inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nickel bis­­muth boride, Ni23-xBixB6 [x = 2.44 (1)]

aNational Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044 Japan
*Correspondence e-mail: mori.takao@nims.go.jp

(Received 2 November 2010; accepted 6 January 2011; online 15 January 2011)

The τ-boride Ni23-xBixB6 [x = 2.44 (1)] adopts a ternary variant of the cubic Cr23C6-type structure, with Ni8 cubes and Ni12 cubocta­hedra arranged in a NaCl-type pattern. Two of the four independent metal sites (8c, [\overline{4}]3m symmetry; 4a, m[\overline{3}]m symmetry) are occupied by a mixture of Ni and Bi atoms in a 0.106 (6):0.894 (6) and a 0.350 (7):0.650 (7) ratio, respectively.

Related literature

For the structure of Cr23C6, see: Westgren (1933[Westgren, A. (1933). Nature (London), 132, 480-481.]). For other examples of τ-borides, which have more than 80 representatives, see: Villars & Calvert (1985[Villars, P. & Calvert, L. D. (1985). Pearson's Handbook of Crystallographic Data for Intermetallics Phases. Metals Park, Ohio: American Society for Metals.]). For ternary ordered variants, see: Hillebrecht & Ade (1998[Hillebrecht, H. & Ade, M. (1998). Angew. Chem. Int. Ed. 37, 935-938.]) for M20M3B6; Veremchuk et al. (2009[Veremchuk, I., Gumeniuk, R., Prots, Yu., Schnelle, W., Burkhardt, U., Rosner, H., Kuz'ma, Yu., & Leithe-Jasper, A. (2009). Solid State Sci. 11, 507-512.]) for M21M2B6. For isotypic cobalt-containing solid solutions Co23-xM'xB6, see: Kotzott et al. (2009[Kotzott, D., Ade, M. & Hillebrecht, H. (2009). J. Solid State Chem. 182, 538-546.]).

Experimental

Crystal data
  • Ni20.56Bi2.44B6

  • Mr = 1780.35

  • Cubic, [F m \overline 3m ]

  • a = 10.575 (5) Å

  • V = 1182.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 67.81 mm−1

  • T = 293 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.010, Tmax = 0.067

  • 6672 measured reflections

  • 236 independent reflections

  • 235 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.045

  • S = 1.16

  • 236 reflections

  • 15 parameters

  • Δρmax = 2.18 e Å−3

  • Δρmin = −2.22 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Ni23-xBixB6 belongs to a class of metal-rich compounds known as τ-borides, which are interesting ceramic materials. It is isostructural to numerous related M20M'3B6 and M21M'2B6 (M = 3d metal; M' = rare-earth, 4d, 5d, or main-group metal) phases, which adopt a ternary variant of the cubic Cr23C6-type structure (Westgren, 1933; Villars & Calvert, 1985; Hillebrecht & Ade, 1998; Veremchuk et al., 2009). Of the four metal sites, two (32f and 48h) are occupied exclusively by Ni atoms giving a NaCl-type arrangement of Ni8 cubes and Ni12 cuboctahedra, and two (4a and 8c) are occupied by a mixture of Ni and Bi atoms, resulting in the composition Ni20.56Bi2.44B6 (Fig. 1). Mixed occupation of the 4a and 8c sites has also been previously reported in the Co-containing τ-borides Co23-xM'xB6 (Kotzott et al., 2009).

Related literature top

For the structure of Cr23C6, see: Westgren (1933). For other examples of τ-borides, which have more than 80 representatives, see: Villars & Calvert (1985). For ternary ordered variants, see: Hillebrecht & Ade (1998) for M20M'3B6; Veremchuk et al. (2009) for M21M'2B6. For isotypic cobalt-containing solid solutions Co23-xM'xB6, see: Kotzott et al. (2009).

Experimental top

A mixture of Ni, Bi, and B powders with nominal composition Ni20Bi3B12 was pressed into a pellet and placed in an alumina crucible. It was melted under Ar gas at 1473 K for 6 h, cooled at 20 K h-1 to 1273 K, and further cooled at 300 K h-1 to room temperature. The sample contained crystals of the title compound, in the presence of binary nickel borides, as revealed by powder X-ray diffraction analysis.

Refinement top

Several models involving mixed occupancy of Ni and Bi atoms, or vacancies (or both) within the metal sites were considered. We concluded that all sites are fully occupied, but two of them (4a and 8c) were disordered with a mixture of Ni and Bi atoms. Only an isotropic displacement parameter was refined for the B atom. The highest peak and the deepest hole in the final difference map are located at 2.12 and 0.57 Å from Ni3 and Bi1, respectively.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of Ni23-xBixB6 highlighting the arrangement of Ni12 cuboctahedra (Ni3, 48 h) and Ni8 cubes (Ni2, 32f). Displacement ellipsoids are drawn at the 60% probability level. Symmetry codes are defined in the footnote of the table of geometric parameters.
nickel bismuth boron (20.56/2.44/6) top
Crystal data top
B6Bi2.44Ni20.56Dx = 9.999 Mg m3
Mr = 1780.35Mo Kα radiation, λ = 0.71073 Å
Cubic, Fm3mCell parameters from 834 reflections
Hall symbol: -F 4 2 3θ = 3.3–40.4°
a = 10.575 (5) ŵ = 67.81 mm1
V = 1182.6 (10) Å3T = 293 K
Z = 4Prism, grey
F(000) = 32310.10 × 0.08 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 40.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1919
Tmin = 0.010, Tmax = 0.067k = 1919
6672 measured reflectionsl = 1719
236 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0165P)2 + 39.3966P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max < 0.001
S = 1.16Δρmax = 2.18 e Å3
236 reflectionsΔρmin = 2.22 e Å3
15 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.00047 (4)
Crystal data top
B6Bi2.44Ni20.56Z = 4
Mr = 1780.35Mo Kα radiation
Cubic, Fm3mµ = 67.81 mm1
a = 10.575 (5) ÅT = 293 K
V = 1182.6 (10) Å30.10 × 0.08 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
236 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
235 reflections with I > 2σ(I)
Tmin = 0.010, Tmax = 0.067Rint = 0.044
6672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0165P)2 + 39.3966P]
where P = (Fo2 + 2Fc2)/3
S = 1.16Δρmax = 2.18 e Å3
236 reflectionsΔρmin = 2.22 e Å3
15 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni20.38433 (4)0.38433 (4)0.38433 (4)0.00939 (16)
Ni300.17150 (4)0.17150 (4)0.01007 (16)
Ni40.250.250.250.01036 (13)0.106 (6)
Ni10000.0092 (2)0.349 (7)
Bi10.250.250.250.01036 (13)0.894 (6)
Bi20000.0092 (2)0.650 (7)
B00.2663 (7)00.0109 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni20.00939 (16)0.00939 (16)0.00939 (16)0.00036 (13)0.00036 (13)0.00036 (13)
Ni30.0116 (3)0.00930 (19)0.00930 (19)000.00020 (16)
Ni40.01036 (13)0.01036 (13)0.01036 (13)000
Ni10.0092 (2)0.0092 (2)0.0092 (2)000
Bi10.01036 (13)0.01036 (13)0.01036 (13)000
Bi20.0092 (2)0.0092 (2)0.0092 (2)000
Geometric parameters (Å, º) top
Ni2—Bi2.133 (5)Ni4—Ni3xv2.8927 (14)
Ni2—Bii2.133 (5)Ni4—Ni3xi2.8927 (14)
Ni2—Biii2.133 (5)Ni4—Ni3x2.8927 (14)
Ni2—Ni2iv2.4465 (15)Ni4—Ni3vii2.8927 (14)
Ni2—Ni2v2.4465 (15)Ni4—Ni3ix2.8927 (14)
Ni2—Ni2vi2.4465 (15)Ni4—Ni3viii2.8927 (14)
Ni2—Ni42.4604 (14)Ni4—Ni3xvi2.8927 (14)
Ni2—Ni3vii2.6287 (13)Ni1—Ni3xx2.5648 (14)
Ni2—Ni3viii2.6287 (13)Ni1—Ni3xxi2.5648 (14)
Ni2—Ni3ix2.6287 (13)Ni1—Ni3xv2.5648 (14)
Ni2—Ni3x2.6287 (13)Ni1—Ni3xxii2.5648 (14)
Ni3—B2.072 (4)Ni1—Ni3xi2.5648 (14)
Ni3—Bxi2.072 (4)Ni1—Ni3xxiii2.5648 (14)
Ni3—Ni3xii2.3480 (17)Ni1—Ni3xxiv2.5648 (14)
Ni3—Ni12.5648 (14)Ni1—Ni3xxv2.5648 (14)
Ni3—Ni3xiii2.5648 (14)Ni1—Ni3xiv2.5648 (14)
Ni3—Ni3xiv2.5648 (14)Ni1—Ni3xxvi2.5648 (14)
Ni3—Ni3xv2.5648 (14)Ni1—Ni3xiii2.5648 (14)
Ni3—Ni3xi2.5648 (14)B—Ni3xiii2.072 (4)
Ni3—Ni2xvi2.6287 (13)B—Ni3xxiv2.072 (4)
Ni3—Ni2xvii2.6287 (13)B—Ni3xv2.072 (4)
Ni3—Ni2xviii2.6287 (13)B—Ni2xvii2.133 (5)
Ni4—Ni2xvii2.4604 (14)B—Ni2xxvii2.133 (5)
Ni4—Ni2xix2.4604 (14)B—Ni2xxviii2.133 (5)
Ni4—Ni2xvi2.4604 (14)B—Ni2xviii2.133 (5)
Bi—Ni2—Bii110.02 (17)Ni3xv—Ni4—Ni3x146.645 (15)
Bi—Ni2—Biii110.02 (17)Ni3xi—Ni4—Ni3x116.245 (7)
Bii—Ni2—Biii110.02 (17)Ni3—Ni4—Ni3x94.724 (4)
Bi—Ni2—Ni2iv55.01 (9)Ni2—Ni4—Ni3vii58.152 (3)
Bii—Ni2—Ni2iv125.82 (17)Ni2xvii—Ni4—Ni3vii149.209 (11)
Biii—Ni2—Ni2iv55.01 (9)Ni2xix—Ni4—Ni3vii58.152 (3)
Bi—Ni2—Ni2v125.82 (17)Ni2xvi—Ni4—Ni3vii101.320 (11)
Bii—Ni2—Ni2v55.01 (9)Ni3xv—Ni4—Ni3vii116.245 (7)
Biii—Ni2—Ni2v55.01 (9)Ni3xi—Ni4—Ni3vii94.724 (4)
Ni2iv—Ni2—Ni2v90Ni3—Ni4—Ni3vii146.645 (15)
Bi—Ni2—Ni2vi55.01 (9)Ni3x—Ni4—Ni3vii94.724 (4)
Bii—Ni2—Ni2vi55.01 (9)Ni2—Ni4—Ni3ix58.152 (3)
Biii—Ni2—Ni2vi125.82 (17)Ni2xvii—Ni4—Ni3ix149.209 (11)
Ni2iv—Ni2—Ni2vi90Ni2xix—Ni4—Ni3ix101.320 (11)
Ni2v—Ni2—Ni2vi90Ni2xvi—Ni4—Ni3ix58.152 (3)
Bi—Ni2—Ni4108.92 (17)Ni3xv—Ni4—Ni3ix146.645 (15)
Bii—Ni2—Ni4108.92 (17)Ni3xi—Ni4—Ni3ix94.724 (4)
Biii—Ni2—Ni4108.92 (17)Ni3—Ni4—Ni3ix116.245 (7)
Ni2iv—Ni2—Ni4125.3Ni3x—Ni4—Ni3ix47.89 (2)
Ni2v—Ni2—Ni4125.3Ni3vii—Ni4—Ni3ix52.632 (19)
Ni2vi—Ni2—Ni4125.3Ni2—Ni4—Ni3viii58.152 (3)
Bi—Ni2—Ni3vii153.13 (3)Ni2xvii—Ni4—Ni3viii58.152 (3)
Bii—Ni2—Ni3vii95.32 (6)Ni2xix—Ni4—Ni3viii149.209 (11)
Biii—Ni2—Ni3vii50.27 (13)Ni2xvi—Ni4—Ni3viii101.320 (11)
Ni2iv—Ni2—Ni3vii102.978 (14)Ni3xv—Ni4—Ni3viii116.245 (7)
Ni2v—Ni2—Ni3vii62.268 (15)Ni3xi—Ni4—Ni3viii146.645 (15)
Ni2vi—Ni2—Ni3vii148.889 (13)Ni3—Ni4—Ni3viii94.724 (4)
Ni4—Ni2—Ni3vii69.188 (17)Ni3x—Ni4—Ni3viii52.632 (19)
Bi—Ni2—Ni3viii50.27 (13)Ni3vii—Ni4—Ni3viii116.245 (7)
Bii—Ni2—Ni3viii95.32 (6)Ni3ix—Ni4—Ni3viii94.724 (4)
Biii—Ni2—Ni3viii153.12 (3)Ni2—Ni4—Ni3xvi58.152 (3)
Ni2iv—Ni2—Ni3viii102.978 (14)Ni2xvii—Ni4—Ni3xvi101.320 (11)
Ni2v—Ni2—Ni3viii148.889 (13)Ni2xix—Ni4—Ni3xvi58.152 (3)
Ni2vi—Ni2—Ni3viii62.268 (15)Ni2xvi—Ni4—Ni3xvi149.209 (11)
Ni4—Ni2—Ni3viii69.188 (17)Ni3xv—Ni4—Ni3xvi94.724 (4)
Ni3vii—Ni2—Ni3viii138.28 (3)Ni3xi—Ni4—Ni3xvi116.245 (7)
Bi—Ni2—Ni3ix95.32 (6)Ni3—Ni4—Ni3xvi146.645 (15)
Bii—Ni2—Ni3ix153.13 (3)Ni3x—Ni4—Ni3xvi116.245 (7)
Biii—Ni2—Ni3ix50.27 (13)Ni3vii—Ni4—Ni3xvi47.89 (2)
Ni2iv—Ni2—Ni3ix62.268 (15)Ni3ix—Ni4—Ni3xvi94.724 (4)
Ni2v—Ni2—Ni3ix102.978 (14)Ni3viii—Ni4—Ni3xvi94.724 (4)
Ni2vi—Ni2—Ni3ix148.889 (13)Ni3—Ni1—Ni3xx120
Ni4—Ni2—Ni3ix69.188 (17)Ni3—Ni1—Ni3xxi180.00 (3)
Ni3vii—Ni2—Ni3ix58.40 (2)Ni3xx—Ni1—Ni3xxi60
Ni3viii—Ni2—Ni3ix108.098 (18)Ni3—Ni1—Ni3xv60
Bi—Ni2—Ni3x50.27 (13)Ni3xx—Ni1—Ni3xv180.00 (3)
Bii—Ni2—Ni3x153.13 (3)Ni3xxi—Ni1—Ni3xv120
Biii—Ni2—Ni3x95.32 (6)Ni3—Ni1—Ni3xxii120
Ni2iv—Ni2—Ni3x62.268 (15)Ni3xx—Ni1—Ni3xxii60
Ni2v—Ni2—Ni3x148.889 (13)Ni3xxi—Ni1—Ni3xxii60
Ni2vi—Ni2—Ni3x102.978 (14)Ni3xv—Ni1—Ni3xxii120
Ni4—Ni2—Ni3x69.188 (17)Ni3—Ni1—Ni3xi60
Ni3vii—Ni2—Ni3x108.098 (18)Ni3xx—Ni1—Ni3xi120
Ni3viii—Ni2—Ni3x58.40 (2)Ni3xxi—Ni1—Ni3xi120
Ni3ix—Ni2—Ni3x53.05 (2)Ni3xv—Ni1—Ni3xi60
B—Ni3—Bxi147.8 (4)Ni3xxii—Ni1—Ni3xi180.00 (3)
B—Ni3—Ni3xii106.08 (19)Ni3—Ni1—Ni3xxiii120
Bxi—Ni3—Ni3xii106.08 (19)Ni3xx—Ni1—Ni3xxiii90
B—Ni3—Ni173.92 (19)Ni3xxi—Ni1—Ni3xxiii60
Bxi—Ni3—Ni173.92 (19)Ni3xv—Ni1—Ni3xxiii90
Ni3xii—Ni3—Ni1180.00 (3)Ni3xxii—Ni1—Ni3xxiii120
B—Ni3—Ni3xiii51.76 (8)Ni3xi—Ni1—Ni3xxiii60
Bxi—Ni3—Ni3xiii110.00 (12)Ni3—Ni1—Ni3xxiv90
Ni3xii—Ni3—Ni3xiii120Ni3xx—Ni1—Ni3xxiv120
Ni1—Ni3—Ni3xiii60Ni3xxi—Ni1—Ni3xxiv90
B—Ni3—Ni3xiv110.00 (12)Ni3xv—Ni1—Ni3xxiv60
Bxi—Ni3—Ni3xiv51.76 (8)Ni3xxii—Ni1—Ni3xxiv60
Ni3xii—Ni3—Ni3xiv120Ni3xi—Ni1—Ni3xxiv120
Ni1—Ni3—Ni3xiv60Ni3xxiii—Ni1—Ni3xxiv120
Ni3xiii—Ni3—Ni3xiv60Ni3—Ni1—Ni3xxv90
B—Ni3—Ni3xv51.76 (8)Ni3xx—Ni1—Ni3xxv60
Bxi—Ni3—Ni3xv110.00 (12)Ni3xxi—Ni1—Ni3xxv90
Ni3xii—Ni3—Ni3xv120Ni3xv—Ni1—Ni3xxv120
Ni1—Ni3—Ni3xv60Ni3xxii—Ni1—Ni3xxv120
Ni3xiii—Ni3—Ni3xv90Ni3xi—Ni1—Ni3xxv60
Ni3xiv—Ni3—Ni3xv120Ni3xxiii—Ni1—Ni3xxv60
B—Ni3—Ni3xi110.00 (12)Ni3xxiv—Ni1—Ni3xxv180.00 (3)
Bxi—Ni3—Ni3xi51.76 (8)Ni3—Ni1—Ni3xiv60
Ni3xii—Ni3—Ni3xi120Ni3xx—Ni1—Ni3xiv60
Ni1—Ni3—Ni3xi60Ni3xxi—Ni1—Ni3xiv120
Ni3xiii—Ni3—Ni3xi120Ni3xv—Ni1—Ni3xiv120
Ni3xiv—Ni3—Ni3xi90Ni3xxii—Ni1—Ni3xiv90
Ni3xv—Ni3—Ni3xi60Ni3xi—Ni1—Ni3xiv90
B—Ni3—Ni2xvi149.09 (8)Ni3xxiii—Ni1—Ni3xiv120
Bxi—Ni3—Ni2xvi52.37 (15)Ni3xxiv—Ni1—Ni3xiv120
Ni3xii—Ni3—Ni2xvi63.474 (12)Ni3xxv—Ni1—Ni3xiv60
Ni1—Ni3—Ni2xvi116.526 (12)Ni3—Ni1—Ni3xxvi120
Ni3xiii—Ni3—Ni2xvi159.139 (17)Ni3xx—Ni1—Ni3xxvi120
Ni3xiv—Ni3—Ni2xvi99.802 (17)Ni3xxi—Ni1—Ni3xxvi60
Ni3xv—Ni3—Ni2xvi106.043 (14)Ni3xv—Ni1—Ni3xxvi60
Ni3xi—Ni3—Ni2xvi60.801 (12)Ni3xxii—Ni1—Ni3xxvi90
B—Ni3—Ni2xvii52.37 (15)Ni3xi—Ni1—Ni3xxvi90
Bxi—Ni3—Ni2xvii149.09 (8)Ni3xxiii—Ni1—Ni3xxvi60
Ni3xii—Ni3—Ni2xvii63.474 (12)Ni3xxiv—Ni1—Ni3xxvi60
Ni1—Ni3—Ni2xvii116.526 (12)Ni3xxv—Ni1—Ni3xxvi120
Ni3xiii—Ni3—Ni2xvii99.802 (17)Ni3xiv—Ni1—Ni3xxvi180.00 (3)
Ni3xiv—Ni3—Ni2xvii159.139 (17)Ni3—Ni1—Ni3xiii60
Ni3xv—Ni3—Ni2xvii60.801 (12)Ni3xx—Ni1—Ni3xiii90
Ni3xi—Ni3—Ni2xvii106.043 (14)Ni3xxi—Ni1—Ni3xiii120
Ni2xvi—Ni3—Ni2xvii99.67 (3)Ni3xv—Ni1—Ni3xiii90
B—Ni3—Ni2xviii52.37 (15)Ni3xxii—Ni1—Ni3xiii60
Bxi—Ni3—Ni2xviii149.09 (8)Ni3xi—Ni1—Ni3xiii120
Ni3xii—Ni3—Ni2xviii63.474 (12)Ni3xxiii—Ni1—Ni3xiii180.00 (3)
Ni1—Ni3—Ni2xviii116.526 (12)Ni3xxiv—Ni1—Ni3xiii60
Ni3xiii—Ni3—Ni2xviii60.801 (12)Ni3xxv—Ni1—Ni3xiii120
Ni3xiv—Ni3—Ni2xviii106.043 (14)Ni3xiv—Ni1—Ni3xiii60
Ni3xv—Ni3—Ni2xviii99.802 (17)Ni3xxvi—Ni1—Ni3xiii120
Ni3xi—Ni3—Ni2xviii159.139 (17)Ni3xiii—B—Ni3xxiv76.47 (16)
Ni2xvi—Ni3—Ni2xviii126.95 (2)Ni3xiii—B—Ni376.47 (16)
Ni2xvii—Ni3—Ni2xviii55.46 (3)Ni3xxiv—B—Ni3122.2 (4)
Ni2—Ni4—Ni2xvii109.5Ni3xiii—B—Ni3xv122.2 (4)
Ni2—Ni4—Ni2xix109.5Ni3xxiv—B—Ni3xv76.47 (16)
Ni2xvii—Ni4—Ni2xix109.5Ni3—B—Ni3xv76.47 (16)
Ni2—Ni4—Ni2xvi109.5Ni3xiii—B—Ni2xvii141.71 (6)
Ni2xvii—Ni4—Ni2xvi109.5Ni3xxiv—B—Ni2xvii141.71 (6)
Ni2xix—Ni4—Ni2xvi109.5Ni3—B—Ni2xvii77.36 (3)
Ni2—Ni4—Ni3xv149.209 (11)Ni3xv—B—Ni2xvii77.36 (3)
Ni2xvii—Ni4—Ni3xv58.152 (3)Ni3xiii—B—Ni2xxvii77.36 (3)
Ni2xix—Ni4—Ni3xv58.152 (3)Ni3xxiv—B—Ni2xxvii77.36 (3)
Ni2xvi—Ni4—Ni3xv101.320 (11)Ni3—B—Ni2xxvii141.71 (6)
Ni2—Ni4—Ni3xi149.209 (11)Ni3xv—B—Ni2xxvii141.71 (6)
Ni2xvii—Ni4—Ni3xi101.320 (11)Ni2xvii—B—Ni2xxvii108.4 (3)
Ni2xix—Ni4—Ni3xi58.152 (3)Ni3xiii—B—Ni2xxviii141.71 (6)
Ni2xvi—Ni4—Ni3xi58.152 (3)Ni3xxiv—B—Ni2xxviii77.36 (3)
Ni3xv—Ni4—Ni3xi52.632 (19)Ni3—B—Ni2xxviii141.71 (6)
Ni2—Ni4—Ni3149.209 (11)Ni3xv—B—Ni2xxviii77.36 (3)
Ni2xvii—Ni4—Ni358.152 (3)Ni2xvii—B—Ni2xxviii69.97 (17)
Ni2xix—Ni4—Ni3101.320 (11)Ni2xxvii—B—Ni2xxviii69.97 (17)
Ni2xvi—Ni4—Ni358.152 (3)Ni3xiii—B—Ni2xviii77.36 (3)
Ni3xv—Ni4—Ni352.632 (19)Ni3xxiv—B—Ni2xviii141.71 (6)
Ni3xi—Ni4—Ni352.632 (19)Ni3—B—Ni2xviii77.36 (3)
Ni2—Ni4—Ni3x58.152 (3)Ni3xv—B—Ni2xviii141.71 (6)
Ni2xvii—Ni4—Ni3x101.320 (11)Ni2xvii—B—Ni2xviii69.97 (17)
Ni2xix—Ni4—Ni3x149.209 (11)Ni2xxvii—B—Ni2xviii69.97 (17)
Ni2xvi—Ni4—Ni3x58.152 (3)Ni2xxviii—B—Ni2xviii108.4 (3)
Symmetry codes: (i) y, z+1/2, x+1/2; (ii) z+1/2, x+1/2, y; (iii) x+1/2, y, z+1/2; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y+1, z; (vii) x+1/2, y, z+1/2; (viii) z, x+1/2, y+1/2; (ix) y+1/2, z, x+1/2; (x) y, z+1/2, x+1/2; (xi) z, x, y; (xii) x, y+1/2, z+1/2; (xiii) y, z, x; (xiv) z, x, y; (xv) y, z, x; (xvi) x+1/2, y+1/2, z; (xvii) x+1/2, y, z+1/2; (xviii) x1/2, y, z+1/2; (xix) x, y+1/2, z+1/2; (xx) y, z, x; (xxi) x, y, z; (xxii) z, x, y; (xxiii) y, z, x; (xxiv) x, y, z; (xxv) x, y, z; (xxvi) z, x, y; (xxvii) x1/2, y, z1/2; (xxviii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaB6Bi2.44Ni20.56
Mr1780.35
Crystal system, space groupCubic, Fm3m
Temperature (K)293
a (Å)10.575 (5)
V3)1182.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)67.81
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.010, 0.067
No. of measured, independent and
observed [I > 2σ(I)] reflections
6672, 236, 235
Rint0.044
(sin θ/λ)max1)0.912
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.045, 1.16
No. of reflections236
No. of parameters15
w = 1/[σ2(Fo2) + (0.0165P)2 + 39.3966P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.18, 2.22

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported in part by a grant from AOARD (AOARD 104144).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHillebrecht, H. & Ade, M. (1998). Angew. Chem. Int. Ed. 37, 935–938.  CrossRef CAS Google Scholar
First citationKotzott, D., Ade, M. & Hillebrecht, H. (2009). J. Solid State Chem. 182, 538–546.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeremchuk, I., Gumeniuk, R., Prots, Yu., Schnelle, W., Burkhardt, U., Rosner, H., Kuz'ma, Yu., & Leithe-Jasper, A. (2009). Solid State Sci. 11, 507–512.  Web of Science CrossRef CAS Google Scholar
First citationVillars, P. & Calvert, L. D. (1985). Pearson's Handbook of Crystallographic Data for Intermetallics Phases. Metals Park, Ohio: American Society for Metals.  Google Scholar
First citationWestgren, A. (1933). Nature (London), 132, 480–481.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds