Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Hydroxy-2-(4-methoxyphenyl)-4Hchromen-4-one

Michał Wera,^a Ilia E. Serdiuk,^b Alexander D. Roshal^b and Jerzy Błażejowski^a*

^aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and ^bInstitute of Chemistry, V.N. Karazin National University, Svobody 4, 61077 Kharkiv, Ukraine Correspondence e-mail: bla@chem.univ.gda.pl

Received 5 January 2011; accepted 11 January 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.112; data-to-parameter ratio = 11.9.

In the title compound, $C_{16}H_{12}O_4$, the benzene ring is twisted at an angle of 12.3 (1) $^{\circ}$ relative to the 4*H*-chromene skeleton, and an intramolecular $O-H \cdot \cdot \cdot O$ hydrogen bond occurs. The methoxy group is almost coplanar with the benzene ring $[1.5 (1)^{\circ}]$. In the crystal, inversely oriented molecules are arranged in double (A, A') columns, along the b axis, and are linked by a network of intermolecular O-H···O hydrogen bonds (between A and A') and $C-H\cdots\pi$ contacts (within A or A'). The 4H-chromene cores are parallel within A or A', but make a dihedral angle of 88.6 (1)° between A and A'.

Related literature

For general features of flavonols (derivatives of 3-hydroxy-2phenyl-4H-chromen-4-one), see: Demchenko (2009); Klymchenko et al. (2003); Sengupta & Kasha (1979). For related structures, see: Etter et al. (1986); Waller et al. (2003); Wera et al. (2011). For intermolecular interactions, see: Aakeröy et al. (1992); Takahashi et al. (2001). For the synthesis, see: Sobottka et al. (2000).

Experimental

Crystal data

C16H12O4 $M_{\rm r} = 268.26$ Monoclinic, $P2_1/c$ a = 11.2400 (5) Åb = 4.9860 (2) Å c = 21.9907 (9) Å $\beta = 95.116 \ (4)^{\circ}$

V = 1227.51 (9) Å³ Z = 4Cu Ka radiation $\mu = 0.87 \text{ mm}^-$ T = 295 K $0.4 \times 0.05 \times 0.05 \; \mathrm{mm}$

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer Absorption correction: multi-scan (CrvsAlis RED; Oxford Diffraction, 2008) $T_{\min} = 0.723, \ T_{\max} = 0.888$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$wR(F^2) = 0.112$	independent and constrained
S = 1.04	refinement
2209 reflections	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
185 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

7763 measured reflections

 $R_{\rm int} = 0.031$

2209 independent reflections

1691 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13–C18 ring.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$011 - H11 \cdots O12$	0.91 (3)	2.17 (3)	2.672 (2)	114 (2)
	$011 - H11 \cdots O12^{i}$	0.91 (3)	1.92 (3)	2.748 (2)	149 (2)
	$C20 - H20B \cdots Cg1^{ii}$	0.96	2.87	3.710 (2)	147

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) x, y - 1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrvsAlis RED (Oxford Diffraction, 2008): data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

This study was financed by the State Funds for Scientific Research (grant DS/8220-4-0087-11).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2398).

References

Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63-65.

Demchenko, A. P. (2009). Introduction to Fluorescence Sensing. The Netherlands: Springer Science and Business Media BV.

- Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155-167.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Klymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787-792.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382-385.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sobottka, A. M., Werner, W., Blaschke, G., Kiefer, W., Nowe, U., Dannhardt, G., Schapoval, E. E. S., Schenkel, E. P. & Scriba, G. K. E. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 205-210.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430
- Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, 0767-0768.
- Wera, M., Pivovarenko, V. G. & Błażejowski, J. (2011). Acta Cryst. E67, o264-0265.

supporting information

Acta Cryst. (2011). E67, o440 [doi:10.1107/S160053681100167X]

3-Hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one

Michał Wera, Ilia E. Serdiuk, Alexander D. Roshal and Jerzy Błażejowski

S1. Comment

3-Hydroxy-2-phenyl-4*H*-chromen-4-one (flavonol) and its derivatives exhibit dual fluorescence in liquids arising from Excited State Intramolecular Proton Transfer (ESIPT) (Sengupta & Kasha, 1979). Both ESIPT and the fluorescence of flavonols depend substantially on the structure of the compounds (the angle between 4*H*-chromene and benzene moieties (Klymchenko *et al.*, 2003)) and the properties of the medium, which makes them convenient analytical probes in chemistry, biochemistry, biology and medicine (Demchenko, 2009). Here we present the crystal structure of a flavonol derivative – 3-hydroxy-2-(4-methoxyphenyl)-4*H*-chromen-4-one – a potential fluorescence sensor.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 4*H*-chromen-4-one moiety are similar to those in 2-phenyl-4*H*-chromen-4-one (flavone) (Waller *et al.*, 2003) and 3-hydroxy-2-phenyl-4*H*-chromen-4-one (flavonol) (Etter *et al.*, 1986). With respective average deviations from planarity of 0.0070 (2)° and 0.0055 (2)°, the 4*H*-chromene and benzene ring systems are oriented at a dihedral angle of 12.3 (1)° (in the case of flavonol this angle is equal to $5.5 (1)^{\circ}$ (Etter *et al.*, 1986), while 3-hydroxy-2-(4-hydroxyphenyl)-4*H*-chromen-4-one – 20.7 (1)° (Wera *et al.*, 2011)). The methoxy group remains almost in the plane of the benzene ring: it is twisted relative to the benzene ring by an angle of only 1.5 (1)°.

In the crystal structure, the inversely oriented molecules are arranged in double (A,A') columns, along the *b* axis, and linked by a network of intermolecular O–H···O (Aakeröy *et al.*, 1992) hydrogen bonds (between A and A') and C–H··· π (Takahashi *et al.*, 2001) contacts (within A or A') (Table 1, Figs. 2 and 3). The 4*H*-chromene cores are parallel within A or A', but lie at an angle of 88.6 (1)° between A and A'. The crystal lattice is stabilized by dispersive interactions between inversely oriented columns. The intramolecular O11–H11···O12 hydrogen bond (Table 1, Figs. 1–3) is believed to be involved in the ESIPT phenomenon, characteristic of flavonols (Sengupta & Kasha, 1979).

S2. Experimental

The title compound was synthesized as a result of the oxidative heterocyclization of 1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one, synthesized first by the condensation of 1-(2-hydroxyphenyl)ethanone with 4-methoxybenzaldehyde in ethanol/50% aqueous NaOH (1/1 v/v), in alkaline ethanol/H₂O₂ (Sobottka *et al.*, 2000). The filtered product was purified chromatographically (Silica Gel, chloroform/ethanol, 20/1 v/v) and colorless crystals suitable for Xray investigations were grown from chloroform (m.p. = 510 - 511 K).

S3. Refinement

H atoms of C–H bonds were positioned geometrically, with C–H = 0.93Å and 0.96Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$ where x = 1.2 for the aromatic H and 1.5 for methyl H atoms. H atoms involved in O–H···O hydrogen bonds were located on a difference Fourier map and refined isotropically with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O–H…O hydrogen bond is indicated by a dashed line.

Figure 2

The arrangement of the molecules in the crystal structure. The O–H···O hydrogen bonds are represented by dashed lines, the C–H··· π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –*x*, *y* – 1/2, –*z* + 1/2; (ii) *x*, *y* – 1, *z*.]

Figure 3

Columns in the crystal structure, viewed along the *b* axis. The O–H···O interactions are represented by dashed lines, the C–H··· π contacts by dotted lines. H atoms not involved in interactions have been omitted. A and A' indicate the double columns.

3-Hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one

Crystal data	
$C_{16}H_{12}O_4$ $M_r = 268.26$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc $a = 11.2400 (5) \text{ Å}$ $b = 4.9860 (2) \text{ Å}$ $c = 21.9907 (9) \text{ Å}$ $\beta = 95.116 (4)^\circ$ $V = 1227.51 (9) \text{ Å}^3$	F(000) = 560 $D_x = 1.452 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2209 reflections $\theta = 4.0-68.3^{\circ}$ $\mu = 0.87 \text{ mm}^{-1}$ T = 295 K Needle, colorless $0.4 \times 0.05 \times 0.05 \text{ mm}$
Data collection Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer Radiation source: Ultra (Cu) X-ray Source' Mirror monochromator Detector resolution: 10.4002 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2008) $T_{min} = 0.723, T_{max} = 0.888$	7763 measured reflections 2209 independent reflections 1691 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 68.3^\circ, \ \theta_{min} = 4.0^\circ$ $h = -13 \rightarrow 13$ $k = -5 \rightarrow 5$ $l = -25 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.112$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
2209 reflections	and constrained refinement
185 parameters	$w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 0.2165P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.31792 (10)	0.8649 (2)	0.40435 (5)	0.0418 (3)
C2	0.22283 (14)	0.6906 (3)	0.40261 (7)	0.0360 (4)
C3	0.14034 (15)	0.6880 (3)	0.35333 (7)	0.0382 (4)
C4	0.15007 (15)	0.8610 (3)	0.30130 (7)	0.0387 (4)
C5	0.27235 (18)	1.2220 (4)	0.25831 (8)	0.0481 (5)
Н5	0.2193	1.2302	0.2234	0.058*
C6	0.37020 (19)	1.3850 (4)	0.26374 (9)	0.0526 (5)
H6	0.3833	1.5046	0.2326	0.063*
C7	0.45087 (18)	1.3732 (4)	0.31592 (9)	0.0510 (5)
H7	0.5176	1.4843	0.3191	0.061*
C8	0.43220 (16)	1.1982 (4)	0.36261 (8)	0.0459 (4)
H8	0.4857	1.1900	0.3973	0.055*
C9	0.25145 (15)	1.0416 (3)	0.30532 (7)	0.0385 (4)
C10	0.33197 (15)	1.0345 (3)	0.35681 (7)	0.0391 (4)
O11	0.04691 (11)	0.5154 (3)	0.35012 (5)	0.0495 (3)
H11	0.012 (2)	0.521 (5)	0.3111 (11)	0.074*
012	0.07565 (12)	0.8432 (3)	0.25643 (5)	0.0523 (4)
C13	0.22946 (15)	0.5200 (3)	0.45717 (7)	0.0366 (4)
C14	0.33350 (16)	0.5131 (4)	0.49652 (8)	0.0458 (4)
H14	0.3973	0.6231	0.4888	0.055*
C15	0.34395 (16)	0.3468 (4)	0.54671 (8)	0.0485 (5)
H15	0.4151	0.3426	0.5718	0.058*
C16	0.24935 (16)	0.1858 (4)	0.56016 (7)	0.0411 (4)
C17	0.14504 (16)	0.1926 (4)	0.52235 (8)	0.0494 (5)

H17	0.0806	0.0867	0.5311	0.059*	
C18	0.13582 (16)	0.3565 (4)	0.47141 (8)	0.0479 (5)	
H18	0.0651	0.3573	0.4460	0.057*	
019	0.26808 (12)	0.0309 (3)	0.61117 (5)	0.0532 (4)	
C20	0.17391 (19)	-0.1423 (4)	0.62537 (9)	0.0568 (5)	
H20A	0.1990	-0.2448	0.6612	0.085*	
H20B	0.1541	-0.2616	0.5917	0.085*	
H20C	0.1051	-0.0374	0.6328	0.085*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0424 (6)	0.0461 (7)	0.0357 (6)	-0.0079 (5)	-0.0038 (5)	0.0054 (5)
C2	0.0354 (8)	0.0395 (9)	0.0327 (8)	-0.0025 (7)	0.0005 (6)	-0.0004 (7)
C3	0.0389 (9)	0.0418 (9)	0.0333 (8)	-0.0001 (7)	-0.0004 (7)	-0.0013 (7)
C4	0.0432 (9)	0.0391 (9)	0.0332 (8)	0.0070 (7)	-0.0005 (7)	-0.0010 (7)
C5	0.0617 (12)	0.0450 (10)	0.0375 (9)	0.0048 (9)	0.0042 (8)	0.0035 (7)
C6	0.0662 (12)	0.0469 (11)	0.0465 (10)	0.0011 (9)	0.0142 (9)	0.0090 (8)
C7	0.0536 (11)	0.0467 (10)	0.0542 (11)	-0.0053 (9)	0.0139 (9)	0.0017 (8)
C8	0.0460 (10)	0.0448 (10)	0.0467 (10)	-0.0030 (8)	0.0037 (8)	0.0009 (8)
C9	0.0449 (9)	0.0361 (9)	0.0347 (8)	0.0063 (7)	0.0046 (7)	-0.0004 (7)
C10	0.0456 (9)	0.0370 (9)	0.0352 (8)	0.0015 (7)	0.0059 (7)	0.0020 (7)
011	0.0479 (7)	0.0638 (8)	0.0342 (6)	-0.0158 (6)	-0.0108 (5)	0.0056 (6)
O12	0.0593 (8)	0.0566 (8)	0.0376 (7)	0.0003 (6)	-0.0140 (6)	0.0054 (6)
C13	0.0378 (8)	0.0407 (9)	0.0307 (8)	-0.0016 (7)	0.0001 (6)	-0.0009 (7)
C14	0.0400 (9)	0.0572 (11)	0.0391 (9)	-0.0129 (8)	-0.0032 (7)	0.0069 (8)
C15	0.0401 (9)	0.0629 (12)	0.0401 (9)	-0.0094 (9)	-0.0101 (7)	0.0102 (8)
C16	0.0475 (10)	0.0455 (9)	0.0296 (8)	-0.0040 (8)	-0.0013 (7)	0.0019 (7)
C17	0.0444 (10)	0.0587 (11)	0.0438 (10)	-0.0160 (9)	-0.0037 (8)	0.0076 (8)
C18	0.0387 (9)	0.0626 (12)	0.0401 (9)	-0.0094 (9)	-0.0093 (7)	0.0091 (8)
019	0.0547 (8)	0.0630 (8)	0.0397 (7)	-0.0141 (6)	-0.0076 (6)	0.0156 (6)
C20	0.0661 (13)	0.0593 (12)	0.0447 (10)	-0.0167 (10)	0.0025 (9)	0.0116 (9)

Geometric parameters (Å, °)

01—C10	1.3645 (19)	C9—C10	1.386 (2)	
O1—C2	1.3755 (19)	O11—H11	0.91 (3)	
С2—С3	1.362 (2)	C13—C18	1.389 (2)	
C2—C13	1.467 (2)	C13—C14	1.392 (2)	
C3—O11	1.355 (2)	C14—C15	1.377 (2)	
C3—C4	1.445 (2)	C14—H14	0.9300	
C4—O12	1.238 (2)	C15—C16	1.385 (2)	
С4—С9	1.449 (2)	C15—H15	0.9300	
С5—С6	1.364 (3)	C16—O19	1.363 (2)	
С5—С9	1.406 (2)	C16—C17	1.376 (2)	
С5—Н5	0.9300	C17—C18	1.383 (2)	
С6—С7	1.399 (3)	C17—H17	0.9300	
С6—Н6	0.9300	C18—H18	0.9300	

С7—С8	1.378 (3)	O19—C20	1.422 (2)
С7—Н7	0.9300	C20—H20A	0.9600
C8—C10	1.388 (2)	C20—H20B	0.9600
C8—H8	0.9300	C20—H20C	0.9600
C10—O1—C2	120.85 (13)	C9—C10—C8	121.70 (16)
C3—C2—O1	120.02 (14)	C3—O11—H11	107.3 (15)
C3—C2—C13	128.80 (15)	C18—C13—C14	117.19 (15)
O1—C2—C13	111.15 (13)	C18—C13—C2	122.71 (14)
O11—C3—C2	121.13 (15)	C14—C13—C2	120.09 (15)
O11—C3—C4	116.80 (14)	C15—C14—C13	121.33 (16)
C2—C3—C4	122.03 (15)	C15—C14—H14	119.3
O12—C4—C3	119.67 (16)	C13—C14—H14	119.3
O12—C4—C9	124.37 (15)	C14—C15—C16	120.53 (16)
C3—C4—C9	115.93 (14)	C14—C15—H15	119.7
C6—C5—C9	120.20 (17)	C16—C15—H15	119.7
С6—С5—Н5	119.9	O19—C16—C17	124.91 (16)
С9—С5—Н5	119.9	O19—C16—C15	116.04 (15)
C5—C6—C7	120.35 (17)	C17—C16—C15	119.04 (16)
С5—С6—Н6	119.8	C16—C17—C18	120.16 (17)
С7—С6—Н6	119.8	C16—C17—H17	119.9
C8—C7—C6	120.48 (18)	C18—C17—H17	119.9
С8—С7—Н7	119.8	C17—C18—C13	121.73 (16)
С6—С7—Н7	119.8	C17—C18—H18	119.1
C7—C8—C10	118.72 (18)	C13—C18—H18	119.1
С7—С8—Н8	120.6	C16—O19—C20	117.48 (14)
С10—С8—Н8	120.6	O19—C20—H20A	109.5
C10—C9—C5	118.54 (16)	O19—C20—H20B	109.5
C10—C9—C4	119.12 (15)	H20A—C20—H20B	109.5
C5—C9—C4	122.33 (16)	O19—C20—H20C	109.5
O1—C10—C9	122.03 (15)	H20A—C20—H20C	109.5
O1—C10—C8	116.27 (15)	H20B—C20—H20C	109.5
C10—O1—C2—C3	-0.8 (2)	C4—C9—C10—O1	-0.9 (2)
C10-01-C2-C13	177.25 (14)	C5—C9—C10—C8	-0.6 (3)
O1-C2-C3-O11	178.96 (15)	C4—C9—C10—C8	178.47 (16)
C13—C2—C3—O11	1.3 (3)	C7—C8—C10—O1	179.94 (15)
O1—C2—C3—C4	1.2 (2)	C7—C8—C10—C9	0.5 (3)
C13—C2—C3—C4	-176.51 (16)	C3—C2—C13—C18	-12.4 (3)
O11—C3—C4—O12	-1.0 (2)	O1—C2—C13—C18	169.72 (15)
C2—C3—C4—O12	176.88 (16)	C3—C2—C13—C14	166.24 (18)
O11—C3—C4—C9	-179.22 (14)	O1—C2—C13—C14	-11.6 (2)
C2—C3—C4—C9	-1.4 (2)	C18—C13—C14—C15	1.4 (3)
C9—C5—C6—C7	0.3 (3)	C2-C13-C14-C15	-177.35 (17)
C5—C6—C7—C8	-0.4 (3)	C13—C14—C15—C16	-1.6 (3)
C6—C7—C8—C10	0.0 (3)	C14—C15—C16—O19	-179.23 (17)
C6—C5—C9—C10	0.1 (3)	C14—C15—C16—C17	0.6 (3)
C6—C5—C9—C4	-178.88 (16)	O19—C16—C17—C18	-179.65 (17)

O12—C4—C9—C10	-176.95 (16)	C15—C16—C17—C18	0.6 (3)
C3—C4—C9—C10	1.2 (2)	C16—C17—C18—C13	-0.7 (3)
O12—C4—C9—C5	2.0 (3)	C14—C13—C18—C17	-0.2 (3)
C3—C4—C9—C5	-179.82 (16)	C2-C13-C18-C17	178.47 (17)
C2-O1-C10-C9	0.7 (2)	C17—C16—O19—C20	1.9 (3)
C2-01-C10-C8	-178.72 (14)	C15—C16—O19—C20	-178.31 (16)
C5—C9—C10—O1	-179.96 (15)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O11—H11…O12	0.91 (3)	2.17 (3)	2.672 (2)	114 (2)
011—H11…012 ⁱ	0.91 (3)	1.92 (3)	2.748 (2)	149 (2)
C20—H20 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱ	0.96	2.87	3.710 (2)	147

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) x, y-1, z.