organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­methyl-5-[(5-methyl­furan-2-yl)methyl­­idene]-1,3-dioxane-4,6-dione

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 9 January 2011; accepted 15 January 2011; online 22 January 2011)

The asymmetric unit of the title compound, C12H12O5, contains two independent mol­ecules. In each, the 1,3-dioxane ring adopts an envelope conformation with the dimethyl-substituted C atom forming the flap. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Zeng (2010a[Zeng, W.-L. (2010a). Acta Cryst. E66, o2366.],b[Zeng, W.-L. (2010b). Acta Cryst. E66, o2943.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12O5

  • Mr = 236.22

  • Triclinic, [P \overline 1]

  • a = 8.9590 (18) Å

  • b = 10.038 (2) Å

  • c = 13.616 (3) Å

  • α = 92.71 (3)°

  • β = 105.99 (3)°

  • γ = 91.67 (3)°

  • V = 1174.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 11592 measured reflections

  • 5336 independent reflections

  • 3333 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.156

  • S = 1.07

  • 5336 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1B—H1BC⋯O3Bi 0.96 2.48 3.434 (3) 170
C10B—H10A⋯O4Aii 0.93 2.60 3.448 (3) 153
C10A—H10B⋯O1Aiii 0.93 2.44 3.343 (2) 163
C2A—H2AB⋯O2Aiv 0.96 2.57 3.524 (3) 170
C1A—H1AA⋯O3B 0.96 2.55 3.496 (3) 170
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) x, y-1, z; (iv) -x-1, -y+2, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In previous papers, the author recently reported the crystal structure of 5-(4-fluorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione and (E)-2,2-dimethyl-5-(3-phenylallylidene)-1,3-dioxane-4,6- dione (Zeng, 2010a,b). As part of this search for new Meldrum's acid compounds, the title compound, (I) (Fig. 1), was synthesized and its crystal structure is reported herein. There are two symmetry-independent molecules, A and B, in the asymmetric unit of (I). The corresponding bond lengths and angles for the indepenent molecules agree well with each other as is reflected especially for the C7C5 distance where the value and the standard uncertainty are the same in each. The 1,3-dioxane rings in each molecule are in envelope conformations. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For related structures, see: Zeng (2010a,b).

Experimental top

The mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in conc. sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, propan-2-one (3.48 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 2 h. The mixture was cooled and filtered, and then an ethanol solution of 5-methylfuran-2-carbaldehyde (6.60g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an petroleum ether-acetone (3:1 v/v) solution of (I) at room temperature over a period of several days.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.96 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
2,2-dimethyl-5-[(5-methylfuran-2-yl)methylidene]-1,3-dioxane-4,6-dione top
Crystal data top
C12H12O5Z = 4
Mr = 236.22F(000) = 496
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9590 (18) ÅCell parameters from 3333 reflections
b = 10.038 (2) Åθ = 3.1–27.5°
c = 13.616 (3) ŵ = 0.11 mm1
α = 92.71 (3)°T = 293 K
β = 105.99 (3)°Block, yellow
γ = 91.67 (3)°0.20 × 0.16 × 0.12 mm
V = 1174.7 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3333 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1110
11592 measured reflectionsk = 1313
5336 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0907P)2]
where P = (Fo2 + 2Fc2)/3
5336 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C12H12O5γ = 91.67 (3)°
Mr = 236.22V = 1174.7 (4) Å3
Triclinic, P1Z = 4
a = 8.9590 (18) ÅMo Kα radiation
b = 10.038 (2) ŵ = 0.11 mm1
c = 13.616 (3) ÅT = 293 K
α = 92.71 (3)°0.20 × 0.16 × 0.12 mm
β = 105.99 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3333 reflections with I > 2σ(I)
11592 measured reflectionsRint = 0.024
5336 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
5336 reflectionsΔρmin = 0.30 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O2B0.11969 (13)0.55646 (11)0.62210 (9)0.0618 (3)
O5B0.45369 (14)1.05664 (10)0.82774 (9)0.0563 (3)
O1B0.34137 (15)0.48325 (11)0.74003 (9)0.0645 (3)
C5B0.29935 (18)0.71777 (15)0.73236 (11)0.0467 (4)
O3B0.06239 (14)0.76729 (12)0.61279 (9)0.0671 (3)
O4B0.48827 (17)0.61623 (12)0.86197 (9)0.0749 (4)
C6B0.3859 (2)0.60755 (16)0.78319 (12)0.0536 (4)
C7B0.33715 (18)0.84921 (15)0.75839 (11)0.0485 (4)
H7BA0.26510.90540.72060.058*
C4B0.15441 (19)0.68642 (16)0.65155 (12)0.0522 (4)
C8B0.46201 (19)0.91860 (14)0.83032 (11)0.0481 (4)
C9B0.5954 (2)0.89135 (17)0.90245 (12)0.0564 (4)
H9BA0.63020.80700.92020.068*
C3B0.2442 (2)0.46641 (16)0.63735 (13)0.0573 (4)
C11B0.5813 (2)1.11096 (17)0.89765 (13)0.0569 (4)
C10B0.6699 (2)1.01280 (18)0.94451 (14)0.0622 (4)
H10A0.76351.02450.99550.075*
C1B0.1707 (3)0.32824 (18)0.62731 (17)0.0801 (6)
H1BA0.11410.32010.67740.120*
H1BB0.25010.26400.63810.120*
H1BC0.10080.31230.56000.120*
C2B0.3372 (3)0.4908 (2)0.56325 (16)0.0780 (6)
H2BA0.38130.58050.57490.117*
H2BB0.27080.47870.49460.117*
H2BC0.41910.42900.57280.117*
C12B0.5961 (3)1.25844 (18)0.90908 (17)0.0785 (6)
H12A0.50881.29520.86190.118*
H12B0.69031.28850.89500.118*
H12C0.59861.28740.97780.118*
O5A0.07339 (13)0.59957 (9)0.88357 (8)0.0527 (3)
O2A0.36509 (13)0.95250 (10)0.63621 (9)0.0573 (3)
O3A0.35857 (14)0.73997 (11)0.66614 (9)0.0617 (3)
C5A0.14448 (18)0.87879 (13)0.76199 (11)0.0447 (3)
O1A0.17387 (16)1.11015 (10)0.72684 (10)0.0698 (4)
C8A0.05825 (18)0.64850 (14)0.81836 (11)0.0447 (3)
C7A0.05103 (18)0.78842 (14)0.81679 (12)0.0468 (4)
H7AA0.03710.82770.86350.056*
C4A0.29180 (18)0.84726 (14)0.68578 (11)0.0461 (4)
C6A0.0910 (2)1.01900 (15)0.78701 (14)0.0596 (4)
O4A0.01460 (18)1.05984 (12)0.85763 (12)0.0924 (5)
C11A0.0546 (2)0.46486 (14)0.87915 (13)0.0529 (4)
C9A0.1573 (2)0.54271 (14)0.77519 (13)0.0556 (4)
H9AA0.25480.54640.72870.067*
C3A0.2727 (2)1.06729 (15)0.62802 (13)0.0592 (4)
C10A0.0843 (2)0.42757 (15)0.81423 (14)0.0614 (5)
H10B0.12490.34040.79810.074*
C2A0.3843 (3)1.17833 (18)0.59790 (17)0.0892 (7)
H2AA0.43851.19280.64900.134*
H2AB0.45781.15380.53320.134*
H2AC0.32731.25880.59240.134*
C12A0.1835 (2)0.39080 (17)0.94262 (15)0.0713 (5)
H12D0.15690.29680.93330.107*
H12E0.20090.41901.01340.107*
H12F0.27630.40850.92230.107*
C1A0.1792 (3)1.0368 (2)0.55522 (18)0.0901 (7)
H1AA0.11150.96590.57980.135*
H1AB0.11821.11490.54990.135*
H1AC0.24751.00990.48910.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O2B0.0499 (7)0.0631 (7)0.0632 (7)0.0012 (5)0.0031 (6)0.0101 (6)
O5B0.0605 (7)0.0498 (6)0.0555 (6)0.0040 (5)0.0110 (6)0.0001 (5)
O1B0.0751 (9)0.0494 (6)0.0566 (7)0.0003 (5)0.0020 (6)0.0017 (5)
C5B0.0457 (9)0.0530 (8)0.0388 (8)0.0032 (6)0.0071 (7)0.0021 (6)
O3B0.0566 (8)0.0765 (8)0.0591 (7)0.0159 (6)0.0000 (6)0.0020 (6)
O4B0.0855 (10)0.0592 (7)0.0587 (8)0.0038 (6)0.0165 (7)0.0077 (6)
C6B0.0573 (10)0.0513 (9)0.0462 (9)0.0001 (7)0.0048 (8)0.0017 (7)
C7B0.0483 (9)0.0521 (8)0.0441 (8)0.0068 (7)0.0102 (7)0.0045 (7)
C4B0.0492 (9)0.0614 (9)0.0452 (8)0.0050 (7)0.0119 (7)0.0006 (7)
C8B0.0540 (9)0.0444 (8)0.0448 (8)0.0049 (6)0.0119 (7)0.0017 (6)
C9B0.0564 (10)0.0574 (9)0.0510 (9)0.0078 (7)0.0073 (8)0.0010 (8)
C3B0.0585 (11)0.0549 (9)0.0519 (9)0.0040 (7)0.0055 (8)0.0035 (7)
C11B0.0587 (11)0.0580 (10)0.0537 (9)0.0044 (8)0.0174 (8)0.0079 (8)
C10B0.0556 (11)0.0672 (11)0.0557 (10)0.0018 (8)0.0041 (8)0.0068 (8)
C1B0.0866 (15)0.0621 (11)0.0799 (13)0.0109 (10)0.0070 (12)0.0092 (10)
C2B0.0880 (15)0.0808 (13)0.0711 (12)0.0114 (11)0.0326 (12)0.0039 (10)
C12B0.0895 (16)0.0570 (11)0.0872 (14)0.0067 (10)0.0246 (12)0.0075 (10)
O5A0.0561 (7)0.0374 (5)0.0592 (7)0.0039 (4)0.0061 (5)0.0076 (5)
O2A0.0550 (7)0.0492 (6)0.0600 (7)0.0048 (5)0.0018 (5)0.0103 (5)
O3A0.0549 (7)0.0477 (6)0.0712 (8)0.0089 (5)0.0001 (6)0.0026 (5)
C5A0.0480 (9)0.0354 (7)0.0479 (8)0.0017 (6)0.0090 (7)0.0018 (6)
O1A0.0849 (9)0.0341 (5)0.0708 (8)0.0066 (5)0.0116 (7)0.0015 (5)
C8A0.0480 (9)0.0367 (7)0.0473 (8)0.0040 (6)0.0092 (7)0.0059 (6)
C7A0.0463 (9)0.0392 (7)0.0506 (8)0.0023 (6)0.0073 (7)0.0013 (6)
C4A0.0493 (9)0.0410 (8)0.0469 (8)0.0027 (6)0.0113 (7)0.0024 (6)
C6A0.0624 (11)0.0376 (8)0.0660 (11)0.0023 (7)0.0038 (9)0.0035 (7)
O4A0.0940 (11)0.0423 (6)0.1015 (11)0.0076 (6)0.0370 (9)0.0016 (7)
C11A0.0673 (11)0.0376 (7)0.0568 (9)0.0069 (7)0.0209 (9)0.0080 (7)
C9A0.0588 (10)0.0407 (8)0.0623 (10)0.0016 (7)0.0094 (8)0.0012 (7)
C3A0.0724 (12)0.0395 (8)0.0562 (10)0.0010 (7)0.0018 (9)0.0059 (7)
C10A0.0763 (13)0.0325 (7)0.0738 (11)0.0008 (7)0.0185 (10)0.0026 (7)
C2A0.1048 (18)0.0537 (11)0.0846 (14)0.0204 (10)0.0177 (12)0.0118 (10)
C12A0.0846 (14)0.0530 (10)0.0762 (12)0.0200 (9)0.0180 (11)0.0194 (9)
C1A0.1165 (19)0.0727 (13)0.0917 (15)0.0048 (12)0.0447 (15)0.0214 (12)
Geometric parameters (Å, º) top
O2B—C4B1.348 (2)O5A—C11A1.3542 (17)
O2B—C3B1.433 (2)O5A—C8A1.3851 (18)
O5B—C11B1.351 (2)O2A—C4A1.3662 (18)
O5B—C8B1.3914 (17)O2A—C3A1.425 (2)
O1B—C6B1.354 (2)O3A—C4A1.1985 (19)
O1B—C3B1.428 (2)C5A—C7A1.358 (2)
C5B—C7B1.358 (2)C5A—C4A1.452 (2)
C5B—C6B1.460 (2)C5A—C6A1.467 (2)
C5B—C4B1.467 (2)O1A—C6A1.3545 (19)
O3B—C4B1.2070 (19)O1A—C3A1.431 (2)
O4B—C6B1.202 (2)C8A—C9A1.364 (2)
C7B—C8B1.408 (2)C8A—C7A1.4056 (19)
C7B—H7BA0.9300C7A—H7AA0.9300
C8B—C9B1.366 (2)C6A—O4A1.194 (2)
C9B—C10B1.391 (2)C11A—C10A1.344 (3)
C9B—H9BA0.9300C11A—C12A1.481 (2)
C3B—C2B1.499 (3)C9A—C10A1.399 (2)
C3B—C1B1.502 (2)C9A—H9AA0.9300
C11B—C10B1.354 (2)C3A—C1A1.491 (3)
C11B—C12B1.480 (2)C3A—C2A1.514 (2)
C10B—H10A0.9300C10A—H10B0.9300
C1B—H1BA0.9600C2A—H2AA0.9600
C1B—H1BB0.9600C2A—H2AB0.9600
C1B—H1BC0.9600C2A—H2AC0.9600
C2B—H2BA0.9600C12A—H12D0.9600
C2B—H2BB0.9600C12A—H12E0.9600
C2B—H2BC0.9600C12A—H12F0.9600
C12B—H12A0.9600C1A—H1AA0.9600
C12B—H12B0.9600C1A—H1AB0.9600
C12B—H12C0.9600C1A—H1AC0.9600
C4B—O2B—C3B118.43 (13)C11A—O5A—C8A107.77 (13)
C11B—O5B—C8B107.37 (13)C4A—O2A—C3A118.26 (13)
C6B—O1B—C3B119.91 (13)C7A—C5A—C4A125.38 (14)
C7B—C5B—C6B124.95 (15)C7A—C5A—C6A115.42 (15)
C7B—C5B—C4B116.48 (14)C4A—C5A—C6A119.16 (13)
C6B—C5B—C4B118.43 (15)C6A—O1A—C3A119.26 (12)
O4B—C6B—O1B116.99 (15)C9A—C8A—O5A108.02 (13)
O4B—C6B—C5B126.11 (16)C9A—C8A—C7A139.38 (15)
O1B—C6B—C5B116.81 (14)O5A—C8A—C7A112.60 (13)
C5B—C7B—C8B133.72 (14)C5A—C7A—C8A134.05 (16)
C5B—C7B—H7BA113.1C5A—C7A—H7AA113.0
C8B—C7B—H7BA113.1C8A—C7A—H7AA113.0
O3B—C4B—O2B118.18 (16)O3A—C4A—O2A117.16 (15)
O3B—C4B—C5B124.96 (16)O3A—C4A—C5A126.53 (14)
O2B—C4B—C5B116.81 (14)O2A—C4A—C5A116.19 (13)
C9B—C8B—O5B107.91 (15)O4A—C6A—O1A117.49 (15)
C9B—C8B—C7B138.86 (15)O4A—C6A—C5A125.89 (14)
O5B—C8B—C7B113.20 (13)O1A—C6A—C5A116.55 (15)
C8B—C9B—C10B107.48 (16)C10A—C11A—O5A109.20 (14)
C8B—C9B—H9BA126.3C10A—C11A—C12A133.71 (15)
C10B—C9B—H9BA126.3O5A—C11A—C12A117.09 (16)
O1B—C3B—O2B110.13 (13)C8A—C9A—C10A106.92 (16)
O1B—C3B—C2B110.27 (16)C8A—C9A—H9AA126.5
O2B—C3B—C2B109.85 (15)C10A—C9A—H9AA126.5
O1B—C3B—C1B105.73 (14)O2A—C3A—O1A109.72 (13)
O2B—C3B—C1B106.35 (16)O2A—C3A—C1A110.21 (15)
C2B—C3B—C1B114.36 (16)O1A—C3A—C1A110.72 (17)
O5B—C11B—C10B109.69 (15)O2A—C3A—C2A106.18 (16)
O5B—C11B—C12B116.80 (16)O1A—C3A—C2A105.14 (14)
C10B—C11B—C12B133.51 (18)C1A—C3A—C2A114.63 (17)
C11B—C10B—C9B107.55 (17)C11A—C10A—C9A108.08 (15)
C11B—C10B—H10A126.2C11A—C10A—H10B126.0
C9B—C10B—H10A126.2C9A—C10A—H10B126.0
C3B—C1B—H1BA109.5C3A—C2A—H2AA109.5
C3B—C1B—H1BB109.5C3A—C2A—H2AB109.5
H1BA—C1B—H1BB109.5H2AA—C2A—H2AB109.5
C3B—C1B—H1BC109.5C3A—C2A—H2AC109.5
H1BA—C1B—H1BC109.5H2AA—C2A—H2AC109.5
H1BB—C1B—H1BC109.5H2AB—C2A—H2AC109.5
C3B—C2B—H2BA109.5C11A—C12A—H12D109.5
C3B—C2B—H2BB109.5C11A—C12A—H12E109.5
H2BA—C2B—H2BB109.5H12D—C12A—H12E109.5
C3B—C2B—H2BC109.5C11A—C12A—H12F109.5
H2BA—C2B—H2BC109.5H12D—C12A—H12F109.5
H2BB—C2B—H2BC109.5H12E—C12A—H12F109.5
C11B—C12B—H12A109.5C3A—C1A—H1AA109.5
C11B—C12B—H12B109.5C3A—C1A—H1AB109.5
H12A—C12B—H12B109.5H1AA—C1A—H1AB109.5
C11B—C12B—H12C109.5C3A—C1A—H1AC109.5
H12A—C12B—H12C109.5H1AA—C1A—H1AC109.5
H12B—C12B—H12C109.5H1AB—C1A—H1AC109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1B—H1BC···O3Bi0.962.483.434 (3)170
C10B—H10A···O4Aii0.932.603.448 (3)153
C10A—H10B···O1Aiii0.932.443.343 (2)163
C2A—H2AB···O2Aiv0.962.573.524 (3)170
C1A—H1AA···O3B0.962.553.496 (3)170
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x, y1, z; (iv) x1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC12H12O5
Mr236.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9590 (18), 10.038 (2), 13.616 (3)
α, β, γ (°)92.71 (3), 105.99 (3), 91.67 (3)
V3)1174.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11592, 5336, 3333
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.156, 1.07
No. of reflections5336
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1B—H1BC···O3Bi0.962.483.434 (3)170
C10B—H10A···O4Aii0.932.603.448 (3)153
C10A—H10B···O1Aiii0.932.443.343 (2)163
C2A—H2AB···O2Aiv0.962.573.524 (3)170
C1A—H1AA···O3B0.962.553.496 (3)170
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x, y1, z; (iv) x1, y+2, z+1.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W.-L. (2010a). Acta Cryst. E66, o2366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. (2010b). Acta Cryst. E66, o2943.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds