)C7—C6—O3—C9173.29 (14)
C1—C2—N1—C3175.68 (13)C5—C6—O3—C97.5 (2)
C4—C3—N1—C215.1 (2)C6—O3—C9—C10177.79 (13)
C8—C3—N1—C2165.11 (14)O3—C9—C10—N2169.50 (12)
C12—C11—N2—C10175.90 (11)C9—C10—N2—C1168.97 (16)
C12—C11—N2—C1457.14 (15)C9—C10—N2—C14172.48 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.860 (18)2.157 (18)3.0148 (17)174.8 (14)
O6—H6A···O50.82 (2)2.06 (3)2.8640 (18)165 (2)
O6—H6B···N20.86 (3)2.11 (2)2.9586 (17)171 (2)
C4—H4···O10.932.322.8896 (19)120
Symmetry code: (i) x2, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H20N2O3·H2O
Mr282.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0560 (3), 10.2859 (6), 10.7234 (6)
α, β, γ (°)87.572 (3), 73.326 (3), 79.876 (3)
V3)733.92 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.603, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
17239, 3723, 2697
Rint0.028
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.138, 1.05
No. of reflections3723
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and ZORTEP (Zsolnai, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.860 (18)2.157 (18)3.0148 (17)174.8 (14)
O6—H6A···O50.82 (2)2.06 (3)2.8640 (18)165 (2)
O6—H6B···N20.86 (3)2.11 (2)2.9586 (17)171 (2)
C4—H4···O10.932.322.8896 (19)120
Symmetry code: (i) x2, y+1, z.
 

Acknowledgements

VG thanks the UGC, India, for financial assistance under Minor Research Project (2010–2011) and also thanks the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai, for the data collection. PP thanks the Research Fund of the University Institute of Pharmaceutical Sciences for its support to this work.

References

First citationAhmad, K., Thomas, N. F., Din, M. F., Awang, K. & Ng, S. W. (2009). Acta Cryst. E65, o1289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Das, N. K., Sen, D. & Goswami, S. (2010). Acta Cryst. E66, o2500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o964.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, P.-H., Zhou, K.-Z., Sun, M.-L., Zhao, X.-M. & Xiao, X. (2009). Acta Cryst. E65, o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZsolnai, L. (1997). ZORTEP97. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds