Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A monoclinic modification of propane-1,3-diyl bis(pyridine-3-carboxylate)

Iván Brito, ${ }^{\text {a* }}$ Javier Vallejos, ${ }^{\text {a }}$ Alejandro Cárdenas, ${ }^{\text {b }}$ Matías López-Rodríguez ${ }^{c}$ and Michael Bolte ${ }^{d}$
${ }^{\text {a }}$ Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, ${ }^{\text {b }}$ Departamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile,
${ }^{\text {c Instituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico }}$ Francisco Sánchez N ${ }^{\circ}$ 2, La Laguna, Tenerife, Spain, and ${ }^{\text {d Institut für Anorganische }}$ Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438
Frankfurt am Main, Germany
Correspondence e-mail: ivanbritob@yahoo.com

Received 17 December 2010; accepted 26 December 2010
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$;
R factor $=0.033 ; w R$ factor $=0.081$; data-to-parameter ratio $=12.9$.

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$, (I), the molecule lies on a twofold rotation axis which passes through the central C atom of the aliphatic chain, giving one half-molecule per asymmetric unit. The structure is a monoclinic polymorph of the triclinic structure previously reported [Brito, Vallejos, Bolte \& López-Rodríguez (2010). Acta Cryst. E66, o792], (II). The most obvious difference between them is the $\mathrm{O} / \mathrm{C} / \mathrm{C} / \mathrm{C}-\mathrm{O} / \mathrm{C} /$ C/C torsion angle [58.2 (7) ${ }^{\circ}$ in (I) and 173.4 (3)/70.2 (3) ${ }^{\circ}$ in (II) for GG and TG conformations, respectively]. Another important difference is observed in the dihedral angle between the planes of the aromatic rings [86.49 (7) ${ }^{\circ}$ for (I) and 76.4 (3) ${ }^{\circ}$ for (II)]. The crystal structure features a weak $\pi-$ π interaction [centroid-centroid distance $=4.1397(10) \AA$]; this latter kind of interaction is not evident in the triclinic polymorph.

Related literature

For conformation definitions, see: Carlucci et al. (2002). For the structure of the triclinic polymorph, see: Brito et al. (2010a). For the synthesis and structural characterization of coordination polymers, see: Brito et al. (2010b).

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=286.28$
Monoclinic, C2/c
$a=24.414$ (3) A
$b=4.8328$ (4) A
$c=11.5667(14) \AA$
$\beta=100.671$ (10) ${ }^{\circ}$

Data collection

Stoe IPDS II two-circle
diffractometer
3193 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.081$
$S=0.92$
1249 reflections

$$
V=1341.1(3) \AA^{3}
$$

$$
Z=4
$$

Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.35 \times 0.33 \times 0.13 \mathrm{~mm}$

1249 independent reflections 939 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

97 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$

Data collection: X - $A R E A$ (Stoe \& Cie, 2001); cell refinement: X $A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: $X P$ in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JV thanks the Universidad de Antofagasta for a PhD fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2394).

References

Brito, I., Vallejos, J., Bolte, M. \& López-Rodríguez, M. (2010a). Acta Cryst. E66, o792.
Brito, I., Vallejos, J., Mundaca, A., Cárdenas, A., Albanez, J., Vargas, D. \& López-Rodríguez, M. (2010b). Mol. Cryst. Liq. Cryst. 521, 158-167.
Carlucci, L., Ciani, G., Proserpio, D. M. \& Rizzato, S. (2002). CrystEngComm, 22, 121-129.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2011). E67, o278 [doi:10.1107/S1600536810054309]

A monoclinic modification of propane-1,3-diyl bis(pyridine-3-carboxylate)

Iván Brito, Javier Vallejos, Alejandro Cárdenas, Matías López-Rodríguez and Michael Bolte

S1. Comment

This paper forms part of our continuing study of the synthesis and structural characterization of coordination polymers (Brito et al., 2010b). We are particularly interested in the utility of the title compound of as a flexible ligand, and its binding modes, for the fabrication of different coordination polymers topologies. We report here the structure of a new polymorph of propane-1,3-diyl bis(pyridine-3-carboxylate) isolated during attempts to synthetize coordination polymers with silver trifluoromethanesulfonate of the ligand (Fig. 1, Table 1). In the title compound, (I) the molecule lies on a twofold rotation axis which passes through the central C atom of the aliphatic chain, giving one half-molecule per asymmetric unit. The structure is a monoclinic polymorph of the triclinic structure previously reported [Brito et al. (2010a). Acta Cryst. E66, o792], (II). There is excellent agreement between the geometric parameters of (I) and (II). The propanedyl group can adopt four possible conformations: trans-trans (TT), trans-gauche (TG), gauche-gauche (GG) and gauche-gauche' (GG') (Carlucci et al., 2002).The most obvious difference between them is the $\mathrm{O} / \mathrm{C} / \mathrm{C} / \mathrm{C}-\mathrm{O} / \mathrm{C} / \mathrm{C} / \mathrm{C}$ torsion angle [58.2 (7) ${ }^{\circ}$ in (I) and 173.4 (3)/70.2 (3) ${ }^{\circ}$ in (II) for GG and TG conformations, respectively]. Another difference between them is the angle between the planes of aromatic rings [86.49 (7) ${ }^{\circ}$ for (I) and $76.4(3)^{\circ}$ for triclinic modification]. The crystal structure of the title compound has one intramolecular $\mathrm{C}-\mathrm{O} \cdots \mathrm{H}$ and one weak $\pi-\pi$ interaction (4.1397 (10) $\AA C g 1 — C g 1(i)$, symmetry code (i) $=3 / 2-x, 1 / 2-y 1-z ; C g 1=\mathrm{N} 13 / \mathrm{C} 12 / \mathrm{C} 11 / \mathrm{C} 16 / \mathrm{C} 15 / \mathrm{C} 14)$, whereas this last kind of interaction is not evident in the triclinic polymorph. The triclinic modification is less compact, as noted from the lower density ($1.395 \mathrm{Mg} \mathrm{m}^{-3}$ compared with $1.418 \mathrm{Mg} \mathrm{m}^{-3}$ for the monoclinic form).

S2. Experimental

All reactions were carried out under an atmosphere of purified nitrogen. Solvents were dried and distilled prior to use. 5,5'-dinitro-2,2'-dithiodipyridine and silver trifluoromethanesulfonate were purchased from Aldrich. The title compound was obtained as colourless block crystals, in an attempt to prepare coordination polymers with silver trifluoromethanesulfonate and the ligand (II). The compound (I) was obtained by a mixture of (II) ($1 \mathrm{mmol}, 27.3 \mathrm{mg}$) and silver trifluoromethanesulfonate ($1 \mathrm{mmol}, 25.6 \mathrm{mg}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{ml})$. The title compound was filtered off and washed with $\mathrm{CH}_{3} \mathrm{CN}$. FT-IR $\left(\mathrm{KBr}\right.$ pellet, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{w}, \mathrm{C}-\mathrm{H}) 3086, v\left(\mathrm{~s}, \mathrm{~N}=\mathrm{O}\right.$ of NO_{2} asymmetric) $1581, v\left(\mathrm{v} . \mathrm{s}\right.$. of NO_{2} symmetric) $1352, v(\mathrm{w}, \mathrm{C}$ -H disubstitution 1,4$) 1962, v(\mathrm{~s}, \mathrm{C}-\mathrm{H}$ disubstitution 1,4) $852, v(\mathrm{w}, \mathrm{C}-\mathrm{N}) 1101, v(\mathrm{~s}, \mathrm{C}=\mathrm{C}) 1603, v(\mathrm{w}, \mathrm{C}-\mathrm{H}) 1010$, (s , $\mathrm{C}=\mathrm{N}) 1510, v(\mathrm{w}, \mathrm{C}-\mathrm{S}) 740, v(\mathrm{w} \mathrm{S}-\mathrm{S}) 552$.

S3. Refinement

All H atoms could be located by difference Fourier synthesis but were ultimately placed in calculated positions using a riding model with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level. [symmetry code: $\mathrm{A}=1-x, y, 1 / 2-z$]

propane-1,3-diyl bis(pyridine-3-carboxylate)

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=286.28$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=24.414$ (3) \AA
$b=4.8328$ (4) \AA
$c=11.5667(14) \AA$
$\beta=100.671(10)^{\circ}$
$V=1341.1$ (3) \AA^{3}
$Z=4$

Data collection

Stoe IPDS II two-circle diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
3193 measured reflections
1249 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.081$
$S=0.92$
1249 reflections
97 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$F(000)=600$
$D_{\mathrm{x}}=1.418 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2928 reflections
$\theta=3.4-25.9^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, colourless
$0.35 \times 0.33 \times 0.13 \mathrm{~mm}$

939 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=25.6^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-29 \rightarrow 29$
$k=-5 \rightarrow 5$
$l=-14 \rightarrow 13$

Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0497 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0099 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.57094(4)$	$0.5968(2)$	$0.53846(8)$	$0.0343(3)$
C1	$0.58554(6)$	$0.5710(3)$	$0.44442(11)$	$0.0250(3)$
O2	$0.56326(4)$	$0.7135(2)$	$0.34794(7)$	$0.0273(3)$
C3	$0.51676(6)$	$0.8926(3)$	$0.36128(11)$	$0.0272(3)$
H3A	0.5280	1.0184	0.4291	0.033^{*}
H3B	0.4849	0.7795	0.3759	0.033^{*}
C4	0.5000	$1.0583(4)$	0.2500	$0.0266(5)$
H4A	0.4679	1.1804	0.2599	0.032^{*}
C11	$0.62930(6)$	$0.3744(3)$	$0.42290(11)$	$0.0254(3)$
C12	$0.65354(6)$	$0.2013(3)$	$0.51425(12)$	$0.0299(4)$
H12	0.6415	0.2180	0.5875	0.036^{*}
N13	$0.69262(5)$	$0.0130(3)$	$0.50556(10)$	$0.0342(3)$
C14	$0.70870(6)$	$-0.0051(3)$	$0.40112(12)$	$0.0324(4)$
H14	0.7368	-0.1360	0.3930	0.039^{*}
C15	$0.68699(6)$	$0.1548(3)$	$0.30476(12)$	$0.0317(4)$
H15	0.6998	0.1327	0.2325	0.038^{*}
C16	$0.64628(6)$	$0.3481(3)$	$0.31495(11)$	$0.0290(3)$
H16	0.6303	0.4601	0.2499	0.035^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0395(6)$	$0.0414(6)$	$0.0238(5)$	$0.0043(5)$	$0.0102(4)$	$0.0026(4)$
C1	$0.0281(8)$	$0.0259(7)$	$0.0199(6)$	$-0.0060(6)$	$0.0013(6)$	$0.0007(5)$
O2	$0.0313(6)$	$0.0290(5)$	$0.0220(5)$	$0.0045(4)$	$0.0062(4)$	$0.0017(4)$
C3	$0.0274(8)$	$0.0293(8)$	$0.0260(7)$	$0.0015(6)$	$0.0080(6)$	$-0.0020(6)$
C4	$0.0259(11)$	$0.0260(11)$	$0.0281(9)$	0.000	$0.0057(8)$	0.000
C11	$0.0268(7)$	$0.0248(7)$	$0.0238(6)$	$-0.0053(6)$	$0.0030(6)$	$-0.0014(5)$
C12	$0.0355(9)$	$0.0308(8)$	$0.0232(6)$	$-0.0007(7)$	$0.0049(6)$	$-0.0009(6)$
N13	$0.0378(8)$	$0.0339(7)$	$0.0303(6)$	$0.0037(6)$	$0.0045(5)$	$0.0008(5)$
C14	$0.0306(9)$	$0.0315(8)$	$0.0354(8)$	$0.0008(6)$	$0.0067(6)$	$-0.0042(6)$
C15	$0.0335(8)$	$0.0346(8)$	$0.0282(7)$	$-0.0043(7)$	$0.0091(6)$	$-0.0037(6)$
C16	$0.0321(8)$	$0.0312(8)$	$0.0231(7)$	$-0.0052(6)$	$0.0037(6)$	$0.0009(6)$

Geometric parameters ($A,{ }^{\circ}$)

O1-C1	1.2122 (14)	C11-C16	1.3925 (16)
C1-O2	1.3381 (16)	C12-N13	1.3355 (19)
C1-C11	1.4849 (19)	C12-H12	0.9500
O2-C3	1.4585 (16)	N13-C14	1.3405 (17)
C3-C4	1.5069 (17)	C14-C15	1.379 (2)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900	C14-H14	0.9500
C3-H3B	0.9900	C15-C16	1.385 (2)
$\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	1.5069 (17)	C15-H15	0.9500
C4-H4A	1.0042	C16-H16	0.9500
C11-C12	1.391 (2)		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	123.62 (13)	C16-C11-C1	123.47 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 11$	123.82 (12)	N13-C12-C11	124.20 (12)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 11$	112.54 (10)	N13-C12-H12	117.9
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 3$	114.92 (9)	C11- $\mathrm{C} 12-\mathrm{H} 12$	117.9
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	108.59 (9)	C12-N13-C14	116.40 (13)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.0	N13-C14-C15	123.98 (14)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.0	N13-C14-H14	118.0
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.0	C15-C14-H14	118.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.0	C14-C15-C16	118.94 (12)
H3A-C3-H3B	108.4	C14-C15-H15	120.5
C3 - $\mathrm{C} 4-\mathrm{C} 3$	115.77 (17)	C16-C15-H15	120.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.4	C15-C16-C11	118.38 (13)
C3-C4-H4A	108.0	C15-C16-H16	120.8
C12-C11-C16	118.09 (13)	C11-C16-H16	120.8
C12-C11-C1	118.41 (11)		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 3$	-3.94 (19)	C16-C11-C12-N13	0.8 (2)
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 3$	174.99 (11)	$\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 13$	178.94 (14)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	174.58 (12)	C11-C12-N13-C14	0.1 (2)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	58.11 (8)	C12-N13-C14-C15	-0.7 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12$	2.7 (2)	N13-C14-C15-C16	0.4 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12$	-176.23 (13)	C14-C15-C16-C11	0.5 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 16$	-179.25 (13)	C12-C11-C16-C15	-1.1(2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 16$	1.83 (19)	C1-C11-C16-C15	-179.13 (13)

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12 — \mathrm{H} 12 \cdots \mathrm{O} 1$	0.95	2.51	$2.8298(18)$	100

