supplementary materials


lh5188 scheme

Acta Cryst. (2011). E67, m233-m234    [ doi:10.1107/S1600536811001899 ]

(1,4,7,10,13,16-Hexaoxacyclooctadecane)dimethylindium(III) trifluoromethanesulfonate

B. F. T. Cooper and C. L. B. Macdonald

Abstract top

In the title compound, [In(CH3)2(C12H24O6)](CF3O3S), two of the In-O distances within the cation are significantly shorter than the other four. The InIII atom is in a distorted hexagonal-bipyramidal coordination geometry in which the C-In-C angle is 175.44 (12)°. The crystal structure is stabilized by weak intermolecular C-H...O hydrogen bonds.

Comment top

In contrast to the mixed-valent compounds obtained through the reaction of the crown ether adduct of indium(I) trifluoromethanesulfonate, [In([18]crown-6)][OTf], with indium trihalides (Cooper et al., in press), the treatment of [In([18]crown-6)][OTf] with trimethylindium results in the formation of the organometallic salt [InMe2([18]crown-6)][OTf] (1), as the only isolable crystalline product.

The asymmetric unit of the title compound (1) is shown in Fig. 1. The In–C distances in the cation in 1 of 2.094 (3) and 2.098 (3) Å are somewhat shorter thant the mean distance of 2.151 Å for InMe2 fragments coordinated by at least two oxygen atoms that have been reported in the Cambridge Structural Database (as determined from the total of 38 examples that are found in CSD Version 5.31) (Allen, 2002). Furthermore, the nearly linear C–In–C fragment in the cation, although anticipated because of the geometry of the crown ether ligand and observed in "base-free" salt [InMe2][Br] (Hausen et al., 1975), is a very unusual arrangement for coordinated InMe2 moieties: the largest angle reported in the CSD sample cited above is 159.6 (2)° for a dimeric structure featuring a β-diketonate ligand (Xu et al., 2000). Overall, the coordination geometry of the indium center in 1 is best-described as being a slightly-distorted hexagonal bipyramid in which the metal atom is appreciably closer to two of the oxygen atoms in the ligand. As such, the geometry is reminscent of those exhibited by the products derived from the oxidative addition of chloro-alkanes to benzannelated derivatives of [In([18]crown-6)][OTf] (Cooper et al., 2007).

The indistinguishable S–O distances within each of the trifluoromethanesulfonate anions are consistent with the completely delocalized structure expected for an unperturbed "ionic" trifluoromethanesulfonate anion. In the crystal structure there are weak C—H···OS hydrogen bonds (see Table 2) which link the anions and the cations. In addition, there are further weak intermolecular C—H···O hydrogen bonds between symmetry related crown ether ligands (Fig. 2)

Related literature top

For the preparation of [In][OTf], where OTf = trifluoromethanesulfonate, see: Macdonald et al. (2004); Cooper & Macdonald (2010). For the preparation of the crowned complex [In([18]crown-6][OTf], see: Andrews & Macdonald (2005). For the oxidative addition of [In([18]crown-6][OTf] into aliphatic C—Cl bonds, see: Cooper et al. (2007). For the reaction of [In][OTf] with indium trihalides, see: Cooper et al. (2011). For the structure of the related `base-free' salt [InMe2][Br], see: Hausen et al. (1975). For the structure of a related (β-diketonate)InMe2 complex, see: Xu et al. (2000). For a description of the Cambridge Structural Database For related literature, see: Allen (2002).

Experimental top

The salt [InMe2(18-crown-6)][OTf] was obtained in high yield from the reaction of trimethylindium with the crown ether adduct of indium(I) trifluoromethanesulfonate that was prepared as described previously (Andrews & Macdonald, 2005; Cooper & Macdonald, 2010). Suitable crystals were obtained by the slow evaporation of a dichloromethane solution of the salt in a nitrogen-filled glove box.

Refinement top

H atoms were initially located in difference Fourier maps but were subsequently modeled as riding atoms with a C–H distance of 0.98Å and Uiso(H) of 1.5 times the Ueq(C) of the carbon atom to which they are attached for each methyl hydrogen atom and with a C–H distance of 0.99Å and Uiso(H) of 1.2 times the Ueq(C) of the carbon atom to which they are attached for each methylene hydrogen atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (30% probability surface) of the contents of the asymmetric unit of [InMe2([18]crown-6)][O3SCF3] (1).
[Figure 2] Fig. 2. Partial packing diagram of [InMe2([18]crown-6)][O3SCF3] (1) illustrating the intramolecular H-bonding interactions. The InMe2 fragments are removed for clarity.
(1,4,7,10,13,16-Hexaoxacyclooctadecane)dimethylindium(III) trifluoromethanesulfonate top
Crystal data top
[In(CH3)2(C12H24O6)](CF3O3S)F(000) = 1136
Mr = 558.27Dx = 1.662 Mg m3
Monoclinic, P21/cMelting point: 428 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.9580 (19) ÅCell parameters from 7679 reflections
b = 12.7242 (19) Åθ = 2.2–28.0°
c = 14.683 (2) ŵ = 1.22 mm1
β = 112.801 (2)°T = 173 K
V = 2231.8 (6) Å3Prism, colourless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker APEX
diffractometer
5073 independent reflections
Radiation source: fine-focus sealed tube3744 reflections with I > 2σ(I)
graphiteRint = 0.050
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1616
Tmin = 0.793, Tmax = 0.888k = 1616
24322 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.2258P]
where P = (Fo2 + 2Fc2)/3
5073 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[In(CH3)2(C12H24O6)](CF3O3S)V = 2231.8 (6) Å3
Mr = 558.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9580 (19) ŵ = 1.22 mm1
b = 12.7242 (19) ÅT = 173 K
c = 14.683 (2) Å0.20 × 0.10 × 0.10 mm
β = 112.801 (2)°
Data collection top
Bruker APEX
diffractometer
3744 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
Rint = 0.050
Tmin = 0.793, Tmax = 0.888θmax = 27.5°
24322 measured reflectionsStandard reflections: 0
5073 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.72 e Å3
S = 1.02Δρmin = 0.34 e Å3
5073 reflectionsAbsolute structure: ?
264 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The data crystal was coated in mineral oil and placed rapidly in the cold nitrogen stream of the Kryoflex low-temperature device.

Spectroscopic and physical data: dp 155 °C 1H NMR (C6D6): δ= 3.057 (s; CH2, 24H), δ= -0.021 (s, CH3, 6H) 13C NMR (C6D6): δ= 70.00 (s; CH2), -2.491 (s, CH3) 19F NMR (C6D6):δ= 78.12

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In0.788938 (19)0.230045 (18)0.358803 (16)0.03526 (8)
C10.8733 (2)0.1496 (2)0.2835 (2)0.0330 (7)
H1A0.94880.17870.30240.050*
H1B0.83210.15760.21220.050*
H1C0.87840.07490.30090.050*
C20.7168 (3)0.3162 (3)0.4405 (2)0.0431 (8)
H2A0.76620.31420.51060.065*
H2B0.64410.28560.43150.065*
H2C0.70640.38930.41760.065*
C110.7141 (3)0.4506 (2)0.2018 (2)0.0456 (9)
H11A0.72770.50740.16170.055*
H11B0.67580.48110.24230.055*
C120.6440 (3)0.3674 (3)0.1367 (2)0.0422 (8)
H12A0.57250.39750.09030.051*
H12B0.68340.33530.09770.051*
C130.5558 (3)0.2066 (3)0.1395 (2)0.0492 (9)
H13A0.59930.16490.10970.059*
H13B0.48920.23560.08550.059*
C140.5210 (3)0.1392 (3)0.2044 (3)0.0485 (9)
H14A0.47820.18110.23470.058*
H14B0.47250.08160.16560.058*
C150.5917 (3)0.0237 (3)0.3400 (2)0.0455 (8)
H15A0.54020.03060.29830.055*
H15B0.55400.06030.37810.055*
C160.6968 (3)0.0260 (3)0.4084 (2)0.0464 (9)
H16A0.68010.07800.45100.056*
H16B0.73450.06280.37040.056*
C170.8681 (3)0.0124 (2)0.5378 (2)0.0396 (8)
H17A0.90910.02630.50380.048*
H17B0.85110.03710.58210.048*
C180.9371 (3)0.1009 (2)0.5957 (2)0.0395 (8)
H18A0.89460.14190.62690.047*
H18B1.00610.07380.64850.047*
C191.0489 (3)0.2400 (2)0.5817 (2)0.0397 (8)
H19A1.11610.20360.62840.048*
H19B1.02070.28830.61970.048*
C1101.0775 (3)0.3001 (3)0.5072 (2)0.0427 (8)
H11C1.14080.34840.54100.051*
H11D1.09990.25120.46570.051*
C1111.0032 (3)0.4257 (3)0.3795 (2)0.0477 (9)
H11E1.02960.38430.33570.057*
H11F1.06160.47770.41550.057*
C1120.8974 (3)0.4799 (2)0.3207 (2)0.0490 (9)
H11G0.86860.51750.36510.059*
H11H0.91040.53200.27620.059*
O10.81800 (17)0.40389 (15)0.26423 (15)0.0354 (5)
O20.62296 (17)0.28979 (16)0.19748 (15)0.0373 (5)
O30.61913 (16)0.09713 (16)0.27933 (15)0.0363 (5)
O40.76689 (16)0.05488 (15)0.46713 (14)0.0347 (5)
O50.96498 (16)0.16552 (15)0.52962 (13)0.0323 (5)
O60.98188 (17)0.35800 (16)0.44774 (15)0.0387 (5)
O210.80907 (19)0.71444 (18)0.16120 (17)0.0495 (6)
O220.6098 (2)0.68156 (18)0.08395 (16)0.0535 (6)
O230.6906 (2)0.7465 (2)0.25086 (18)0.0654 (8)
F10.57677 (19)0.90759 (17)0.1002 (2)0.0820 (8)
F20.75310 (19)0.93621 (17)0.17324 (19)0.0772 (7)
F30.68476 (18)0.88076 (16)0.02420 (17)0.0666 (6)
S0.69897 (7)0.73809 (6)0.15687 (5)0.03685 (19)
C0.6768 (3)0.8726 (3)0.1110 (3)0.0494 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In0.03894 (14)0.03720 (13)0.03436 (13)0.00538 (11)0.01936 (10)0.00321 (10)
C10.0324 (17)0.0337 (17)0.0331 (16)0.0000 (13)0.0129 (14)0.0078 (13)
C20.053 (2)0.0439 (19)0.0409 (18)0.0110 (17)0.0272 (17)0.0003 (15)
C110.060 (2)0.0338 (19)0.052 (2)0.0159 (17)0.0313 (19)0.0140 (16)
C120.043 (2)0.048 (2)0.0364 (18)0.0160 (16)0.0161 (16)0.0163 (15)
C130.040 (2)0.056 (2)0.0371 (18)0.0015 (17)0.0018 (15)0.0043 (16)
C140.0288 (18)0.054 (2)0.053 (2)0.0025 (16)0.0057 (16)0.0021 (17)
C150.044 (2)0.048 (2)0.047 (2)0.0175 (17)0.0200 (17)0.0018 (16)
C160.064 (2)0.0342 (19)0.044 (2)0.0112 (17)0.0240 (18)0.0032 (15)
C170.0420 (19)0.0366 (18)0.0448 (19)0.0124 (15)0.0219 (16)0.0134 (15)
C180.0403 (19)0.050 (2)0.0293 (17)0.0094 (15)0.0143 (15)0.0098 (14)
C190.0355 (17)0.049 (2)0.0287 (16)0.0009 (15)0.0060 (14)0.0126 (14)
C1100.0354 (18)0.046 (2)0.0451 (19)0.0086 (15)0.0136 (16)0.0186 (15)
C1110.060 (2)0.044 (2)0.043 (2)0.0247 (18)0.0241 (18)0.0130 (16)
C1120.079 (3)0.0262 (18)0.048 (2)0.0132 (18)0.031 (2)0.0051 (15)
O10.0453 (13)0.0246 (11)0.0404 (12)0.0016 (9)0.0211 (11)0.0002 (9)
O20.0350 (12)0.0428 (14)0.0315 (11)0.0043 (10)0.0101 (9)0.0071 (9)
O30.0275 (11)0.0436 (13)0.0363 (12)0.0050 (9)0.0108 (9)0.0028 (10)
O40.0363 (12)0.0298 (12)0.0376 (12)0.0005 (9)0.0140 (10)0.0028 (9)
O50.0344 (11)0.0375 (12)0.0233 (10)0.0001 (9)0.0093 (9)0.0013 (9)
O60.0425 (13)0.0362 (12)0.0413 (13)0.0055 (10)0.0204 (11)0.0040 (10)
O210.0496 (15)0.0500 (15)0.0544 (15)0.0134 (12)0.0260 (12)0.0138 (12)
O220.0612 (16)0.0355 (13)0.0443 (14)0.0113 (12)0.0010 (12)0.0012 (11)
O230.0481 (15)0.113 (2)0.0387 (14)0.0225 (14)0.0207 (12)0.0071 (14)
F10.0524 (14)0.0537 (14)0.133 (2)0.0146 (11)0.0279 (15)0.0114 (14)
F20.0667 (15)0.0492 (14)0.1039 (19)0.0221 (12)0.0202 (14)0.0338 (13)
F30.0696 (15)0.0532 (14)0.0690 (15)0.0031 (11)0.0181 (12)0.0226 (11)
S0.0349 (4)0.0409 (5)0.0307 (4)0.0038 (3)0.0082 (3)0.0001 (3)
C0.041 (2)0.037 (2)0.065 (2)0.0057 (16)0.0147 (18)0.0129 (18)
Geometric parameters (Å, °) top
In—C22.094 (3)C16—O41.422 (4)
In—C12.098 (3)C16—H16A0.9900
In—O12.7145 (19)C16—H16B0.9900
In—O22.620 (2)C17—O41.426 (3)
In—O32.660 (2)C17—C181.485 (4)
In—O42.816 (2)C17—H17A0.9900
In—O52.7810 (19)C17—H17B0.9900
In—O62.842 (2)C18—O51.421 (3)
C1—H1A0.9800C18—H18A0.9900
C1—H1B0.9800C18—H18B0.9900
C1—H1C0.9800C19—O51.421 (3)
C2—H2A0.9800C19—C1101.495 (4)
C2—H2B0.9800C19—H19A0.9900
C2—H2C0.9800C19—H19B0.9900
C11—O11.431 (4)C110—O61.415 (4)
C11—C121.479 (5)C110—H11C0.9900
C11—H11A0.9900C110—H11D0.9900
C11—H11B0.9900C111—O61.427 (4)
C12—O21.426 (3)C111—C1121.478 (5)
C12—H12A0.9900C111—H11E0.9900
C12—H12B0.9900C111—H11F0.9900
C13—O21.424 (4)C112—O11.421 (4)
C13—C141.477 (5)C112—H11G0.9900
C13—H13A0.9900C112—H11H0.9900
C13—H13B0.9900O21—S1.435 (2)
C14—O31.424 (4)O22—S1.428 (2)
C14—H14A0.9900O23—S1.429 (2)
C14—H14B0.9900F1—C1.320 (4)
C15—O31.427 (3)F2—C1.329 (4)
C15—C161.485 (4)F3—C1.322 (4)
C15—H15A0.9900S—C1.821 (4)
C15—H15B0.9900
C2—In—C1175.44 (12)O4—C16—H16A110.2
C2—In—O288.49 (10)C15—C16—H16A110.2
C1—In—O294.48 (9)O4—C16—H16B110.2
C2—In—O396.16 (11)C15—C16—H16B110.2
C1—In—O388.28 (9)H16A—C16—H16B108.5
O2—In—O362.50 (6)O4—C17—C18108.0 (2)
C2—In—O192.72 (10)O4—C17—H17A110.1
C1—In—O185.66 (9)C18—C17—H17A110.1
O2—In—O161.91 (6)O4—C17—H17B110.1
O3—In—O1123.29 (6)C18—C17—H17B110.1
C2—In—O591.73 (10)H17A—C17—H17B108.4
C1—In—O585.31 (9)O5—C18—C17107.7 (2)
O2—In—O5179.69 (6)O5—C18—H18A110.2
O3—In—O5117.26 (6)C17—C18—H18A110.2
O1—In—O5118.30 (6)O5—C18—H18B110.2
C2—In—O485.73 (10)C17—C18—H18B110.2
C1—In—O495.67 (9)H18A—C18—H18B108.5
O2—In—O4120.85 (6)O5—C19—C110107.6 (2)
O3—In—O459.79 (6)O5—C19—H19A110.2
O1—In—O4176.74 (6)C110—C19—H19A110.2
O5—In—O458.96 (6)O5—C19—H19B110.2
C2—In—O686.86 (11)C110—C19—H19B110.2
C1—In—O688.65 (9)H19A—C19—H19B108.5
O2—In—O6121.12 (6)O6—C110—C19108.1 (3)
O3—In—O6175.45 (6)O6—C110—H11C110.1
O1—In—O659.76 (6)C19—C110—H11C110.1
O5—In—O659.11 (6)O6—C110—H11D110.1
O4—In—O6117.24 (6)C19—C110—H11D110.1
In—C1—H1A109.5H11C—C110—H11D108.4
In—C1—H1B109.5O6—C111—C112107.7 (3)
H1A—C1—H1B109.5O6—C111—H11E110.2
In—C1—H1C109.5C112—C111—H11E110.2
H1A—C1—H1C109.5O6—C111—H11F110.2
H1B—C1—H1C109.5C112—C111—H11F110.2
In—C2—H2A109.5H11E—C111—H11F108.5
In—C2—H2B109.5O1—C112—C111108.7 (3)
H2A—C2—H2B109.5O1—C112—H11G109.9
In—C2—H2C109.5C111—C112—H11G109.9
H2A—C2—H2C109.5O1—C112—H11H109.9
H2B—C2—H2C109.5C111—C112—H11H109.9
O1—C11—C12107.9 (2)H11G—C112—H11H108.3
O1—C11—H11A110.1C112—O1—C11112.3 (2)
C12—C11—H11A110.1C112—O1—In117.95 (17)
O1—C11—H11B110.1C11—O1—In112.53 (17)
C12—C11—H11B110.1C13—O2—C12111.2 (2)
H11A—C11—H11B108.4C13—O2—In114.95 (17)
O2—C12—C11108.0 (2)C12—O2—In118.51 (17)
O2—C12—H12A110.1C14—O3—C15111.3 (2)
C11—C12—H12A110.1C14—O3—In116.02 (18)
O2—C12—H12B110.1C15—O3—In120.42 (17)
C11—C12—H12B110.1C16—O4—C17111.0 (2)
H12A—C12—H12B108.4C16—O4—In114.27 (16)
O2—C13—C14108.3 (3)C17—O4—In116.43 (16)
O2—C13—H13A110.0C19—O5—C18111.2 (2)
C14—C13—H13A110.0C19—O5—In118.53 (17)
O2—C13—H13B110.0C18—O5—In116.76 (16)
C14—C13—H13B110.0C110—O6—C111112.7 (2)
H13A—C13—H13B108.4C110—O6—In112.93 (17)
O3—C14—C13108.2 (3)C111—O6—In113.48 (17)
O3—C14—H14A110.1O22—S—O21115.40 (16)
C13—C14—H14A110.1O23—S—O21114.74 (15)
O3—C14—H14B110.1O22—S—O23114.82 (15)
C13—C14—H14B110.1O21—S—C103.03 (15)
H14A—C14—H14B108.4O22—S—C103.32 (15)
O3—C15—C16108.4 (2)O23—S—C103.08 (17)
O3—C15—H15A110.0F1—C—F2108.2 (3)
C16—C15—H15A110.0F1—C—F3107.3 (3)
O3—C15—H15B110.0F3—C—F2107.4 (3)
C16—C15—H15B110.0F1—C—S111.6 (3)
H15A—C15—H15B108.4F2—C—S110.4 (3)
O4—C16—C15107.7 (3)F3—C—S111.7 (2)
O1—C11—C12—O262.2 (3)C18—C17—O4—C16179.6 (2)
O2—C13—C14—O361.1 (4)C18—C17—O4—In46.6 (3)
O3—C15—C16—O460.4 (3)C2—In—O4—C16118.6 (2)
O4—C17—C18—O563.4 (3)C1—In—O4—C1665.7 (2)
O5—C19—C110—O664.9 (3)O2—In—O4—C1632.9 (2)
O6—C111—C112—O164.2 (3)O3—In—O4—C1618.94 (19)
C111—C112—O1—C11177.6 (3)O1—In—O4—C16180 (100)
C111—C112—O1—In49.0 (3)O5—In—O4—C16146.8 (2)
C12—C11—O1—C112172.2 (3)O6—In—O4—C16157.14 (19)
C12—C11—O1—In51.9 (3)C2—In—O4—C17109.9 (2)
C2—In—O1—C11268.0 (2)C1—In—O4—C1765.8 (2)
C1—In—O1—C112107.7 (2)O2—In—O4—C17164.43 (18)
O2—In—O1—C112154.9 (2)O3—In—O4—C17150.4 (2)
O3—In—O1—C112167.2 (2)O1—In—O4—C1748.3 (11)
O5—In—O1—C11225.4 (2)O5—In—O4—C1715.28 (18)
O4—In—O1—C1126.6 (11)O6—In—O4—C1725.6 (2)
O6—In—O1—C11216.8 (2)C110—C19—O5—C18176.8 (2)
C2—In—O1—C1165.2 (2)C110—C19—O5—In43.6 (3)
C1—In—O1—C11119.0 (2)C17—C18—O5—C19168.3 (2)
O2—In—O1—C1121.60 (18)C17—C18—O5—In51.4 (3)
O3—In—O1—C1134.0 (2)C2—In—O5—C1973.2 (2)
O5—In—O1—C11158.67 (17)C1—In—O5—C19103.3 (2)
O4—In—O1—C11126.7 (10)O2—In—O5—C19151 (11)
O6—In—O1—C11150.0 (2)O3—In—O5—C19171.05 (18)
C14—C13—O2—C12170.3 (3)O1—In—O5—C1920.8 (2)
C14—C13—O2—In51.6 (3)O4—In—O5—C19157.2 (2)
C11—C12—O2—C13179.8 (3)O6—In—O5—C1912.09 (17)
C11—C12—O2—In43.3 (3)C2—In—O5—C1864.1 (2)
C2—In—O2—C13118.9 (2)C1—In—O5—C18119.4 (2)
C1—In—O2—C1364.5 (2)O2—In—O5—C1871 (11)
O3—In—O2—C1321.2 (2)O3—In—O5—C1833.72 (19)
O1—In—O2—C13147.2 (2)O1—In—O5—C18158.14 (18)
O5—In—O2—C1316 (11)O4—In—O5—C1819.85 (18)
O4—In—O2—C1334.8 (2)O6—In—O5—C18149.4 (2)
O6—In—O2—C13155.66 (19)C19—C110—O6—C111174.8 (2)
C2—In—O2—C12106.2 (2)C19—C110—O6—In55.0 (3)
C1—In—O2—C1270.4 (2)C112—C111—O6—C110178.9 (2)
O3—In—O2—C12156.1 (2)C112—C111—O6—In48.9 (3)
O1—In—O2—C1212.29 (19)C2—In—O6—C110117.1 (2)
O5—In—O2—C12119 (11)C1—In—O6—C11062.1 (2)
O4—In—O2—C12169.71 (18)O2—In—O6—C110156.56 (17)
O6—In—O2—C1220.8 (2)O3—In—O6—C11014.6 (8)
C13—C14—O3—C15174.9 (3)O1—In—O6—C110147.9 (2)
C13—C14—O3—In42.4 (3)O5—In—O6—C11023.21 (17)
C16—C15—O3—C14173.5 (3)O4—In—O6—C11033.55 (19)
C16—C15—O3—In45.7 (3)C2—In—O6—C111113.0 (2)
C2—In—O3—C1472.7 (2)C1—In—O6—C11167.7 (2)
C1—In—O3—C14108.3 (2)O2—In—O6—C11126.7 (2)
O2—In—O3—C1412.3 (2)O3—In—O6—C111115.2 (7)
O1—In—O3—C1424.6 (2)O1—In—O6—C11118.03 (19)
O5—In—O3—C14167.9 (2)O5—In—O6—C111153.1 (2)
O4—In—O3—C14154.1 (2)O4—In—O6—C111163.42 (19)
O6—In—O3—C14155.8 (7)O22—S—C—F158.2 (3)
C2—In—O3—C1566.4 (2)O23—S—C—F161.6 (3)
C1—In—O3—C15112.6 (2)O21—S—C—F1178.7 (3)
O2—In—O3—C15151.5 (2)O22—S—C—F361.9 (3)
O1—In—O3—C15163.7 (2)O23—S—C—F3178.2 (2)
O5—In—O3—C1528.8 (2)O21—S—C—F358.6 (3)
O4—In—O3—C1515.0 (2)O22—S—C—F2178.6 (3)
O6—In—O3—C1565.1 (8)O23—S—C—F258.7 (3)
C15—C16—O4—C17177.6 (2)O21—S—C—F260.9 (3)
C15—C16—O4—In48.3 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O22i0.992.543.455 (4)153
C14—H14A···O23ii0.992.433.348 (4)155
C17—H17A···O5iii0.992.583.527 (4)160
C19—H19A···O23iv0.992.533.322 (4)137
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, −y, −z+1; (iv) −x+2, −y+1, −z+1.
Table 1
Selected geometric parameters (Å)
top
In—C22.094 (3)In—O32.660 (2)
In—C12.098 (3)In—O42.816 (2)
In—O12.7145 (19)In—O52.7810 (19)
In—O22.620 (2)In—O62.842 (2)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O22i0.992.543.455 (4)153
C14—H14A···O23ii0.992.433.348 (4)155
C17—H17A···O5iii0.992.583.527 (4)160
C19—H19A···O23iv0.992.533.322 (4)137
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, −y, −z+1; (iv) −x+2, −y+1, −z+1.
Acknowledgements top

The funding that has enabled this work has been provided by the Natural Sciences and Engineering Research Council (Canada), the Canada Foundation for Innovation and the Ontario Ministry of Research and Innovation.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Andrews, C. G. & Macdonald, C. L. B. (2005). Angew. Chem. Int. Ed. 44, 7453–7456.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.

Cooper, B. F. T., Andrews, C. G. & Macdonald, C. L. B. (2007). J. Organomet. Chem. 692, 2843–2848.

Cooper, B. F. T., Hamaed, H., Friedl, W. W., Stinchcomb, M. R., Schurko, R. W. & Macdonald, C. L. B. (2011). Chem. Eur. J. In the press. Any update?

Cooper, B. F. T. & Macdonald, C. L. B. (2010). New J. Chem. 34, 1551–1555.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Hausen, H. D., Mertz, K., Weidlein, J. & Schwartz, W. (1975). J. Organomet. Chem. 93, 291–296.

Macdonald, C. L. B., Corrente, A. M., Andrews, C. G., Taylor, A. & Ellis, B. D. (2004). Chem. Commun. pp. 250–251.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Xu, C., Baum, T. H., Guzei, I. & Reingold, A. L. (2000). Inorg. Chem. 39, 2008–2010.