

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Furan-2-yl)(5-hydroxy-3-methyl-5phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)methanone

Hadi Kargar,^a Reza Kia,^{b,c}* Majid Moghadamm^d and Muhammad Nawaz Tahir^e*

^aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, ^bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^dDepartment of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran, and ^eDepartment of Physics, University of Sargodha, Punjab, Pakistan

Correspondence e-mail: rkia@srbiau.ac.ir, zsrkk@yahoo.com, dmntahir_uos@yahoo.com

Received 2 January 2011; accepted 7 January 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.042; wR factor = 0.106; data-to-parameter ratio = 11.3.

In the title compound, $C_{15}H_{14}N_2O_3$, the furan ring is disordered over two positions with a refined site-occupancy ratio of 0.587 (11):0.413 (11). The mean plane of the approximately planar pyrazole ring [maximum deviation = 0.0469 (11) Å] makes dihedral angles of 86.13 (11) and 4.5 (5)° with the phenyl and furan rings, respectively. The dihedral angle between the phenyl ring and the major component of the disordered furan ring is 81.8 (5)°. The molecule shows chirality in one of the carbon atoms but the centrosymmetric space group means the compound is a racemic mixture. In the crystal, intermolecular $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds connect the molecules. The crystal structure is further stabilized by $\pi-\pi$ stacking interactions with a centroid– centroid distance of 3.8646 (12) Å.

Related literature

For standard bond lengths, see: Allen et al. (1987).

OH N

V = 1379.0 (2) Å³

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.28 \times 0.22 \times 0.16 \text{ mm}$

10534 measured reflections

2495 independent reflections

1615 reflections with $I > 2\sigma(I)$

Z = 4

T = 296 K

 $R_{\rm int} = 0.044$

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{14}N_2O_3\\ M_r = 270.28\\ \text{Monoclinic, } P2_1/n\\ a = 10.6844 \ (10) \text{ Å}\\ b = 8.4700 \ (7) \text{ Å}\\ c = 15.3022 \ (16) \text{ Å}\\ \beta = 95.266 \ (3)^{\circ} \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.975, T_{max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	10 restraints
$wR(F^2) = 0.106$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.12 \ {\rm e} \ {\rm \AA}^{-3}$
2495 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
221 parameters	

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 \cdots O2^{i}$ $C14 - H14A \cdots O1^{ii}$	0.82 0.93	2.02 2.36	2.7786 (18) 3.271 (9)	153 168
	1 1 1 2	. (") 1	. 5 1	

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) $x - \frac{1}{2}$, $-y + \frac{5}{2}$, $z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HK thanks PNU for financial support. RK thanks the Science and Branch, Islamic Azad University. MM thanks the University of Isfahan for the facilities and MNT thanks the University of Sargodha for the research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2253).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o367 [doi:10.1107/S1600536811000948]

(Furan-2-yl)(5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)methanone

Hadi Kargar, Reza Kia, Majid Moghadamm and Muhammad Nawaz Tahir

S1. Comment

The asymmetric unit of the title compound, Fig. 1, comprises a substituted pyrazole. The furane ring shows flip-flop rotational disorder in two positions with refined site occupancy ratio of 0.587 (11)/0.413 (11). The mean plane of the approximately planar pyrazole ring [maximum deviation = 0.0469 (11)Å] makes dihedral angles of 86.13 (11) and 4.5 (5)° with phenyl and the major component of the furane rings, respectively. The dihedral angle between the phenyl ring and the major component of the disordered furane ring is 81.8 (5)°.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds connect the components of the structure. The crystal structure is further stabilized by π – π stacking interactions [Cg1··· $Cg2^{iii} = 3.8646$ (12)Å, (iii) x, y, z; Cg1 and Cg2 are the centroid of pyrazole and phenyl rings, respectively].

S2. Experimental

The title compound was synthesized by adding furan-2-carbohydrazide (2 mmol) to a solution of benzoylacetone (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered and the white single crystals suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

S3. Refinement

The H atoms of hydroxy group was located in a difference Fourier map and constraied to refine on the parent atom with $U_{iso}(H) = 1.5 U_{eq}(O)$, see Table 1. The remaining H atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding-model approximation with $U_{iso}(H) = 1.2$ or $1.5 U_{eq}(C)$. A rotating group model was used for the methyl group. At first similarity and a series of distant restraints were applied to the furane rings but after refinement converged, only the similarity restraints were removed.

Figure 1

The molecular of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The open bonds show the minor component of disordered furane ring.

Figure 2

The packing of the compound viewed along the *b*-axis showing connecting of molecules through hydrogen bonds. All H atoms removed except those involved in the hydrogen bonds. Hydrogen bonds are shown as dashed lines.

(Furan-2-yl)(5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl)methanone

Crystal data	
$C_{15}H_{14}N_2O_3$	Monoclinic, $P2_1/n$
$M_r = 270.28$	Hall symbol: -P 2yn

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.5 - 29.5^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, white

 $R_{\rm int} = 0.044$

 $h = -12 \rightarrow 12$

 $k = -10 \rightarrow 10$

 $l = -18 \rightarrow 18$

 $0.28\times0.22\times0.16~mm$

10534 measured reflections

 $\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$

2495 independent reflections

1615 reflections with $I > 2\sigma(I)$

T = 296 K

Cell parameters from 2245 reflections

a = 10.6844 (10) Å b = 8.4700 (7) Å c = 15.3022 (16) Å $\beta = 95.266 (3)^{\circ}$ $V = 1379.0 (2) \text{ Å}^{3}$ Z = 4 F(000) = 568 $D_{x} = 1.302 \text{ Mg m}^{-3}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.975, T_{\max} = 0.985$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.042$ H-atom parameters constrained $wR(F^2) = 0.106$ $w = 1/[\sigma^2(F_o^2) + (0.037P)^2 + 0.1913P]$ S = 1.03where $P = (F_0^2 + 2F_c^2)/3$ 2495 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 221 parameters $\Delta \rho_{\rm max} = 0.12 \ {\rm e} \ {\rm \AA}^{-3}$ 10 restraints $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXTL (Sheldrick, Primary atom site location: structure-invariant 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Extinction coefficient: 0.0132 (14) Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.39871 (12)	1.05521 (16)	0.13086 (9)	0.0564 (4)	
H1	0.4501	1.0373	0.0954	0.085*	
O2	0.37249 (12)	0.97468 (15)	-0.05954 (9)	0.0540 (4)	
N1	0.11933 (14)	1.14352 (17)	0.03952 (12)	0.0530 (5)	
N2	0.22305 (14)	1.04995 (17)	0.02389 (10)	0.0463 (4)	
C1	0.30125 (18)	0.8002 (2)	0.09202 (12)	0.0467 (5)	
C2	0.4147 (2)	0.7260 (2)	0.10936 (14)	0.0605 (6)	

H2	0.4856	0.7842	0.1289	0.073*	
C3	0.4242 (3)	0.5637 (3)	0.09779 (18)	0.0803 (8)	
H3	0.5016	0.5142	0.1091	0.096*	
C4	0.3208 (3)	0.4768 (3)	0.0700 (2)	0.0916 (9)	
H4	0.3272	0.3682	0.0630	0.110*	
C5	0.2085 (3)	0.5500 (3)	0.0528 (2)	0.0909 (9)	
Н5	0.1378	0.4910	0.0337	0.109*	
C6	0.1979 (2)	0.7105 (2)	0.06307 (16)	0.0704 (7)	
H6	0.1203	0.7591	0.0504	0.085*	
C7	0.28639 (17)	0.9765 (2)	0.10487 (13)	0.0455 (5)	
C8	0.19276 (18)	1.0218 (2)	0.17109 (14)	0.0569 (6)	
H8A	0.1500	0.9292	0.1909	0.068*	
H8B	0.2350	1.0751	0.2216	0.068*	
С9	0.10301 (18)	1.1294 (2)	0.12079 (15)	0.0545 (5)	
C10	0.0004 (2)	1.2167 (3)	0.15998 (16)	0.0818 (8)	
H10A	-0.0483	1.1441	0.1912	0.123*	
H10B	-0.0530	1.2667	0.1142	0.123*	
H10C	0.0363	1.2955	0.1998	0.123*	
C11	0.27454 (17)	1.0491 (2)	-0.05355 (13)	0.0436 (5)	
C12	0.21378 (16)	1.1311 (2)	-0.12971 (12)	0.0497 (5)	
C13	0.1182 (12)	1.2333 (18)	-0.1440 (6)	0.071 (3)	0.587 (11)
H13A	0.0724	1.2811	-0.1024	0.085*	0.587 (11)
C14	0.1026 (12)	1.2525 (13)	-0.2367 (6)	0.071 (3)	0.587 (11)
H14A	0.0360	1.3042	-0.2680	0.086*	0.587 (11)
C15	0.1996 (12)	1.1838 (19)	-0.2715 (7)	0.076 (3)	0.587 (11)
H15A	0.2191	1.1926	-0.3293	0.092*	0.587 (11)
O3	0.2646 (7)	1.0983 (13)	-0.2065 (3)	0.072 (2)	0.587 (11)
C13X	0.2557 (15)	1.136 (2)	-0.2096 (5)	0.060 (4)	0.413 (11)
H13B	0.3305	1.0955	-0.2267	0.072*	0.413 (11)
C14X	0.1599 (14)	1.2180 (19)	-0.2623 (9)	0.058 (3)	0.413 (11)
H14B	0.1533	1.2220	-0.3233	0.070*	0.413 (11)
C15X	0.0807 (19)	1.2883 (19)	-0.2115 (8)	0.079 (4)	0.413 (11)
H15B	0.0241	1.3695	-0.2263	0.095*	0.413 (11)
O3X	0.1028 (10)	1.212 (2)	-0.1327 (7)	0.078 (4)	0.413 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	1/22	T 733	12		
		0	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0494 (8)	0.0629 (8)	0.0569 (10)	-0.0070 (7)	0.0048 (7)	-0.0151 (7)
O2	0.0469 (8)	0.0640 (9)	0.0518 (9)	0.0075 (7)	0.0087 (7)	0.0015 (7)
N1	0.0495 (10)	0.0503 (9)	0.0598 (12)	0.0080 (8)	0.0091 (9)	-0.0036 (8)
N2	0.0456 (9)	0.0460 (9)	0.0478 (10)	0.0066 (7)	0.0073 (8)	0.0019 (7)
C1	0.0492 (12)	0.0482 (11)	0.0430 (12)	0.0013 (9)	0.0049 (9)	0.0042 (9)
C2	0.0586 (14)	0.0577 (13)	0.0655 (15)	0.0065 (11)	0.0072 (11)	0.0096 (11)
C3	0.0848 (18)	0.0643 (15)	0.094 (2)	0.0285 (14)	0.0197 (15)	0.0189 (14)
C4	0.117 (2)	0.0473 (14)	0.112 (2)	0.0000 (16)	0.020 (2)	0.0009 (14)
C5	0.095 (2)	0.0573 (15)	0.118 (3)	-0.0145 (14)	-0.0025 (18)	-0.0073 (15)
C6	0.0640 (15)	0.0533 (13)	0.0916 (19)	-0.0053 (11)	-0.0059 (13)	-0.0008 (12)

C7	0.0431 (11)	0.0502 (11)	0.0433 (12)	-0.0004 (9)	0.0034 (9)	-0.0034 (9)
C8	0.0566 (13)	0.0637 (13)	0.0514 (13)	0.0015 (10)	0.0109 (10)	-0.0045 (10)
C9	0.0485 (12)	0.0564 (12)	0.0592 (15)	0.0021 (10)	0.0083 (11)	-0.0080 (11)
C10	0.0691 (16)	0.1043 (19)	0.0746 (18)	0.0238 (14)	0.0214 (13)	-0.0108 (14)
C11	0.0408 (11)	0.0404 (10)	0.0495 (13)	-0.0054 (9)	0.0034 (9)	-0.0008 (9)
C12	0.0458 (12)	0.0492 (12)	0.0540 (14)	-0.0057 (10)	0.0041 (10)	0.0066 (10)
C13	0.063 (5)	0.076 (5)	0.075 (7)	0.026 (4)	0.016 (4)	0.030 (5)
C14	0.070 (7)	0.082 (6)	0.060 (6)	0.034 (5)	-0.006 (5)	0.013 (6)
C15	0.062 (7)	0.118 (10)	0.050 (4)	-0.013 (4)	0.009 (4)	0.022 (5)
O3	0.075 (3)	0.082 (6)	0.057 (3)	-0.007 (2)	-0.001 (2)	0.0081 (18)
C13X	0.075 (7)	0.050 (6)	0.061 (8)	0.000 (4)	0.032 (7)	0.006 (4)
C14X	0.062 (12)	0.065 (8)	0.051 (6)	0.005 (7)	0.016 (5)	0.011 (5)
C15X	0.106 (9)	0.073 (7)	0.059 (7)	0.033 (5)	0.009 (6)	0.010 (6)
O3X	0.066 (5)	0.100 (7)	0.067 (5)	0.015 (4)	0.003 (4)	0.038 (4)

Geometric parameters (Å, °)

01—C7	1.398 (2)	C8—H8B	0.9700	
01—H1	0.8200	C9—C10	1.493 (3)	
O2—C11	1.232 (2)	C10—H10A	0.9600	
N1—C9	1.277 (2)	C10—H10B	0.9600	
N1—N2	1.401 (2)	C10—H10C	0.9600	
N2-C11	1.352 (2)	C11—C12	1.457 (2)	
N2—C7	1.492 (2)	C12—C13X	1.3407 (11)	
C1—C2	1.370 (3)	C12—C13	1.3407 (10)	
C1—C6	1.380 (3)	C12—O3	1.3670 (10)	
C1—C7	1.516 (3)	C12—O3X	1.3677 (10)	
C2—C3	1.390 (3)	C13—C14	1.4230 (11)	
С2—Н2	0.9300	C13—H13A	0.9300	
C3—C4	1.363 (3)	C14—C15	1.3407 (10)	
С3—Н3	0.9300	C14—H14A	0.9300	
C4—C5	1.355 (4)	C15—O3	1.3679 (10)	
C4—H4	0.9300	C15—H15A	0.9300	
C5—C6	1.374 (3)	C13X—C14X	1.4230 (10)	
С5—Н5	0.9300	C13X—H13B	0.9300	
С6—Н6	0.9300	C14X—C15X	1.3406 (10)	
C7—C8	1.536 (3)	C14X—H14B	0.9300	
С8—С9	1.486 (3)	C15X—O3X	1.3679 (10)	
C8—H8A	0.9700	C15X—H15B	0.9300	
C7—O1—H1	109.5	C9—C10—H10A	109.5	
C9—N1—N2	107.11 (16)	C9—C10—H10B	109.5	
C11—N2—N1	123.00 (16)	H10A—C10—H10B	109.5	
C11—N2—C7	122.41 (15)	C9—C10—H10C	109.5	
N1—N2—C7	113.55 (15)	H10A—C10—H10C	109.5	
C2—C1—C6	118.50 (19)	H10B-C10-H10C	109.5	
C2—C1—C7	121.90 (18)	O2-C11-N2	118.98 (17)	
C6—C1—C7	119.60 (17)	O2—C11—C12	120.23 (17)	

C1—C2—C3	120.2 (2)	N2—C11—C12	120.77 (16)
С1—С2—Н2	119.9	C13X—C12—C13	98.3 (7)
С3—С2—Н2	119.9	C13—C12—O3	110.4 (5)
C4—C3—C2	120.5 (2)	C13X—C12—O3X	108.3 (7)
С4—С3—Н3	119.8	03—C12—O3X	119.0 (6)
C2—C3—H3	119.8	C13X - C12 - C11	125.7 (6)
$C_{2} = C_{2} = C_{3}$	119.5 (2)	C_{13} C_{12} C_{11}	125.7(0) 135.6(4)
$C_5 - C_4 - H_4$	120.3	03-C12-C11	133.0(1) 114.0(4)
$C_3 = C_4 = H_4$	120.3	03 - 012 - 011	114.0(4)
$C_3 = C_4 = 114$	120.3 120.7(2)	$C_{12} = C_{12} = C_{14}$	120.0(3)
C4 = C5 = U5	120.7 (2)	C12 - C13 - C14	104.7 (0)
C4—C5—H5	119.6	C12—C13—H13A	127.7
С6—С5—Н5	119.6	С14—С13—Н13А	127.7
C5—C6—C1	120.7 (2)	C15—C14—C13	108.8 (9)
С5—С6—Н6	119.7	C15—C14—H14A	125.6
C1—C6—H6	119.7	C13—C14—H14A	125.6
O1—C7—N2	110.47 (15)	C14—C15—O3	107.5 (8)
O1—C7—C1	114.13 (15)	C14—C15—H15A	126.3
N2—C7—C1	110.34 (15)	O3—C15—H15A	126.3
O1—C7—C8	106.70 (15)	C12—O3—C15	107.6 (7)
N2—C7—C8	99.82 (14)	C12—C13X—C14X	104.4 (8)
C1—C7—C8	114.43 (16)	C12—C13X—H13B	127.8
C9—C8—C7	103.87 (17)	C14X—C13X—H13B	127.8
C9—C8—H8A	111.0	C15X - C14X - C13X	110.3 (13)
C7-C8-H8A	111.0	C15X - C14X - H14B	124.8
C9-C8-H8B	111.0	C13X - C14X - H14B	124.8
C7 - C8 - H8B	111.0	C14X - C15X - O3X	121.0 103 6 (11)
	100.0	$C_{14X} = C_{15X} = 0_{5X}$	103.0 (11)
$H_0A - C_0 - H_0B$	109.0	C14A - C15A - H15B	120.2
NI	114.99 (17)		128.2
NI-C9-C10	121.0 (2)	C12-O3X-C15X	110.2 (10)
C8—C9—C10	124.0 (2)		
C9—N1—N2—C11	-173.27 (17)	C7—N2—C11—C12	-175.89 (16)
C9—N1—N2—C7	-4.7 (2)	O2—C11—C12—C13X	-0.8 (13)
C6—C1—C2—C3	0.0 (3)	N2-C11-C12-C13X	-179.1(12)
C7—C1—C2—C3	179,19 (19)	02-C11-C12-C13	-171.2(12)
C1-C2-C3-C4	-0.7(4)	N2-C11-C12-C13	10.5 (13)
$C^2 - C^3 - C^4 - C^5$	0.7(4)	02-C11-C12-03	87(6)
C_{3} C_{4} C_{5} C_{6}	-0.1(4)	$N_2 - C_{11} - C_{12} - C_{3}$	-1696(5)
C_{4} C_{5} C_{6} C_{1}	-0.6(4)	$\Omega_2 C11 C12 O3X$	109.0(9)
$C_1 = C_2 = C_1 = C_2 = C_1 = C_2$	0.0(4)	$N_2 = C_{11} = C_{12} = O_3 X$	-10(11)
$C_2 - C_1 - C_0 - C_3$	$179 \in (2)$	12 - 01 - 012 - 05X	1.0(11) 12.4(15)
$C_{1} = C_{1} = C_{2} = C_{3}$	-178.0(2)	C13A - C12 - C13 - C14	13.4(13)
$U_{11} - N_2 - U_1 - U_1$	04.3(2)	03 - 012 - 013 - 014	3.0 (10)
$\frac{1}{1} - \frac{1}{2} - \frac{1}$	-104.43(10)	03A - 012 - 013 - 014	-128 (6)
CII - N2 - C/ - CI	-62.9(2)	C11 - C12 - C13 - C14	-1/4.5(6)
N1 - N2 - C' - C1	128.44 (15)	C12 - C13 - C14 - C15	-9.9 (18)
C11—N2—C7—C8	176.34 (16)	C13—C14—C15—O3	10.3 (19)
N1—N2—C7—C8	7.66 (18)	C13X—C12—O3—C15	-33 (5)
C2-C1-C7-O1	3.3 (3)	C13—C12—O3—C15	0.5 (15)

C6-C1-C7-O1 $C2-C1-C7-N2$ $C6-C1-C7-N2$ $C2-C1-C7-C8$ $C6-C1-C7-C8$ $O1-C7-C8-C9$ $N2-C7-C8-C9$ $N2-N1-C9-C8$ $N2-N1-C9-C10$ $C7-C8-C9-N1$ $C7-C8-C9-N1$ $C7-C8-C9-C10$ $N1-N2-C11-O2$ $C7-N2-C11-O2$	-177.48 (18) 128.39 (19) -52.4 (2) -120.0 (2) 59.2 (2) 107.68 (17) -7.31 (18) -125.09 (17) -0.9 (2) 179.00 (18) 5.7 (2) -174.22 (19) 173.43 (16) 5.8 (2)	O3X—C12—O3—C15 C11—C12—O3—C15 C14—C15—O3—C12 C13—C12—C13X—C14X O3—C12—C13X—C14X O3—C12—C13X—C14X C11—C12—C13X—C14X C12—C13X—C14X—C15X C13X—C14X—C15X—O3X C13X—C12—O3X—C15X C13—C12—O3X—C15X O3—C12—O3X—C15X C11—C12—O3X—C15X C14X—C15X—O3X—C12	$11.1 (13) \\ -179.5 (9) \\ -6.8 (17) \\ -11.5 (17) \\ 137 (6) \\ -3 (2) \\ 175.3 (9) \\ 14 (2) \\ -18 (2) \\ -8 (2) \\ 32 (5) \\ -18.4 (19) \\ 173.5 (11) \\ 16 (2)$
N1—N2—C11—C12	5.8 (2) -8.3 (3)	C14X—C15X—O3X—C12	16 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O2 ⁱ	0.82	2.02	2.7786 (18)	153
C14—H14A····O1 ⁱⁱ	0.93	2.36	3.271 (9)	168

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) *x*-1/2, -*y*+5/2, *z*-1/2.