organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl­cyclo­hexa­naminium chloride

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 8 December 2010; accepted 6 January 2011; online 12 January 2011)

In the title salt, C12H24N+·Cl, both cyclo­hexyl rings adopt chair conformations and the NH2 unit is situated in the equatorial position with respect to the rings in the cation. The large C—N—C bond angle [117.99 (14)°] in the cation is a result of linking two bulky cyclo­hexyl rings to the N atom. The aminium H atoms are involved in inter­molecular N—H⋯Cl hydrogen bonds, forming an infinite zigzag chain parallel to the c axis. The crystal studied was a racemic twin with a twin fraction of 0.28 (18).

Related literature

For related structures, see: Gholivand & Pourayoubi (2004[Gholivand, K. & Pourayoubi, M. (2004). Z. Kristallogr. New Cryst. Struct. 219, 314-316.]); Pourayoubi & Negari (2010[Pourayoubi, M. & Negari, M. (2010). Acta Cryst. E66, o708.]).

[Scheme 1]

Experimental

Crystal data
  • C12H24N+·Cl

  • Mr = 217.77

  • Orthorhombic, F d d 2

  • a = 40.0268 (19) Å

  • b = 23.1726 (10) Å

  • c = 5.3463 (2) Å

  • V = 4958.8 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 120 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.886, Tmax = 1.000

  • 13243 measured reflections

  • 1219 independent reflections

  • 1096 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 1.00

  • 1219 reflections

  • 136 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1i 0.87 (2) 2.28 (3) 3.157 (3) 178 (2)
N1—H2N⋯Cl1 1.03 (3) 2.15 (3) 3.163 (3) 168 (2)
Symmetry code: (i) x, y, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of C10H16N+.Cl- was reported recently (Pourayoubi & Negari, 2010). In continuation of our investigations, we report in this paper the preparation and crystal structure of the title salt.

In the title salt (Fig. 1), the cyclohexyl groups adopt chair conformations and the NH2 unit is situated in the equatorial position with respect to the rings. The C–N bond lengths of 1.502 (2) and 1.516 (2) Å are in agreement with the corresponding bond lengths reported in closely related compounds (Pourayoubi & Negari, 2010; Gholivand & Pourayoubi, 2004).

A large C1—N1—C7 bond angle (of 117.99 (14)°) in the cation, (C6H11)2NH2+, is a result of the two bulky C6H11 groups linked to the N atom. The nitrogen bound H atoms are involving in intermolecular N—H···Cl hydrogen bonds (N···Cl = 3.157 (3) and 3.163 (3) Å) to form an infinite zigzag chain parallel to the c axis.

Related literature top

For related structures, see: Gholivand & Pourayoubi (2004); Pourayoubi & Negari (2010).

Experimental top

The title compound is a by-product of the preparation of P(O)[OC6H5][N(C6H11)2]2 [from the reaction between P(O)(OC6H5)Cl2 and NH(C6H11)2, in 1:4 mole ratio]. Single crystals were obtained from a solution of ethanol at room temperature.

Refinement top

Carbon bound hydrogen atoms were included in the refinement at geometrically idealized positions with distances C—H = 0.99 and 1.00 Å for methylene and methyne type H-atoms and their Uiso were set to 1.2Ueq times of their parent atoms. Nitrogen bound hydrogen atoms were located in a difference Fourier map and refined isotropically. In final refinement cycles, racemic twinning was taken into account, giving a twin fraction of 0.28 (18); Friedel pairs (967) were merged.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom labeling scheme for title compound with displacement ellipsoids at the 50% probability level.
N-Cyclohexylcyclohexanaminium chloride top
Crystal data top
C12H24N+·ClF(000) = 1920
Mr = 217.77Dx = 1.167 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 6909 reflections
a = 40.0268 (19) Åθ = 2.8–27.3°
b = 23.1726 (10) ŵ = 0.27 mm1
c = 5.3463 (2) ÅT = 120 K
V = 4958.8 (4) Å3Block, colorless
Z = 160.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
1219 independent reflections
Radiation source: Enhance (Mo) X-ray Source1096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scansh = 2547
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 2627
Tmin = 0.886, Tmax = 1.000l = 66
13243 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0378P)2]
where P = (Fo2 + 2Fc2)/3
1219 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.11 e Å3
Crystal data top
C12H24N+·ClV = 4958.8 (4) Å3
Mr = 217.77Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 40.0268 (19) ŵ = 0.27 mm1
b = 23.1726 (10) ÅT = 120 K
c = 5.3463 (2) Å0.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
1219 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1096 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 1.000Rint = 0.032
13243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
1219 reflectionsΔρmin = 0.11 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.100648 (13)0.19484 (2)0.28104 (17)0.02112 (15)
N10.10617 (4)0.26694 (6)0.7818 (5)0.0166 (4)
C10.14111 (5)0.29218 (8)0.7797 (5)0.0161 (4)
H1B0.14330.31860.63280.019*
C20.16565 (5)0.24213 (9)0.7477 (5)0.0228 (5)
H2A0.16110.22210.58770.027*
H2B0.16250.21400.88520.027*
C30.20173 (5)0.26402 (10)0.7495 (5)0.0258 (5)
H3A0.21720.23090.73600.031*
H3B0.20540.28940.60320.031*
C40.20916 (5)0.29750 (9)0.9898 (5)0.0237 (6)
H4A0.20740.27131.13540.028*
H4B0.23220.31280.98370.028*
C50.18455 (5)0.34732 (8)1.0204 (6)0.0227 (5)
H5A0.18790.37530.88280.027*
H5B0.18910.36741.18020.027*
C60.14823 (5)0.32636 (8)1.0181 (6)0.0207 (5)
H6A0.14410.30161.16600.025*
H6B0.13300.35991.02760.025*
C70.07713 (5)0.30801 (8)0.7845 (6)0.0169 (4)
H7A0.08040.33630.92380.020*
C80.04529 (5)0.27365 (9)0.8342 (5)0.0219 (5)
H8A0.04710.25380.99770.026*
H8B0.04250.24390.70310.026*
C90.01485 (6)0.31357 (11)0.8354 (5)0.0277 (6)
H9A0.00560.29030.85940.033*
H9B0.01660.34080.97740.033*
C100.01206 (6)0.34760 (10)0.5914 (5)0.0262 (6)
H10A0.00680.37510.60340.031*
H10B0.00740.32070.45180.031*
C110.04427 (5)0.38076 (8)0.5367 (5)0.0224 (5)
H11A0.04730.41120.66440.027*
H11B0.04240.39980.37150.027*
C120.07490 (5)0.34125 (8)0.5370 (5)0.0196 (5)
H12A0.09540.36460.51380.024*
H12B0.07330.31360.39620.024*
H1N0.1053 (6)0.2468 (10)0.920 (5)0.012 (7)*
H2N0.1029 (6)0.2391 (12)0.634 (6)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0307 (3)0.0149 (2)0.0178 (2)0.0004 (2)0.0032 (3)0.0000 (2)
N10.0183 (11)0.0159 (8)0.0155 (8)0.0013 (7)0.0006 (9)0.0034 (10)
C10.0125 (10)0.0191 (10)0.0169 (10)0.0010 (8)0.0012 (12)0.0001 (11)
C20.0209 (13)0.0225 (11)0.0250 (13)0.0037 (10)0.0036 (11)0.0085 (10)
C30.0159 (13)0.0342 (12)0.0274 (13)0.0057 (10)0.0037 (12)0.0105 (12)
C40.0171 (13)0.0275 (12)0.0265 (13)0.0003 (10)0.0046 (12)0.0067 (10)
C50.0184 (13)0.0217 (10)0.0280 (12)0.0004 (9)0.0064 (13)0.0072 (13)
C60.0191 (12)0.0195 (10)0.0235 (11)0.0022 (10)0.0002 (11)0.0019 (12)
C70.0164 (11)0.0172 (9)0.0171 (9)0.0033 (9)0.0024 (13)0.0034 (10)
C80.0205 (13)0.0249 (12)0.0203 (13)0.0018 (10)0.0001 (10)0.0081 (9)
C90.0170 (13)0.0374 (14)0.0288 (16)0.0005 (11)0.0014 (10)0.0076 (11)
C100.0210 (14)0.0277 (12)0.0298 (15)0.0037 (11)0.0044 (11)0.0041 (10)
C110.0209 (13)0.0184 (10)0.0281 (12)0.0008 (9)0.0028 (13)0.0017 (11)
C120.0187 (13)0.0162 (10)0.0240 (11)0.0003 (9)0.0003 (12)0.0051 (11)
Geometric parameters (Å, º) top
N1—C71.502 (2)C6—H6A0.9900
N1—C11.516 (2)C6—H6B0.9900
N1—H1N0.87 (2)C7—C81.526 (3)
N1—H2N1.03 (3)C7—C121.534 (4)
C1—C61.527 (4)C7—H7A1.0000
C1—C21.529 (3)C8—C91.530 (3)
C1—H1B1.0000C8—H8A0.9900
C2—C31.531 (3)C8—H8B0.9900
C2—H2A0.9900C9—C101.529 (3)
C2—H2B0.9900C9—H9A0.9900
C3—C41.530 (3)C9—H9B0.9900
C3—H3A0.9900C10—C111.529 (3)
C3—H3B0.9900C10—H10A0.9900
C4—C51.526 (3)C10—H10B0.9900
C4—H4A0.9900C11—C121.530 (3)
C4—H4B0.9900C11—H11A0.9900
C5—C61.533 (3)C11—H11B0.9900
C5—H5A0.9900C12—H12A0.9900
C5—H5B0.9900C12—H12B0.9900
C7—N1—C1117.99 (14)C1—C6—H6B109.6
C7—N1—H1N107.4 (15)C5—C6—H6B109.6
C1—N1—H1N104.4 (15)H6A—C6—H6B108.1
C7—N1—H2N107.9 (15)N1—C7—C8108.49 (15)
C1—N1—H2N110.7 (14)N1—C7—C12110.8 (2)
H1N—N1—H2N108.0 (17)C8—C7—C12111.32 (19)
N1—C1—C6111.49 (19)N1—C7—H7A108.7
N1—C1—C2107.50 (15)C8—C7—H7A108.7
C6—C1—C2111.50 (18)C12—C7—H7A108.7
N1—C1—H1B108.8C7—C8—C9110.51 (17)
C6—C1—H1B108.8C7—C8—H8A109.5
C2—C1—H1B108.8C9—C8—H8A109.5
C1—C2—C3110.73 (17)C7—C8—H8B109.5
C1—C2—H2A109.5C9—C8—H8B109.5
C3—C2—H2A109.5H8A—C8—H8B108.1
C1—C2—H2B109.5C10—C9—C8111.50 (19)
C3—C2—H2B109.5C10—C9—H9A109.3
H2A—C2—H2B108.1C8—C9—H9A109.3
C4—C3—C2110.89 (19)C10—C9—H9B109.3
C4—C3—H3A109.5C8—C9—H9B109.3
C2—C3—H3A109.5H9A—C9—H9B108.0
C4—C3—H3B109.5C9—C10—C11111.2 (2)
C2—C3—H3B109.5C9—C10—H10A109.4
H3A—C3—H3B108.0C11—C10—H10A109.4
C5—C4—C3110.37 (19)C9—C10—H10B109.4
C5—C4—H4A109.6C11—C10—H10B109.4
C3—C4—H4A109.6H10A—C10—H10B108.0
C5—C4—H4B109.6C10—C11—C12112.01 (16)
C3—C4—H4B109.6C10—C11—H11A109.2
H4A—C4—H4B108.1C12—C11—H11A109.2
C4—C5—C6111.81 (16)C10—C11—H11B109.2
C4—C5—H5A109.3C12—C11—H11B109.2
C6—C5—H5A109.3H11A—C11—H11B107.9
C4—C5—H5B109.3C11—C12—C7110.37 (19)
C6—C5—H5B109.3C11—C12—H12A109.6
H5A—C5—H5B107.9C7—C12—H12A109.6
C1—C6—C5110.4 (2)C11—C12—H12B109.6
C1—C6—H6A109.6C7—C12—H12B109.6
C5—C6—H6A109.6H12A—C12—H12B108.1
C7—N1—C1—C663.7 (3)C1—N1—C7—C8169.8 (2)
C7—N1—C1—C2173.8 (2)C1—N1—C7—C1267.7 (3)
N1—C1—C2—C3178.8 (2)N1—C7—C8—C9179.26 (19)
C6—C1—C2—C356.3 (3)C12—C7—C8—C957.1 (2)
C1—C2—C3—C456.7 (3)C7—C8—C9—C1056.2 (3)
C2—C3—C4—C556.6 (2)C8—C9—C10—C1154.7 (3)
C3—C4—C5—C656.5 (3)C9—C10—C11—C1254.4 (3)
N1—C1—C6—C5175.55 (16)C10—C11—C12—C755.0 (3)
C2—C1—C6—C555.4 (2)N1—C7—C12—C11177.21 (16)
C4—C5—C6—C155.7 (3)C8—C7—C12—C1156.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.87 (2)2.28 (3)3.157 (3)178 (2)
N1—H2N···Cl11.03 (3)2.15 (3)3.163 (3)168 (2)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H24N+·Cl
Mr217.77
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)120
a, b, c (Å)40.0268 (19), 23.1726 (10), 5.3463 (2)
V3)4958.8 (4)
Z16
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.886, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13243, 1219, 1096
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.00
No. of reflections1219
No. of parameters136
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.11

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.87 (2)2.28 (3)3.157 (3)178 (2)
N1—H2N···Cl11.03 (3)2.15 (3)3.163 (3)168 (2)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationGholivand, K. & Pourayoubi, M. (2004). Z. Kristallogr. New Cryst. Struct. 219, 314–316.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPourayoubi, M. & Negari, M. (2010). Acta Cryst. E66, o708.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds