organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Ethyl 2-amino-3-hy­dr­oxy-3-[4-(methyl­sulfon­yl)phen­yl]propano­ate

aSchool of Life Science, ShanDong University of Technology, ZiBo 255049, People's Republic of China
*Correspondence e-mail: huhao@sdut.edu.cn

(Received 14 November 2010; accepted 16 December 2010; online 8 January 2011)

In the title compound, C12H17NO5S, the orientations of the 2-ethyl-2-amino-3-hy­droxy­propano­ate group and the 4-methyl­sulfonyl moiety towards the aromatic ring are periplanar and (−)-anti­clinal, respectively. In the crystal packing, the dominant inter­action is O—H⋯N hydrogen bonding, which generates a chain running along [100]. N—H⋯O and C—H⋯O interactions are also observed.

Related literature

The title compound is an inter­mediate in the synthesis of florfenicol, a broad spectrum anti­biotic currently used in veterinary medicine, see: Gregory (1957[Gregory, W. A. (1957). US Patent 2 816 915.]); Syriopoulou & Harding (1981[Syriopoulou, V. P. & Harding, A. L. (1981). Antimicrob. Agents Chemother. 19, 294-297.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO5S

  • Mr = 287.33

  • Triclinic, [P \overline 1]

  • a = 4.8123 (11) Å

  • b = 11.382 (3) Å

  • c = 12.637 (3) Å

  • α = 94.952 (4)°

  • β = 100.530 (4)°

  • γ = 94.298 (4)°

  • V = 675.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 273 K

  • 0.18 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 3543 measured reflections

  • 2363 independent reflections

  • 1786 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.179

  • S = 1.04

  • 2363 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.82 1.97 2.784 (3) 174
N1—H1A⋯O3ii 0.89 2.25 3.088 (3) 158
C7—H7A⋯O2i 0.96 2.57 3.227 (4) 126
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (Fig. 1)is an intermediate of florfenicol, a fluorinated synthetic analog of thiamphenicol, which is currently indicated for the treatment of bovine respiratory disease (BRD) associated with Mannheimia (Pasteurella) haemolytica, Pasteurella multocida, and Haemophilus somnus, and for treatment of bovine interdigital phlegmon (foot rot, acute interdigital necrobacillosis, infectious pododermatitis) associated with Fusobacterium necrophorum and Bacteroides melaninogenicus (Syriopoulou, et al., 1981). The chiral title molecule crystallises in centrosymmetric triclinic space group implying a racemic crystal. The two stereogenic centres C8 and C9 are of opposite chirality. The dominant interaction is hydrogen bond O3-H···N1 which generates a chain along the direction [100] (Fig. 2).

Related literature top

The title compound,C12H17NO5S, is an intermediate in the synthesis of florfenicol, a broad spectrum antibiotic currently used in veterinary medicine, see: Gregory (1957); Syriopoulou & Harding (1981).

Experimental top

The compound (rac)-ethyl 2-amino-3-hydroxy-3-(4-(methylsulfonyl)phenyl) propanoate was synthesised according to a US patent (Gregory, 1957). 4-(Methylsulfonyl)benzaldehyde (18.4 g, 0.1 mol) reacted with 2-aminoacetic acid (7.5 g, 0.1 mol) and potassium carbonate (29.2 g, 0.21 mol). As a result, 14.2 g of (rac)-2-amino-3-hydroxy-3-(4-(methylsulfonyl)phenyl)propanoic acid was obtained (yield, 55%). The amount of 9.3 g of the title compound was obtained through the reaction of (rac)-2-amino-3-hydroxy-3-(4-(methylsulfonyl)phenyl)propanoic acid (14.2 g, 0.055 mol), ethanol (3.3 mL) and 20 mL of sulfuric acid under reflux for 30 min. Subsequently, 0.1 g of the title compound was dissolved in tetrahydrofurane (5 mL) and single crystals suitable for X-ray diffraction were obtained by spontaneous evaporation of the solution.

Refinement top

All the H atoms attached to C atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distance in the range 0.93–0.98 Å, They were treated as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of I showing the atom labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
[Figure 2] Fig. 2. Crystal packing with intermolecular hydrogen bonds generating a chain along [100].
rac-Ethyl 2-amino-3-hydroxy-3-[4-(methylsulfonyl)phenyl]propanoate top
Crystal data top
C12H17NO5SZ = 2
Mr = 287.33F(000) = 304
Triclinic, P1Dx = 1.414 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8123 (11) ÅCell parameters from 1152 reflections
b = 11.382 (3) Åθ = 2.3–25.9°
c = 12.637 (3) ŵ = 0.26 mm1
α = 94.952 (4)°T = 273 K
β = 100.530 (4)°Prism, colourless
γ = 94.298 (4)°0.18 × 0.16 × 0.10 mm
V = 675.1 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1786 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.1°, θmin = 1.7°
ϕ and ω scansh = 45
3543 measured reflectionsk = 1313
2363 independent reflectionsl = 159
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.119P)2 + 0.0021P]
where P = (Fo2 + 2Fc2)/3
2363 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H17NO5Sγ = 94.298 (4)°
Mr = 287.33V = 675.1 (3) Å3
Triclinic, P1Z = 2
a = 4.8123 (11) ÅMo Kα radiation
b = 11.382 (3) ŵ = 0.26 mm1
c = 12.637 (3) ÅT = 273 K
α = 94.952 (4)°0.18 × 0.16 × 0.10 mm
β = 100.530 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1786 reflections with I > 2σ(I)
3543 measured reflectionsRint = 0.017
2363 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.04Δρmax = 0.75 e Å3
2363 reflectionsΔρmin = 0.23 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.45493 (14)1.26807 (6)0.93597 (7)0.0422 (3)
O11.5681 (5)1.3462 (2)0.8678 (2)0.0554 (7)
O21.6472 (5)1.2080 (2)1.0081 (2)0.0634 (7)
O30.3600 (4)0.95918 (17)0.60055 (17)0.0415 (5)
H30.20450.92070.58650.050*
O40.3671 (6)0.6609 (2)0.4925 (2)0.0669 (8)
O50.3457 (5)0.65735 (18)0.66724 (18)0.0505 (6)
N10.8171 (5)0.8421 (2)0.5424 (2)0.0385 (6)
H1A0.72660.89920.51120.046*
H1B0.81810.78160.49300.046*
C11.2030 (6)1.1614 (2)0.8552 (2)0.0355 (7)
C21.1603 (6)1.0510 (3)0.8907 (3)0.0422 (7)
H21.27351.03150.95350.051*
C30.9497 (6)0.9707 (3)0.8325 (2)0.0421 (7)
H3A0.92180.89630.85610.050*
C40.7770 (6)0.9980 (2)0.7391 (2)0.0323 (6)
C50.8256 (6)1.1086 (2)0.7039 (3)0.0397 (7)
H50.71411.12820.64080.048*
C61.0380 (6)1.1896 (2)0.7618 (3)0.0431 (8)
H61.06971.26340.73770.052*
C71.2543 (7)1.3513 (3)1.0121 (3)0.0558 (9)
H7A1.16441.30061.05530.084*
H7B1.11201.38600.96430.084*
H7C1.37671.41281.05850.084*
C80.5434 (6)0.9065 (2)0.6795 (2)0.0348 (7)
H80.43420.87660.73140.042*
C90.6716 (6)0.8019 (2)0.6256 (2)0.0337 (7)
H90.81400.77430.68140.040*
C100.4449 (6)0.6998 (2)0.5853 (3)0.0401 (7)
C110.1378 (8)0.5547 (3)0.6424 (3)0.0554 (9)
H11A0.22280.48670.61480.067*
H11B0.02120.57040.58790.067*
C120.0405 (8)0.5310 (3)0.7433 (3)0.0647 (11)
H12A0.19860.51380.79600.097*
H12B0.10060.46450.72890.097*
H12C0.03980.59940.77050.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0315 (4)0.0384 (5)0.0528 (5)0.0036 (3)0.0039 (3)0.0026 (4)
O10.0479 (13)0.0479 (13)0.0689 (16)0.0132 (10)0.0156 (12)0.0027 (12)
O20.0454 (13)0.0540 (14)0.0788 (18)0.0011 (11)0.0159 (13)0.0042 (13)
O30.0276 (10)0.0386 (11)0.0564 (13)0.0004 (8)0.0012 (9)0.0102 (10)
O40.0795 (18)0.0663 (16)0.0462 (15)0.0263 (13)0.0091 (13)0.0087 (13)
O50.0611 (14)0.0390 (12)0.0473 (13)0.0160 (10)0.0106 (11)0.0009 (10)
N10.0321 (12)0.0403 (14)0.0422 (15)0.0027 (10)0.0053 (11)0.0040 (11)
C10.0334 (14)0.0299 (15)0.0425 (17)0.0007 (12)0.0090 (13)0.0010 (13)
C20.0459 (17)0.0370 (16)0.0407 (17)0.0028 (13)0.0004 (14)0.0052 (14)
C30.0475 (17)0.0328 (15)0.0438 (18)0.0024 (13)0.0046 (14)0.0065 (13)
C40.0323 (14)0.0286 (14)0.0366 (16)0.0024 (11)0.0092 (12)0.0009 (12)
C50.0413 (16)0.0316 (15)0.0433 (17)0.0012 (12)0.0003 (13)0.0061 (13)
C60.0471 (17)0.0278 (15)0.0517 (19)0.0006 (13)0.0023 (15)0.0072 (14)
C70.0475 (18)0.051 (2)0.064 (2)0.0121 (15)0.0144 (17)0.0194 (17)
C80.0319 (14)0.0327 (15)0.0395 (17)0.0013 (12)0.0051 (12)0.0069 (13)
C90.0323 (14)0.0304 (14)0.0368 (16)0.0024 (12)0.0027 (12)0.0031 (12)
C100.0412 (16)0.0309 (15)0.0464 (19)0.0025 (13)0.0057 (14)0.0008 (14)
C110.059 (2)0.0346 (17)0.068 (2)0.0119 (15)0.0118 (18)0.0042 (16)
C120.074 (3)0.049 (2)0.074 (3)0.0032 (18)0.021 (2)0.0179 (19)
Geometric parameters (Å, º) top
S1—O21.432 (2)C4—C51.389 (4)
S1—O11.436 (2)C4—C81.515 (4)
S1—C71.753 (4)C5—C61.378 (4)
S1—C11.760 (3)C5—H50.9300
O3—C81.412 (3)C6—H60.9300
O3—H30.8200C7—H7A0.9600
O4—C101.198 (4)C7—H7B0.9600
O5—C101.329 (4)C7—H7C0.9600
O5—C111.453 (4)C8—C91.544 (4)
N1—C91.452 (4)C8—H80.9800
N1—H1A0.8900C9—C101.518 (4)
N1—H1B0.8900C9—H90.9800
C1—C61.374 (4)C11—C121.475 (5)
C1—C21.384 (4)C11—H11A0.9700
C2—C31.370 (4)C11—H11B0.9700
C2—H20.9300C12—H12A0.9600
C3—C41.387 (4)C12—H12B0.9600
C3—H3A0.9300C12—H12C0.9600
O2—S1—O1118.80 (15)H7A—C7—H7B109.5
O2—S1—C7108.53 (18)S1—C7—H7C109.5
O1—S1—C7107.05 (17)H7A—C7—H7C109.5
O2—S1—C1108.27 (14)H7B—C7—H7C109.5
O1—S1—C1109.22 (14)O3—C8—C4109.8 (2)
C7—S1—C1103.98 (15)O3—C8—C9110.1 (2)
C8—O3—H3109.5C4—C8—C9110.3 (2)
C10—O5—C11117.5 (3)O3—C8—H8108.9
C9—N1—H1A109.3C4—C8—H8108.9
C9—N1—H1B109.2C9—C8—H8108.9
H1A—N1—H1B109.5N1—C9—C10113.8 (2)
C6—C1—C2120.3 (3)N1—C9—C8110.1 (2)
C6—C1—S1120.6 (2)C10—C9—C8110.3 (2)
C2—C1—S1119.0 (2)N1—C9—H9107.4
C3—C2—C1119.3 (3)C10—C9—H9107.4
C3—C2—H2120.4C8—C9—H9107.4
C1—C2—H2120.4O4—C10—O5124.1 (3)
C2—C3—C4121.4 (3)O4—C10—C9125.1 (3)
C2—C3—H3A119.3O5—C10—C9110.8 (2)
C4—C3—H3A119.3O5—C11—C12107.6 (3)
C3—C4—C5118.4 (3)O5—C11—H11A110.2
C3—C4—C8119.0 (2)C12—C11—H11A110.2
C5—C4—C8122.5 (2)O5—C11—H11B110.2
C6—C5—C4120.4 (3)C12—C11—H11B110.2
C6—C5—H5119.8H11A—C11—H11B108.5
C4—C5—H5119.8C11—C12—H12A109.5
C1—C6—C5120.1 (3)C11—C12—H12B109.5
C1—C6—H6119.9H12A—C12—H12B109.5
C5—C6—H6119.9C11—C12—H12C109.5
S1—C7—H7A109.5H12A—C12—H12C109.5
S1—C7—H7B109.5H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.821.972.784 (3)174
N1—H1A···O3ii0.892.253.088 (3)158
C7—H7A···O2i0.962.573.227 (4)126
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC12H17NO5S
Mr287.33
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)4.8123 (11), 11.382 (3), 12.637 (3)
α, β, γ (°)94.952 (4), 100.530 (4), 94.298 (4)
V3)675.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.18 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3543, 2363, 1786
Rint0.017
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.179, 1.04
No. of reflections2363
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.821.972.784 (3)174
N1—H1A···O3ii0.892.253.088 (3)158
C7—H7A···O2i0.962.573.227 (4)126
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

This project was sponsored by Doctoral Research Foundation, Shandong University of Technology, People's Republic of China.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGregory, W. A. (1957). US Patent 2 816 915.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyriopoulou, V. P. & Harding, A. L. (1981). Antimicrob. Agents Chemother. 19, 294–297.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds