Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Praseodymium(III) sulfate hydroxide, $\mathrm{Pr}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})$

Xiao-Juan Wang and Jian-Wen Cheng*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
Correspondence e-mail: jwcheng@zjnu.cn
Received 22 December 2010; accepted 5 January 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{O})=0.005 \AA$; R factor $=0.033 ; w R$ factor $=0.080$; data-to-parameter ratio $=12.9$.

The title compound, $\operatorname{Pr}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})$, obtained under hydrothermal conditions, consists of $\mathrm{Pr}^{\mathrm{III}}$ ions coordinated by nine O atoms from six sulfate groups and three hydroxide anions. The bridging mode of the O atoms results in the formation of a three-dimensional framework, stabilized by two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions.

Related literature

Lanthanide sulfate hydroxides exhibit a variety of architectures, see: Xu et al. (2007); Zhang et al. (2004). For related structures, see: Yang et al. (2005); Ding et al. (2006); Zhang et al. (2004); Zhang \& Lu (2008).

Experimental

Crystal data

$\operatorname{Pr}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})$

$M_{r}=253.98$
Monoclinic, $P 2_{1} / n$
$a=4.4891$ (18) \AA
$b=12.484$ (5) \AA
$c=6.894$ (3) A
$\beta=106.310(7)^{\circ}$
$V=370.8(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=13.59 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.213, T_{\text {max }}=0.257$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033 \quad 65$ parameters
$w R\left(F^{2}\right)=0.080 \quad$ H-atom parameters constrained
$S=1.09$
840 reflections
$\Delta \rho_{\text {max }}=1.73 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-2.15 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5A HO^{i}	0.85	2.20	$2.630(7)$	111
O5-H5A $^{\mathrm{ii}} \mathrm{O} 2^{\mathrm{ii}}$	0.85	2.31	$3.082(7)$	152

Symmetry codes: (i) $-x,-y+2,-z$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2113).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Ding, S.-H., Sun, X.-C., Zhu, Y.-L., Chen, Q. \& Xu, Y. (2006). Acta Cryst. E62, i269-i271.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xu, Y., Ding, S. \& Zheng, X. (2007). J. Solid State Chem. 180, 2020-2025.
Yang, Y., Zhu, L.-H., Zeng, M.-H. \& Feng, X.-L. (2005). Acta Cryst. E61, $441-$ $i 43$.
Zhang, T. \& Lu, J. (2008). Acta Cryst. E64, 149.
Zhang, Q., Lu, C., Yang, W., Chen, S. \& Yu, Y. (2004). Inorg. Chem. Commun. 7, 889-892.

supporting information

Acta Cryst. (2011). E67, i12 [doi:10.1107/S1600536811000298]

Praseodymium(III) sulfate hydroxide, $\operatorname{Pr}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})$

Xiao-Juan Wang and Jian-Wen Cheng

S1. Comment

Lanthanide sulfate hydroxides exhibit a variety of architectures (Xu et al., 2007; Zhang et al., 2004). We report here the compound $\operatorname{Pr}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})$, which is isostructural to $\operatorname{Ln}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})(L n=\mathrm{La}, \mathrm{Ce}, \mathrm{Eu}, \mathrm{Nd})(\mathrm{Zhang}$ et al., 2004; Yang et al., 2005; Ding et al., 2006; Zhang et al., 2008). The $\mathrm{Pr}^{\text {III }}$ ion is coordinated in a distorted tricapped trigonal prismatic geometry by the oxygen atoms from six sulfate groups and three hydroxide anions (Fig. 1). All oxygen atoms of the sulfate groups take part in the coordination. The S atom makes four $\mathrm{S}-\mathrm{O}-\mathrm{La}$ linkages through two 2-coordinated oxygen atoms [S-O-La] and two 3-coordinated oxygen atoms $\left[\mathrm{S}-\left(\mu_{3}-\mathrm{O}\right)-\mathrm{La}_{2}\right]$. The oxygen atoms of the hydroxide groups are four-coordinate, $\left[\mathrm{HO}-\mu_{3}-\mathrm{La}_{3}\right]$, linking three different Pr ions. The bridging mode of the oxygen atoms results in a threedimensional framework, with the H atom of hydroxide anions forming weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with two O atoms of sulfate groups (Fig. 2).

S2. Experimental

A mixture of $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{mmol}, 0.1088 \mathrm{~g}), \mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol}, 0.0338 \mathrm{~g})$, and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was sealed in a $25-\mathrm{mL}$ Teflon-lined stainless steel reactor and heated at 443 K for 72 h , and then cooled to room temperature over 3 days. Light-green prismatic crystals were obtained (yield: 32% based on $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$).

S3. Refinement

The oxygen-bound H -atoms were located in the difference Fourier map and refined with the $\mathrm{O}-\mathrm{H}$ distance restrained to $0.85 \AA\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})\right]$.

Figure 1
Coordination of Pr in $\operatorname{Pr}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})$. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $x-1 / 2,-y+3 / 2, z+1 / 2$; (ii) $-x+1,-y+2,-z+1$; (iii) $x-1, y, z$; (iv) $-x,-y+2,-z+1$; (v) $-x+1,-y+2,-z$; (vi) $-x,-y+2,-z$; (vii) x, y, $\mathrm{z}+1$.

Figure 2
Three-dimensional network in $\operatorname{Pr}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})$.

Praseodymium(III) sulfate hydroxide

Crystal data

$\mathrm{Pr}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})$
$M_{r}=253.98$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=4.4891$ (18) \AA
$b=12.484(5) \AA$
$c=6.894(3) \AA$
$\beta=106.310(7)^{\circ}$
$V=370.8(3) \AA^{3}$
$Z=4$
$F(000)=464$
$D_{\mathrm{x}}=4.550 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1066 reflections
$\theta=3.3-27.4^{\circ}$
$\mu=13.59 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, light green
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.213, T_{\text {max }}=0.257$

2849 measured reflections
840 independent reflections
813 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-5 \rightarrow 5$
$k=-14 \rightarrow 16$
$l=-8 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.080$
$S=1.09$
840 reflections
65 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

```
Hydrogen site location: inferred from
    neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0348 P)^{2}+1.2539 P\right]\)
    where \(P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=1.73 \mathrm{e}^{\AA^{-3}}\)
\(\Delta \rho_{\text {min }}=-2.15\) e \(\AA^{-3}\)
Extinction correction: SHELXL97 (Sheldrick,
    2008), \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.0303 (17)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\hat{A}^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Pr	$0.14215(8)$	$0.93511(2)$	$0.30120(5)$	$0.0103(2)$
S	$0.4863(3)$	$0.85448(11)$	$-0.1115(2)$	$0.0100(3)$
O1	$0.3690(11)$	$0.8345(4)$	$0.0615(6)$	$0.0156(9)$
O2	$0.5908(12)$	$0.7551(4)$	$-0.1798(7)$	$0.0189(10)$
O3	$0.2507(11)$	$0.9045(4)$	$-0.2785(7)$	$0.0179(10)$
O4	$0.7557(12)$	$0.9298(3)$	$-0.0482(8)$	$0.0137(10)$
O5	$0.3035(11)$	$1.0859(4)$	$0.5390(7)$	$0.0141(9)$
H5A	0.1434	1.1193	0.5488	0.021^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pr	$0.0129(3)$	$0.0104(3)$	$0.0083(3)$	$0.00025(10)$	$0.00418(19)$	$-0.00100(9)$
S	$0.0118(7)$	$0.0098(7)$	$0.0091(7)$	$-0.0002(5)$	$0.0041(6)$	$0.0002(5)$
O1	$0.020(2)$	$0.020(2)$	$0.012(2)$	$0.002(2)$	$0.0142(19)$	$0.0010(17)$
O2	$0.027(2)$	$0.014(2)$	$0.020(2)$	$0.001(2)$	$0.011(2)$	$-0.0016(17)$
O3	$0.017(2)$	$0.023(2)$	$0.015(2)$	$0.005(2)$	$0.0060(19)$	$0.0030(19)$
O4	$0.013(2)$	$0.013(2)$	$0.016(2)$	$-0.0039(15)$	$0.005(2)$	$-0.0022(14)$
O5	$0.014(2)$	$0.017(2)$	$0.012(2)$	$0.0037(18)$	$0.0044(18)$	$-0.0042(17)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Pr}-\mathrm{O} 2^{\mathrm{i}}$	$2.393(5)$	$\mathrm{S}-\mathrm{O} 1$	$1.455(5)$
$\mathrm{Pr}-\mathrm{O}^{\text {ii }}$	$2.436(5)$	$\mathrm{S}-\mathrm{O} 3$	$1.466(5)$

$\mathrm{Pr}-\mathrm{O} 5$	2.468 (5)	S-O4	1.497 (5)
$\mathrm{Pr}-\mathrm{O} 1$	2.508 (4)	$\mathrm{O} 2-\mathrm{Pr}^{\text {riii }}$	2.393 (5)
$\mathrm{Pr}-\mathrm{O} 4{ }^{\text {iii }}$	2.543 (5)	O3- $\mathrm{Pr}^{\mathrm{ri}}$	2.643 (5)
$\mathrm{Pr}-\mathrm{O} 5^{\text {iv }}$	2.554 (5)	O3-Prix	2.826 (5)
$\mathrm{Pr}-\mathrm{O}^{\text {v }}$	2.558 (5)	O4- $\mathrm{Pr}^{\text {x }}$	2.543 (5)
$\mathrm{Pr}-\mathrm{O3}^{\text {vi }}$	2.643 (5)	O4- Pr^{v}	2.558 (5)
$\mathrm{Pr}-\mathrm{O}^{\text {vii }}$	2.826 (5)	O5-Prii	2.436 (5)
$\mathrm{Pr}-\mathrm{Pr}^{\text {iv }}$	3.7056 (12)	O5-Priv	2.554 (5)
$\mathrm{Pr}-\mathrm{Pr}^{\text {i }}$	3.9388 (12)	O5-H5A	0.8500
$\mathrm{S}-\mathrm{O} 2$	1.450 (5)		
O2 ${ }^{\text {i }}-\mathrm{Pr}-\mathrm{O} 5^{\mathrm{ii}}$	88.30 (16)	O5-Pr-Priv	43.35 (12)
O2 $2^{\text {i }} \mathrm{Pr}-\mathrm{O} 5$	137.33 (16)	O1- $\mathrm{Pr}-\mathrm{Pr}^{\text {iv }}$	173.83 (10)
O5 $5^{\text {ii }}-\mathrm{Pr}-\mathrm{O} 5$	73.13 (18)	O4iii-Pr-Priv	115.28 (12)
O2 ${ }^{\text {i }}$ - $\mathrm{Pr}-\mathrm{O} 1$	66.58 (17)	O5 $5^{\text {iv }}-\mathrm{Pr}-\mathrm{Pr}^{\text {iv }}$	41.55 (10)
$\mathrm{O} 5 \mathrm{ii}-\mathrm{Pr}-\mathrm{O} 1$	72.04 (15)	O4v- $\mathrm{Pr}-\mathrm{Pr}^{\text {iv }}$	112.38 (11)
$\mathrm{O} 5-\mathrm{Pr}-\mathrm{O} 1$	136.21 (16)	$\mathrm{O} 3{ }^{\text {vi}}-\mathrm{Pr}-\mathrm{Pr}^{\text {iv }}$	49.45 (10)
O2i- $\mathrm{Pr}-\mathrm{O} 4{ }^{\text {iii }}$	88.59 (15)	O3 ${ }^{\text {vii }}$ - $\mathrm{Pr}-\mathrm{Pr}^{\text {iv }}$	45.31 (10)
$\mathrm{O} 5{ }^{\text {iii}}-\mathrm{Pr}-\mathrm{O} 4{ }^{\text {iii }}$	139.79 (17)	$\mathrm{O} 2-\mathrm{Pr}-\mathrm{Pr}^{\text {ii }}$	116.25 (12)
$\mathrm{O} 5-\mathrm{Pr}-\mathrm{O} 4{ }^{\text {iii }}$	130.10 (14)	O5 $5^{\text {ii }}-\mathrm{Pr}-\mathrm{Pr}^{\text {ii }}$	36.83 (11)
$\mathrm{O} 1-\mathrm{Pr}-\mathrm{O} 4{ }^{\text {iii }}$	70.01 (15)	O5-Pr-Prii	36.29 (11)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pr}-\mathrm{O}^{\text {iv }}$	77.01 (17)	O1- $\mathrm{Pr}-\mathrm{Pr}^{\text {ii }}$	105.16 (11)
$\mathrm{O} 5{ }^{\text {ii- }} \mathrm{Pr}-\mathrm{O} 5{ }^{\text {iv }}$	128.20 (19)	O4iii- $\mathrm{Pr}-\mathrm{Pr}^{\text {ii }}$	151.15 (10)
O5- $\mathrm{Pr}-\mathrm{O} 5^{\text {iv }}$	84.90 (16)	O5 ${ }^{\text {iv }}-\mathrm{Pr}-\mathrm{Pr}^{\mathrm{ii}}$	109.08 (11)
$\mathrm{O} 1-\mathrm{Pr}-\mathrm{OF}^{\text {iv }}$	138.17 (15)	O4 ${ }^{2}-\mathrm{Pr}-\mathrm{Pr}^{\text {i }}$	86.32 (11)
$\mathrm{O} 4{ }^{\text {iii- }}$ - $\mathrm{Pr}-\mathrm{O} 5^{\text {iv }}$	89.84 (16)	$\mathrm{O3}^{\mathrm{vi}}-\mathrm{Pr}-\mathrm{Pr}^{\mathrm{ii}}$	97.46 (11)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pr}-\mathrm{O}^{\text {v }}$	136.90 (16)	$\mathrm{O} 3{ }^{\text {vii }}-\mathrm{Pr}-\mathrm{Pr}{ }^{\text {ri }}$	57.99 (11)
O5ii- $\mathrm{Pr}-\mathrm{O}^{\text {v }}$	91.33 (16)	$\mathrm{Pr}^{\text {iv }}-\mathrm{Pr}-\mathrm{Pr}^{\text {ii }}$	71.85 (3)
O5-Pr-O4v	82.80 (16)	$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 1$	110.1 (3)
$\mathrm{O} 1-\mathrm{Pr}-\mathrm{O}^{v}$	72.38 (15)	$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 3$	109.7 (3)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Pr}-\mathrm{O}^{v}$	64.96 (17)	$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 3$	111.7 (3)
$\mathrm{O}^{\text {iviv }}$ - $\mathrm{Pr}-\mathrm{O}^{\text {v }}$	132.35 (15)	$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 4$	108.9 (3)
$\mathrm{O}^{\text {i }}-\mathrm{Pr}-\mathrm{O}^{\text {vi }}$	132.98 (17)	$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 4$	108.5 (3)
$\mathrm{O} 5 \mathrm{ii}-\mathrm{Pr}-\mathrm{O}^{\text {vi }}$	133.47 (15)	O3-S-O4	107.9 (3)
$\mathrm{O} 5-\mathrm{Pr}-\mathrm{O}^{\text {vi }}$	61.84 (16)	$\mathrm{S}-\mathrm{O} 1-\mathrm{Pr}$	139.7 (3)
$\mathrm{O} 1-\mathrm{Pr}-\mathrm{O}^{\text {vi }}$	136.71 (14)	$\mathrm{S}-\mathrm{O} 2-\mathrm{Pr}^{\text {viii }}$	155.7 (3)
$\mathrm{O} 4^{\text {iii }}-\mathrm{Pr}-\mathrm{O}^{\text {vi }}$	72.40 (15)	$\mathrm{S}-\mathrm{O} 3-\mathrm{Pr}^{\text {ri }}$	133.7 (3)
$\mathrm{O}^{\text {iv- }}-\mathrm{Pr}-\mathrm{O}^{\text {vi }}$	60.84 (15)	$\mathrm{S}-\mathrm{O} 3-\mathrm{Pr}^{\text {ix }}$	137.8 (3)
$\mathrm{O} 4{ }^{\mathrm{v}}-\mathrm{Pr}-\mathrm{O}^{\text {vi }}$	72.83 (16)	$\mathrm{Pr}^{\text {ri- }}-\mathrm{O} 3-\mathrm{Pr}^{\text {ix }}$	85.24 (13)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pr}-\mathrm{O}^{\text {vii }}$	78.53 (16)	$\mathrm{S}-\mathrm{O} 4-\mathrm{Pr}^{\mathrm{x}}$	125.0 (3)
$\mathrm{O} 5^{\text {ii }}-\mathrm{Pr}-\mathrm{O}^{\text {vii }}$	70.23 (15)	$\mathrm{S}-\mathrm{O} 4-\mathrm{Pr}^{v}$	120.0 (3)
O5- $\mathrm{Pr}-\mathrm{O}^{\text {vii }}$	59.19 (16)	$\mathrm{Pr}^{\mathrm{x}}-\mathrm{O} 4-\mathrm{Pr}^{v}$	115.04 (17)
$\mathrm{O} 1-\mathrm{Pr}-\mathrm{O}^{\text {vii }}$	128.53 (14)	$\mathrm{Pr}^{\mathrm{ii}}-\mathrm{O} 5-\mathrm{Pr}$	106.87 (18)
$\mathrm{O} 4^{\text {iii }}-\mathrm{Pr}-\mathrm{O}^{\text {vii }}$	147.45 (16)	$\mathrm{Pr}^{\text {ii- }}$-O5- $\mathrm{Pr}^{\text {iv }}$	128.20 (19)
$\mathrm{O} 5^{\mathrm{i}-}-\mathrm{Pr}-\mathrm{O} 3{ }^{\text {vii }}$	58.29 (15)	$\mathrm{Pr}-\mathrm{O}-\mathrm{Pr}^{\text {iv }}$	95.10 (16)
$\mathrm{O}^{v}-\mathrm{Pr}-\mathrm{O}^{\text {vii }}$	140.86 (15)	Prii-O5-H5A	142.8
$\mathrm{O}^{\text {vii }}-\mathrm{Pr}-\mathrm{O} 3{ }^{\text {vii }}$	94.76 (13)	$\mathrm{Pr}-\mathrm{O}-\mathrm{H} 5 \mathrm{~A}$	109.3
O2 ${ }^{\text {i }}$ - $\mathrm{Pr}-\mathrm{Pr}^{\text {iv }}$	109.56 (13)	Priv-O5-H5A	40.0

$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Pr}-\mathrm{Pr}^{\mathrm{iv}}$
$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 1-\mathrm{Pr}$
$\mathrm{O} 3-\mathrm{S}-\mathrm{O} 1-\mathrm{Pr}$
$\mathrm{O} 4-\mathrm{S}-\mathrm{O} 1-\mathrm{Pr}$
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pr}-\mathrm{O} 1-\mathrm{S}$
$\mathrm{O} 5 \mathrm{ii}-\mathrm{Pr}-\mathrm{O} 1-\mathrm{S}$
$\mathrm{O} 5-\mathrm{Pr}-\mathrm{O} 1-\mathrm{S}$
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Pr}-\mathrm{O} 1-\mathrm{S}$
O5 ${ }^{\text {iv }}-\mathrm{Pr}-\mathrm{O} 1-\mathrm{S}$
$\mathrm{O} 4{ }^{v}-\mathrm{Pr}-\mathrm{O} 1-\mathrm{S}$
$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{Pr}-\mathrm{O} 1-\mathrm{S}$
O 3 vii- $\mathrm{Pr}-\mathrm{O} 1 — \mathrm{~S}$
$\mathrm{Pr}^{\mathrm{iv}}-\mathrm{Pr}-\mathrm{O} 1-\mathrm{S}$
$\mathrm{Pr}^{\mathrm{ii}}-\mathrm{Pr}-\mathrm{O} 1-\mathrm{S}$
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 2-\mathrm{Pr}^{\text {viii }}$
$\mathrm{O} 3-\mathrm{S}-\mathrm{O} 2-\mathrm{Pr}^{\text {viii }}$
O4—S—O2—Priviii
$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 3-\mathrm{Pr}^{\text {vi }}$
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 3-\mathrm{Pr}^{\text {vi }}$
$\mathrm{O} 4-\mathrm{S}-\mathrm{O} 3-\mathrm{Pr}^{\text {vi }}$
$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 3-\mathrm{Pr}^{\mathrm{ix}}$
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 3-\mathrm{Pr}^{\mathrm{ix}}$
$\mathrm{O} 4-\mathrm{S}-\mathrm{O} 3-\mathrm{Pr}^{\mathrm{ix}}$
$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 4-\mathrm{Pr}^{\mathrm{x}}$
103.47 (11)
179.4 (4)
-58.5 (5)
60.3 (5)
167.8 (5)
-96.1 (4)
-57.3 (5)
70.4 (4)
136.1 (4)
1.3 (4)
39.2 (5)
-140.6 (4)
-140.0 (7)
-79.7 (4)
13.5 (8)
-109.8 (7)
132.3 (7)
168.4 (4)
46.0 (5)
-73.1 (4)
-39.4 (5)
-161.8 (4)
79.1 (5)
-86.1 (4)
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 4-\mathrm{Pr}^{\mathrm{x}}$
$\mathrm{O} 3-\mathrm{S}-\mathrm{O} 4-\mathrm{Pr}^{\mathrm{x}}$
$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 4-\mathrm{Pr}^{v}$
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 4-\mathrm{Pr}^{v}$
$\mathrm{O} 3-\mathrm{S}-\mathrm{O} 4-\mathrm{Pr}^{\mathrm{v}}$
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{ii}}$
O5 ${ }^{\mathrm{ii}}-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{ii}}$
$\mathrm{O} 1-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{ii}}$
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Pr}-\mathrm{O} 5 — \mathrm{Pr}^{\mathrm{ii}}$
$\mathrm{O}^{\mathrm{iv}}-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{ii}}$
$\mathrm{O} 4^{v}-\mathrm{Pr}-\mathrm{O} 5 — \mathrm{Pr}^{\mathrm{ii}}$
O3 ${ }^{\text {vi }}-\mathrm{Pr}-\mathrm{O} 5 — \mathrm{Pr}^{\mathrm{ii}}$
$\mathrm{O} 3{ }^{\text {vii }}-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{ii}}$
$\mathrm{Pr}^{\mathrm{iv}}-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{ii}}$
$\mathrm{O} 2-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{iv}}$
O5ii- $\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{iv}}$
$\mathrm{O} 1-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{iv}}$
O4iin- $\mathrm{Pr}-\mathrm{O} 5 — \mathrm{Pr}^{\text {iv }}$
O5 ${ }^{\text {iv }}-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\text {iv }}$
$\mathrm{O} 4{ }^{v}-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{iv}}$
$\mathrm{O} 3{ }^{\mathrm{vi}}-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\mathrm{iv}}$
$\mathrm{O}^{\text {vii }}-\mathrm{Pr}-\mathrm{O} 5-\mathrm{Pr}^{\text {iv }}$
$\mathrm{Pr}^{\mathrm{ri}}-\mathrm{Pr}-\mathrm{O} 5 — \mathrm{Pr}^{\mathrm{iv}}$
33.7 (4)
154.9 (3)
93.2 (3)
-147.0 (3)
-25.8 (4)
68.0 (3)
0.0
-38.5 (3)
-141.99 (18)
132.5 (2)
-93.60 (19)
-167.9 (2)
76.67 (19)
132.5 (2)
-64.5 (3)
-132.5 (2)
-171.07 (15)
85.5 (2)
0.0
133.87 (16)
59.53 (16)
-55.86 (15)
-132.5 (2)

Symmetry codes: (i) $x-1 / 2,-y+3 / 2, z+1 / 2$; (ii) $-x+1,-y+2,-z+1$; (iii) $x-1, y, z$; (iv) $-x,-y+2,-z+1$; (v) $-x+1,-y+2,-z$; (vi) $-x,-y+2,-z$; (vii) $x, y, z+1$; (viii) $x+1 / 2,-y+3 / 2, z-1 / 2$; (ix) $x, y, z-1$; (x) $x+1, y, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5A $\cdots{ }^{\text {O }}{ }^{\text {vi }}$	0.85	2.20	2.630 (7)	111
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {xi }}$	0.85	2.31	3.082 (7)	152

Symmetry codes: (vi) $-x,-y+2,-z$; (xi) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

