organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl­­idene­amino-3-(4-methyl­phen­yl)thio­urea

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: zhangyanling315@126.com

(Received 11 January 2011; accepted 13 January 2011; online 22 January 2011)

In the title compound, C15H15N3S, the almost planar 2-benzyl­idenehydrazinecarbothio­amide unit (r.m.s. deviation = 0.0351 Å) is aligned at a dihedral angle of 64.42 (6)° with respect to the plane of the tolyl ring. The mol­ecule exhibits an E configuration for the azomethine linkage. In the crystal, inter­molecular N—H⋯S hydrogen bonds about centers of inversion lead to the formation of dimers.

Related literature

For biological applications of thio­semicarbazones, see: Hu et al. (2006[Hu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3S

  • Mr = 269.36

  • Monoclinic, P 21 /c

  • a = 10.2359 (3) Å

  • b = 16.0648 (3) Å

  • c = 9.9703 (3) Å

  • β = 117.154 (4)°

  • V = 1458.81 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.88 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.603, Tmax = 0.729

  • 12637 measured reflections

  • 2605 independent reflections

  • 2253 reflections with I > 2σ(I)

  • Rint = 0.026

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.05

  • 2605 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.88 (2) 2.48 (2) 3.3522 (15) 170.3 (17)
Symmetry code: (i) -x, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Thiosemicarbazones have attracted our attention because of their biological applications (Hu et al., 2006). A few single-crystal reports about them are presented. Detailed information on their molecular and crystal structures is necessary to understand their anticancer activity. The molecular structure of (I) is shown in Fig 1. The molecules exhibit an E configuration.The thiosemicarbazide and benzaldehyde unit are located on opposite sides of the N1=C7 bond.The 2-benzylidenehydrazinecarbothioamide unit has a planar configuration and subtends an angle of 64.42 (6)° with respect to the plane of the tolyl ring.In the crystal structure of the title compound, there is N(2)—H(2)···S(1)#1 hydrogen-bond interactions in molecules which leads to a supramolecular architecture (Fig. 2).

Related literature top

For biological applications of thiosemicarbazones, see: Hu et al. (2006).

Experimental top

N-(p-Tolyl)hydrazinecarbothioamide (2.7 g,15 mmol) and benzaldehyde (1.6 g, 15 mmol) was dissolved in 95% ethanol (20 ml) and the solution was refluxed for 6.5 h. Fine colorless crystals appeared on cooling. They were filtered and washed by 95% ethanol to give 2.6 g of the title compound in 65% yield. Single crystals suitable for X-ray measurements were obtained from 2-propanol by slow evaporation at room temperature.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.96 and N—H = 0.88–0.90 Å, and refined using a riding model, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed line.
1-Benzylideneamino-3-(4-methylphenyl)thiourea top
Crystal data top
C15H15N3SF(000) = 568
Mr = 269.36Dx = 1.226 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7009 reflections
a = 10.2359 (3) Åθ = 4.9–72.1°
b = 16.0648 (3) ŵ = 1.88 mm1
c = 9.9703 (3) ÅT = 293 K
β = 117.154 (4)°Prismatic, colorless
V = 1458.81 (7) Å30.30 × 0.20 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2605 independent reflections
Radiation source: fine-focus sealed tube2253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 67.1°, θmin = 4.9°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1212
Tmin = 0.603, Tmax = 0.729k = 1919
12637 measured reflectionsl = 811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.1569P]
where P = (Fo2 + 2Fc2)/3
2605 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H15N3SV = 1458.81 (7) Å3
Mr = 269.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.2359 (3) ŵ = 1.88 mm1
b = 16.0648 (3) ÅT = 293 K
c = 9.9703 (3) Å0.30 × 0.20 × 0.18 mm
β = 117.154 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2605 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2253 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.729Rint = 0.026
12637 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
2605 reflectionsΔρmin = 0.21 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13263 (6)0.10810 (3)0.02008 (5)0.0727 (2)
N10.15900 (15)0.00305 (8)0.37897 (15)0.0546 (3)
N20.12114 (16)0.01805 (8)0.23296 (16)0.0566 (3)
N30.28187 (16)0.12678 (9)0.31818 (17)0.0599 (4)
C10.2093 (2)0.05346 (12)0.6752 (2)0.0684 (5)
H10.25670.00520.66940.082*
C20.2298 (3)0.08202 (15)0.8131 (2)0.0815 (6)
H2A0.29050.05280.90000.098*
C30.1610 (3)0.15388 (14)0.8239 (2)0.0798 (6)
H3A0.17630.17360.91770.096*
C40.0699 (3)0.19596 (13)0.6949 (2)0.0765 (5)
H40.02260.24410.70140.092*
C50.0481 (2)0.16751 (11)0.5560 (2)0.0667 (4)
H50.01400.19640.46930.080*
C60.11855 (18)0.09582 (10)0.5445 (2)0.0560 (4)
C70.09253 (18)0.06621 (10)0.39603 (19)0.0569 (4)
H70.02520.09430.31100.068*
C80.18293 (17)0.08400 (9)0.20078 (19)0.0532 (4)
C90.35959 (17)0.19777 (10)0.30466 (18)0.0542 (4)
C100.4599 (2)0.18975 (13)0.2504 (3)0.0838 (6)
H100.48010.13750.22410.101*
C110.5311 (3)0.25904 (16)0.2346 (3)0.0938 (8)
H110.59830.25290.19650.113*
C120.5053 (2)0.33670 (13)0.2737 (2)0.0750 (5)
C130.4092 (2)0.34307 (11)0.3338 (3)0.0790 (5)
H130.39330.39480.36560.095*
C140.3353 (2)0.27444 (11)0.3483 (2)0.0670 (5)
H140.26920.28040.38770.080*
C150.5825 (3)0.41238 (18)0.2529 (3)0.1188 (11)
H15B0.67780.39660.26530.178*
H15C0.59280.45380.32650.178*
H15A0.52570.43470.15360.178*
H20.054 (2)0.0105 (12)0.158 (2)0.067 (5)*
H30.294 (2)0.1122 (12)0.410 (3)0.069 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0880 (4)0.0664 (3)0.0596 (3)0.0262 (2)0.0302 (2)0.00300 (19)
N10.0597 (7)0.0492 (7)0.0585 (8)0.0007 (5)0.0303 (6)0.0018 (5)
N20.0642 (8)0.0480 (7)0.0573 (8)0.0075 (6)0.0275 (7)0.0007 (6)
N30.0670 (8)0.0561 (7)0.0596 (8)0.0104 (6)0.0315 (7)0.0027 (6)
C10.0754 (11)0.0668 (10)0.0659 (11)0.0117 (8)0.0349 (9)0.0038 (8)
C20.0902 (14)0.0930 (14)0.0586 (11)0.0119 (11)0.0317 (10)0.0073 (10)
C30.0928 (14)0.0919 (14)0.0675 (12)0.0027 (11)0.0476 (11)0.0111 (10)
C40.0926 (14)0.0691 (11)0.0825 (13)0.0089 (10)0.0527 (12)0.0085 (9)
C50.0784 (11)0.0588 (9)0.0701 (11)0.0105 (8)0.0401 (9)0.0037 (8)
C60.0627 (9)0.0510 (8)0.0620 (9)0.0003 (6)0.0352 (8)0.0008 (7)
C70.0656 (9)0.0496 (8)0.0593 (9)0.0042 (7)0.0317 (7)0.0034 (7)
C80.0561 (8)0.0444 (7)0.0634 (9)0.0003 (6)0.0309 (7)0.0010 (6)
C90.0535 (8)0.0537 (8)0.0560 (8)0.0063 (6)0.0257 (7)0.0044 (6)
C100.0799 (13)0.0721 (12)0.1209 (18)0.0164 (10)0.0643 (13)0.0325 (12)
C110.0858 (14)0.1098 (17)0.1139 (18)0.0380 (13)0.0699 (14)0.0354 (14)
C120.0735 (11)0.0781 (12)0.0649 (11)0.0267 (9)0.0242 (9)0.0005 (9)
C130.0830 (13)0.0539 (10)0.0972 (15)0.0054 (9)0.0387 (11)0.0048 (9)
C140.0668 (10)0.0599 (10)0.0840 (12)0.0036 (8)0.0427 (9)0.0096 (8)
C150.123 (2)0.117 (2)0.1007 (19)0.0629 (18)0.0376 (16)0.0096 (15)
Geometric parameters (Å, º) top
S1—C81.6776 (17)C5—H50.9300
N1—C71.276 (2)C6—C71.459 (2)
N1—N21.367 (2)C7—H70.9300
N2—C81.346 (2)C9—C141.366 (2)
N2—H20.88 (2)C9—C101.368 (3)
N3—C81.336 (2)C10—C111.378 (3)
N3—C91.432 (2)C10—H100.9300
N3—H30.90 (2)C11—C121.368 (3)
C1—C21.371 (3)C11—H110.9300
C1—C61.386 (3)C12—C131.370 (3)
C1—H10.9300C12—C151.515 (3)
C2—C31.382 (3)C13—C141.381 (3)
C2—H2A0.9300C13—H130.9300
C3—C41.374 (3)C14—H140.9300
C3—H3A0.9300C15—H15B0.9600
C4—C51.376 (3)C15—H15C0.9600
C4—H40.9300C15—H15A0.9600
C5—C61.391 (2)
C7—N1—N2115.46 (14)N3—C8—N2116.54 (15)
C8—N2—N1120.89 (14)N3—C8—S1124.09 (12)
C8—N2—H2118.7 (13)N2—C8—S1119.37 (13)
N1—N2—H2120.4 (13)C14—C9—C10119.28 (16)
C8—N3—C9123.97 (14)C14—C9—N3119.92 (15)
C8—N3—H3117.3 (13)C10—C9—N3120.80 (15)
C9—N3—H3118.6 (13)C9—C10—C11120.03 (18)
C2—C1—C6120.59 (18)C9—C10—H10120.0
C2—C1—H1119.7C11—C10—H10120.0
C6—C1—H1119.7C12—C11—C10121.56 (19)
C1—C2—C3120.49 (19)C12—C11—H11119.2
C1—C2—H2A119.8C10—C11—H11119.2
C3—C2—H2A119.8C11—C12—C13117.60 (18)
C4—C3—C2119.36 (18)C11—C12—C15120.8 (2)
C4—C3—H3A120.3C13—C12—C15121.6 (2)
C2—C3—H3A120.3C12—C13—C14121.51 (19)
C3—C4—C5120.53 (18)C12—C13—H13119.2
C3—C4—H4119.7C14—C13—H13119.2
C5—C4—H4119.7C9—C14—C13119.93 (17)
C4—C5—C6120.38 (18)C9—C14—H14120.0
C4—C5—H5119.8C13—C14—H14120.0
C6—C5—H5119.8C12—C15—H15B109.5
C1—C6—C5118.64 (16)C12—C15—H15C109.5
C1—C6—C7121.86 (15)H15B—C15—H15C109.5
C5—C6—C7119.48 (15)C12—C15—H15A109.5
N1—C7—C6122.22 (15)H15B—C15—H15A109.5
N1—C7—H7118.9H15C—C15—H15A109.5
C6—C7—H7118.9
C7—N1—N2—C8179.41 (15)N1—N2—C8—N30.1 (2)
C6—C1—C2—C30.4 (3)N1—N2—C8—S1179.63 (11)
C1—C2—C3—C40.9 (4)C8—N3—C9—C14113.67 (19)
C2—C3—C4—C50.6 (3)C8—N3—C9—C1067.3 (2)
C3—C4—C5—C60.2 (3)C14—C9—C10—C112.5 (3)
C2—C1—C6—C50.4 (3)N3—C9—C10—C11178.4 (2)
C2—C1—C6—C7178.92 (18)C9—C10—C11—C120.7 (4)
C4—C5—C6—C10.7 (3)C10—C11—C12—C132.0 (4)
C4—C5—C6—C7179.28 (17)C10—C11—C12—C15178.9 (2)
N2—N1—C7—C6178.88 (14)C11—C12—C13—C143.0 (3)
C1—C6—C7—N14.7 (3)C15—C12—C13—C14177.9 (2)
C5—C6—C7—N1176.80 (16)C10—C9—C14—C131.6 (3)
C9—N3—C8—N2179.12 (14)N3—C9—C14—C13179.34 (18)
C9—N3—C8—S11.2 (2)C12—C13—C14—C91.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.88 (2)2.48 (2)3.3522 (15)170.3 (17)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC15H15N3S
Mr269.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.2359 (3), 16.0648 (3), 9.9703 (3)
β (°) 117.154 (4)
V3)1458.81 (7)
Z4
Radiation typeCu Kα
µ (mm1)1.88
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.603, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
12637, 2605, 2253
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.05
No. of reflections2605
No. of parameters181
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.88 (2)2.48 (2)3.3522 (15)170.3 (17)
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of the Education Department of Henan Province (2010B150029), the Natural Science Foundation of Henan Province (082300420110) and the Scientific Research Foundation of Xuchang University of Henan Province (2009086) for supporting this work.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds