organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[bis­­(2-methyl­phen­yl)phosphan­yl]methane

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 20 December 2010; accepted 25 December 2010; online 8 January 2011)

In the title compound, C29H30P2, the dihedral angles between the two substituted benzene rings to the same P atom are 88.39 (7) and 83.88 (9)°. In the crystal, mol­ecules are arranged into columns and stacked down the b axis. Weak inter­molecular C—H⋯π inter­actions stabilize the crystal structure.

Related literature

For related structures, see: Filby et al. (2006[Filby, M., Deeming, A. J., Hogarth, G. & Lee, M.-Y. (2006). Can. J. Chem. 84, 319-329.]); Lumbreras et al. (2010[Lumbreras, E. Jr, Sisler, E. M. & Shelby, Q. D. (2010). J. Organomet. Chem. 695, 201-205.]). For the synthesis of bis­(di-o-tolyl­phosphino)methane, see: Filby et al. (2006[Filby, M., Deeming, A. J., Hogarth, G. & Lee, M.-Y. (2006). Can. J. Chem. 84, 319-329.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C29H30P2

  • Mr = 440.47

  • Monoclinic, P 21 /c

  • a = 8.2991 (5) Å

  • b = 7.4050 (5) Å

  • c = 40.782 (3) Å

  • β = 95.189 (1)°

  • V = 2496.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.43 × 0.42 × 0.10 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.981

  • 27134 measured reflections

  • 10066 independent reflections

  • 8035 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.137

  • S = 1.07

  • 10066 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C7–C12 and C20–C25 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg1i 0.93 2.83 3.7325 (18) 164
C28—H28ACg2ii 0.96 2.76 3.6929 (18) 165
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diphosphines are an important class of ligands that finds widespread use in transition metal chemistry and catalysis. A subclass of these is small bite-angle diphosphines in which the two phosphorus centers are separated only by a single atom linker unit. The small bite-angle ligand bis(di-o-tolylphosphino)methane is used in the synthesis of palladium complexes (Filby et al., 2006; Lumbreras et al., 2010).

The dihedral angles between the two substituted benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) to the same phosphine atom (P1 and P2) are 88.39 (7) and 83.88 (9)° respectively (Fig. 1). In the crystal packing, the molecules are arranged into columns and stacked down b axis. (Fig. 2). Weak intermolecular C—H···π interactions (Table 1) further stabilize the crystal structure.

Related literature top

For related structures, see: Filby et al. (2006); Lumbreras et al. (2010). For the synthesis of bis(di-o-tolylphosphino)methane, see: Filby et al. (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

All manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium and distilled from sodium benzophenone ketyl under dry oxygen free nitrogen. Bis(di-o-tolylphosphino)methane was prepared by reported procedure (Filby et al., 2006). Crystals suitable for X-ray diffraction were grown by slow solvent / solvent diffusion of CH3OH into CHCl3.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). Rotating group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis, showing the molecules stacked down the b axis.
Bis[bis(2-methylphenyl)phosphanyl]methane top
Crystal data top
C29H30P2F(000) = 936
Mr = 440.47Dx = 1.172 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6549 reflections
a = 8.2991 (5) Åθ = 4.6–33.8°
b = 7.4050 (5) ŵ = 0.19 mm1
c = 40.782 (3) ÅT = 100 K
β = 95.189 (1)°Plate, colourless
V = 2496.0 (3) Å30.43 × 0.42 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
10066 independent reflections
Radiation source: fine-focus sealed tube8035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 34.0°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.924, Tmax = 0.981k = 1111
27134 measured reflectionsl = 5164
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.7579P]
where P = (Fo2 + 2Fc2)/3
10066 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C29H30P2V = 2496.0 (3) Å3
Mr = 440.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2991 (5) ŵ = 0.19 mm1
b = 7.4050 (5) ÅT = 100 K
c = 40.782 (3) Å0.43 × 0.42 × 0.10 mm
β = 95.189 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
10066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8035 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.981Rint = 0.041
27134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
10066 reflectionsΔρmin = 0.23 e Å3
284 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.18382 (3)0.27891 (4)0.086016 (7)0.01724 (7)
P20.16377 (4)0.13495 (5)0.154290 (8)0.02634 (8)
C10.23722 (13)0.48860 (15)0.06551 (3)0.01841 (19)
C20.29605 (15)0.64220 (16)0.08257 (3)0.0230 (2)
H2A0.29910.64480.10540.028*
C30.35022 (16)0.79130 (18)0.06591 (4)0.0285 (3)
H3A0.38870.89280.07760.034*
C40.34666 (19)0.7880 (2)0.03197 (4)0.0342 (3)
H4A0.38340.88700.02070.041*
C50.2885 (2)0.6374 (2)0.01471 (4)0.0361 (3)
H5A0.28600.63670.00810.043*
C60.23309 (16)0.48582 (19)0.03092 (3)0.0267 (2)
C70.03857 (13)0.28696 (17)0.08034 (3)0.0217 (2)
C80.11985 (17)0.4501 (2)0.08482 (4)0.0320 (3)
H8A0.06050.55350.09070.038*
C90.28755 (19)0.4594 (3)0.08063 (5)0.0438 (4)
H9A0.34060.56780.08380.053*
C100.37401 (17)0.3062 (3)0.07174 (5)0.0467 (5)
H10A0.48640.31150.06890.056*
C110.29677 (17)0.1445 (3)0.06704 (4)0.0399 (4)
H11A0.35790.04280.06080.048*
C120.12682 (15)0.13087 (19)0.07148 (3)0.0273 (2)
C130.21569 (16)0.33585 (17)0.13027 (3)0.0245 (2)
H13A0.14750.43700.13520.029*
H13B0.32770.36950.13600.029*
C140.34812 (18)0.00360 (18)0.15611 (3)0.0282 (3)
C150.48803 (19)0.0451 (2)0.14168 (4)0.0352 (3)
H15A0.49210.15660.13130.042*
C160.6214 (2)0.0687 (3)0.14243 (5)0.0464 (4)
H16A0.71360.03310.13280.056*
C170.6162 (3)0.2354 (3)0.15766 (5)0.0492 (5)
H17A0.70450.31280.15810.059*
C180.4799 (3)0.2860 (2)0.17213 (4)0.0451 (4)
H18A0.47790.39780.18250.054*
C190.3439 (2)0.17399 (19)0.17171 (4)0.0344 (3)
C200.1778 (2)0.23619 (19)0.19566 (4)0.0360 (3)
C210.3219 (3)0.2361 (2)0.21606 (4)0.0495 (5)
H21A0.41400.18300.20890.059*
C220.3289 (4)0.3153 (3)0.24723 (5)0.0738 (8)
H22A0.42540.31430.26070.089*
C230.1940 (5)0.3944 (3)0.25798 (5)0.0817 (10)
H23A0.19890.44640.27880.098*
C240.0516 (4)0.3970 (2)0.23803 (6)0.0698 (8)
H24A0.03860.45280.24550.084*
C250.0383 (3)0.3179 (2)0.20667 (5)0.0476 (5)
C260.1731 (2)0.3240 (2)0.01096 (4)0.0415 (4)
H26A0.23400.21920.01840.062*
H26B0.18650.34500.01190.062*
H26C0.06070.30470.01360.062*
C270.04883 (19)0.0484 (2)0.06702 (5)0.0401 (4)
H27A0.01480.08130.08690.060*
H27B0.01970.04100.04930.060*
H27C0.13090.13800.06190.060*
C280.1983 (3)0.2342 (2)0.18810 (5)0.0504 (5)
H28A0.21610.35400.19670.076*
H28B0.10510.23390.17230.076*
H28C0.18060.15320.20580.076*
C290.1195 (3)0.3245 (3)0.18557 (7)0.0634 (6)
H29A0.20060.37890.19770.095*
H29B0.15210.20410.17930.095*
H29C0.10670.39480.16620.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01554 (12)0.01656 (13)0.01936 (13)0.00128 (9)0.00012 (8)0.00058 (9)
P20.03679 (18)0.02088 (15)0.02149 (15)0.00247 (12)0.00350 (12)0.00215 (11)
C10.0162 (4)0.0182 (5)0.0208 (5)0.0014 (4)0.0018 (3)0.0014 (4)
C20.0241 (5)0.0201 (5)0.0250 (5)0.0002 (4)0.0038 (4)0.0015 (4)
C30.0270 (6)0.0205 (5)0.0387 (7)0.0026 (5)0.0059 (5)0.0002 (5)
C40.0359 (7)0.0275 (6)0.0403 (8)0.0046 (5)0.0103 (6)0.0096 (6)
C50.0486 (8)0.0351 (7)0.0249 (6)0.0052 (6)0.0059 (6)0.0076 (5)
C60.0310 (6)0.0281 (6)0.0209 (5)0.0033 (5)0.0013 (4)0.0020 (4)
C70.0164 (4)0.0253 (5)0.0237 (5)0.0036 (4)0.0039 (4)0.0058 (4)
C80.0289 (6)0.0316 (7)0.0370 (7)0.0123 (5)0.0106 (5)0.0081 (5)
C90.0287 (7)0.0541 (10)0.0511 (10)0.0221 (7)0.0167 (6)0.0190 (8)
C100.0181 (6)0.0732 (12)0.0503 (10)0.0098 (7)0.0111 (6)0.0275 (9)
C110.0209 (6)0.0554 (10)0.0430 (8)0.0091 (6)0.0004 (5)0.0179 (7)
C120.0188 (5)0.0326 (6)0.0299 (6)0.0043 (5)0.0000 (4)0.0079 (5)
C130.0326 (6)0.0202 (5)0.0204 (5)0.0005 (4)0.0000 (4)0.0021 (4)
C140.0431 (7)0.0218 (5)0.0191 (5)0.0004 (5)0.0008 (5)0.0007 (4)
C150.0389 (7)0.0363 (7)0.0293 (7)0.0043 (6)0.0023 (5)0.0083 (6)
C160.0424 (8)0.0562 (11)0.0395 (9)0.0122 (8)0.0021 (7)0.0064 (8)
C170.0603 (11)0.0460 (10)0.0387 (9)0.0228 (9)0.0105 (8)0.0021 (7)
C180.0782 (13)0.0264 (7)0.0279 (7)0.0123 (8)0.0111 (7)0.0009 (5)
C190.0600 (9)0.0202 (5)0.0222 (6)0.0001 (6)0.0007 (6)0.0011 (4)
C200.0657 (10)0.0208 (6)0.0225 (6)0.0005 (6)0.0102 (6)0.0035 (5)
C210.0885 (14)0.0334 (8)0.0243 (7)0.0016 (8)0.0067 (8)0.0027 (6)
C220.147 (3)0.0442 (10)0.0264 (8)0.0001 (13)0.0151 (11)0.0057 (8)
C230.183 (3)0.0383 (10)0.0264 (8)0.0056 (14)0.0223 (14)0.0045 (8)
C240.144 (2)0.0280 (8)0.0453 (11)0.0098 (11)0.0530 (14)0.0054 (7)
C250.0845 (14)0.0230 (6)0.0401 (9)0.0046 (8)0.0322 (9)0.0090 (6)
C260.0633 (10)0.0380 (8)0.0220 (6)0.0137 (7)0.0022 (6)0.0033 (6)
C270.0320 (7)0.0270 (7)0.0599 (11)0.0073 (6)0.0030 (6)0.0035 (7)
C280.0842 (14)0.0236 (7)0.0458 (10)0.0068 (8)0.0188 (9)0.0061 (6)
C290.0702 (14)0.0477 (11)0.0785 (16)0.0154 (10)0.0405 (12)0.0136 (10)
Geometric parameters (Å, º) top
P1—C11.8368 (12)C15—C161.389 (2)
P1—C71.8402 (11)C15—H15A0.9300
P1—C131.8491 (13)C16—C171.384 (3)
P2—C141.8380 (15)C16—H16A0.9300
P2—C201.8404 (15)C17—C181.375 (3)
P2—C131.8532 (13)C17—H17A0.9300
C1—C21.3981 (17)C18—C191.399 (2)
C1—C61.4080 (17)C18—H18A0.9300
C2—C31.3922 (18)C19—C281.500 (3)
C2—H2A0.9300C20—C211.394 (3)
C3—C41.382 (2)C20—C251.415 (3)
C3—H3A0.9300C21—C221.396 (3)
C4—C51.382 (2)C21—H21A0.9300
C4—H4A0.9300C22—C231.371 (4)
C5—C61.4013 (19)C22—H22A0.9300
C5—H5A0.9300C23—C241.373 (4)
C6—C261.508 (2)C23—H23A0.9300
C7—C121.3982 (19)C24—C251.402 (3)
C7—C81.4037 (18)C24—H24A0.9300
C8—C91.388 (2)C25—C291.502 (4)
C8—H8A0.9300C26—H26A0.9600
C9—C101.374 (3)C26—H26B0.9600
C9—H9A0.9300C26—H26C0.9600
C10—C111.380 (3)C27—H27A0.9600
C10—H10A0.9300C27—H27B0.9600
C11—C121.4093 (18)C27—H27C0.9600
C11—H11A0.9300C28—H28A0.9600
C12—C271.495 (2)C28—H28B0.9600
C13—H13A0.9700C28—H28C0.9600
C13—H13B0.9700C29—H29A0.9600
C14—C151.396 (2)C29—H29B0.9600
C14—C191.4150 (19)C29—H29C0.9600
C1—P1—C7101.29 (5)C17—C16—C15119.57 (18)
C1—P1—C13103.45 (5)C17—C16—H16A120.2
C7—P1—C1399.71 (6)C15—C16—H16A120.2
C14—P2—C20101.95 (7)C18—C17—C16119.76 (17)
C14—P2—C13103.71 (6)C18—C17—H17A120.1
C20—P2—C1399.16 (6)C16—C17—H17A120.1
C2—C1—C6119.09 (11)C17—C18—C19121.80 (16)
C2—C1—P1123.29 (9)C17—C18—H18A119.1
C6—C1—P1117.30 (9)C19—C18—H18A119.1
C3—C2—C1121.06 (12)C18—C19—C14118.78 (16)
C3—C2—H2A119.5C18—C19—C28119.95 (15)
C1—C2—H2A119.5C14—C19—C28121.27 (15)
C4—C3—C2119.74 (13)C21—C20—C25119.57 (16)
C4—C3—H3A120.1C21—C20—P2121.78 (14)
C2—C3—H3A120.1C25—C20—P2118.65 (15)
C5—C4—C3119.95 (13)C20—C21—C22120.4 (2)
C5—C4—H4A120.0C20—C21—H21A119.8
C3—C4—H4A120.0C22—C21—H21A119.8
C4—C5—C6121.37 (14)C23—C22—C21120.2 (3)
C4—C5—H5A119.3C23—C22—H22A119.9
C6—C5—H5A119.3C21—C22—H22A119.9
C5—C6—C1118.79 (12)C22—C23—C24120.04 (19)
C5—C6—C26119.24 (13)C22—C23—H23A120.0
C1—C6—C26121.97 (12)C24—C23—H23A120.0
C12—C7—C8119.90 (12)C23—C24—C25121.8 (2)
C12—C7—P1120.11 (9)C23—C24—H24A119.1
C8—C7—P1119.99 (10)C25—C24—H24A119.1
C9—C8—C7120.98 (16)C24—C25—C20118.0 (2)
C9—C8—H8A119.5C24—C25—C29120.1 (2)
C7—C8—H8A119.5C20—C25—C29121.89 (17)
C10—C9—C8119.04 (15)C6—C26—H26A109.5
C10—C9—H9A120.5C6—C26—H26B109.5
C8—C9—H9A120.5H26A—C26—H26B109.5
C9—C10—C11121.03 (13)C6—C26—H26C109.5
C9—C10—H10A119.5H26A—C26—H26C109.5
C11—C10—H10A119.5H26B—C26—H26C109.5
C10—C11—C12121.08 (16)C12—C27—H27A109.5
C10—C11—H11A119.5C12—C27—H27B109.5
C12—C11—H11A119.5H27A—C27—H27B109.5
C7—C12—C11117.96 (14)C12—C27—H27C109.5
C7—C12—C27122.89 (11)H27A—C27—H27C109.5
C11—C12—C27119.14 (14)H27B—C27—H27C109.5
P1—C13—P2108.26 (7)C19—C28—H28A109.5
P1—C13—H13A110.0C19—C28—H28B109.5
P2—C13—H13A110.0H28A—C28—H28B109.5
P1—C13—H13B110.0C19—C28—H28C109.5
P2—C13—H13B110.0H28A—C28—H28C109.5
H13A—C13—H13B108.4H28B—C28—H28C109.5
C15—C14—C19118.38 (14)C25—C29—H29A109.5
C15—C14—P2124.06 (11)C25—C29—H29B109.5
C19—C14—P2117.48 (12)H29A—C29—H29B109.5
C16—C15—C14121.71 (15)C25—C29—H29C109.5
C16—C15—H15A119.1H29A—C29—H29C109.5
C14—C15—H15A119.1H29B—C29—H29C109.5
C7—P1—C1—C2106.29 (10)C14—P2—C13—P182.71 (7)
C13—P1—C1—C23.31 (11)C20—P2—C13—P1172.51 (8)
C7—P1—C1—C680.18 (10)C20—P2—C14—C15102.79 (13)
C13—P1—C1—C6176.84 (9)C13—P2—C14—C150.14 (14)
C6—C1—C2—C30.01 (18)C20—P2—C14—C1980.55 (12)
P1—C1—C2—C3173.42 (10)C13—P2—C14—C19176.80 (10)
C1—C2—C3—C40.3 (2)C19—C14—C15—C160.2 (2)
C2—C3—C4—C50.4 (2)P2—C14—C15—C16176.83 (13)
C3—C4—C5—C60.3 (2)C14—C15—C16—C170.4 (3)
C4—C5—C6—C10.1 (2)C15—C16—C17—C180.6 (3)
C4—C5—C6—C26179.09 (16)C16—C17—C18—C190.6 (3)
C2—C1—C6—C50.10 (18)C17—C18—C19—C140.4 (2)
P1—C1—C6—C5173.72 (11)C17—C18—C19—C28179.46 (17)
C2—C1—C6—C26179.24 (14)C15—C14—C19—C180.2 (2)
P1—C1—C6—C265.43 (18)P2—C14—C19—C18177.07 (11)
C1—P1—C7—C12137.48 (10)C15—C14—C19—C28179.22 (15)
C13—P1—C7—C12116.57 (11)P2—C14—C19—C283.92 (19)
C1—P1—C7—C842.34 (12)C14—P2—C20—C2115.95 (15)
C13—P1—C7—C863.60 (11)C13—P2—C20—C2190.27 (14)
C12—C7—C8—C90.1 (2)C14—P2—C20—C25164.84 (11)
P1—C7—C8—C9179.92 (12)C13—P2—C20—C2588.93 (12)
C7—C8—C9—C100.5 (2)C25—C20—C21—C220.3 (3)
C8—C9—C10—C110.1 (3)P2—C20—C21—C22179.50 (15)
C9—C10—C11—C120.6 (3)C20—C21—C22—C230.2 (3)
C8—C7—C12—C110.59 (19)C21—C22—C23—C240.4 (4)
P1—C7—C12—C11179.24 (11)C22—C23—C24—C250.9 (3)
C8—C7—C12—C27178.62 (14)C23—C24—C25—C200.9 (3)
P1—C7—C12—C271.55 (19)C23—C24—C25—C29179.73 (19)
C10—C11—C12—C70.9 (2)C21—C20—C25—C240.2 (2)
C10—C11—C12—C27178.31 (16)P2—C20—C25—C24178.99 (12)
C1—P1—C13—P2179.41 (6)C21—C20—C25—C29179.07 (16)
C7—P1—C13—P275.22 (7)P2—C20—C25—C290.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and C20–C25 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg1i0.932.833.7325 (18)164
C28—H28A···Cg2ii0.962.763.6929 (18)165
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC29H30P2
Mr440.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.2991 (5), 7.4050 (5), 40.782 (3)
β (°) 95.189 (1)
V3)2496.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.43 × 0.42 × 0.10
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.924, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
27134, 10066, 8035
Rint0.041
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.137, 1.07
No. of reflections10066
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and C20–C25 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg1i0.932.833.7325 (18)164
C28—H28A···Cg2ii0.962.763.6929 (18)165
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: E-2833-2010. Current address: Department of Chemistry, Gokhale Centenary College, Ankola 581 314, NK, Karnataka, India.

Thomson Reuters ResearcherID: A-5523-2009.

‡‡Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant 1001/PJJAUH/811115. IAK is grateful to USM for a Visiting Researcher position. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFilby, M., Deeming, A. J., Hogarth, G. & Lee, M.-Y. (2006). Can. J. Chem. 84, 319–329.  Web of Science CSD CrossRef CAS Google Scholar
First citationLumbreras, E. Jr, Sisler, E. M. & Shelby, Q. D. (2010). J. Organomet. Chem. 695, 201–205.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds