

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(4-Bromophenyl)-4-nitrobenzamide

Sohail Saeed,^a* Jerry P. Jasinski^b and Ray J. Butcher^c

^aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA Correspondence e-mail: sohail262001@vahoo.com

Received 12 December 2010; accepted 4 January 2011

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.075; data-to-parameter ratio = 14.2.

In the title compound, $C_{13}H_9BrN_2O_3$, the dihedral angle between the mean planes of the two benzene rings is 3.6 (7)°. The amide group is twisted by 28.1 (6) and 31.8 (3)° from the mean planes of the 4-bromophenyl and 4-nitrobenzene rings, respectively. The crystal packing features weak intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds resulting in a three-dimensional network.

Related literature

For the antimicrobial activity of amides, see: Priya *et al.* (2005). For the use of amides in supramolecular chemical anion sensor technology, see: Jagessar & Rampersaud (2007). For a related structure, see: Gowda *et al.* (2008);

Experimental

Crystal data

 $V = 1210.24 (3) Å^{3}$ Z = 4Cu K\alpha radiation $\mu = 4.70 \text{ mm}^{-1}$ T = 123 K0.48 \times 0.12 \times 0.07 mm 8049 measured reflections

 $R_{\rm int} = 0.025$

2434 independent reflections 2329 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction Xcalibur Ruby	
Gemini diffractometer	
Absorption correction: multi-scan	
(CrysAlis RED; Oxford	
Diffraction, 2007)	

 $T_{\min} = 0.485, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	172 parameters
$wR(F^2) = 0.075$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
2434 reflections	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1-H1A\cdotsO1^{i}$	0.88	2.33	3.0026 (18)	133
$N1 - H1A \cdots O2^{ii}$	0.88	2.59	3.284 (2)	136
$C3-H3A\cdotsO1^{iii}$	0.95	2.45	3.284 (2)	146
$C5-H5A\cdots O3^{iv}$	0.95	2.52	3.447 (2)	166
$C6-H6A\cdots O2^{ii}$	0.95	2.49	3.354 (2)	151
$C9-H9A\cdots O2^{ii}$	0.95	2.48	3.397 (2)	162

Symmetry codes: (i) x - 1, y, z; (ii) $-x - 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y, -z + 1; (iv) x, y + 1, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *PLATON* (Spek, 2009).

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2370).

References

- Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1294.
- Jagessar, R. C. & Rampersaud, D. (2007). Life Sci. J. 4, 46-49.
- Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Priya, B. S., Swamy, B. S. N. & Rangapa, K. S. (2005). Bioorg. Med. Chem. 13, 2623–2628.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o279 [doi:10.1107/S1600536811000122]

N-(4-Bromophenyl)-4-nitrobenzamide

Sohail Saeed, Jerry P. Jasinski and Ray J. Butcher

S1. Comment

Amides are known to play a pivitol role in molecular recognition, being important components in supramolecular chemical anion sensors technology (Jagessar & Rampersaud, 2007). Moreover, amides have also been reported as antimicrobial agents (Priya *et al.*, 2005). The structure of the title compound has been determined to explore the effect of substituents on the structure of benzanilides.

In the title compound (Fig. 1), the dihedral angle between the mean planes of the two benzene rings is $3.6 (7)^\circ$. The amide group is twisted by 28.1 (6) and $31.8 (3)^\circ$ from the mean planes of the 4-bromophenyl and 4-nitrobenzene rings. The bond distances and angles in the title compound agree well with the corresponding bond distances and angles reported for a closely related compound (Gowda *et al.*, 2008). The crystal packing of the title compound is stabilized by weak N—H…O and C—H…O intermolecular hydrogen bonds which results in a hydrogen bonded 3-D network (Fig. 2).

S2. Experimental

A solution of 4-nitrobenzoyl chloride (0.01 mol) and 4-bromoaniline (0.01 mol) in anhydrous acetone was refluxed for 4 h. After completion of the reaction, the crude solid product was filtered, washed with water and purified by recrystallization from ethyl acetate.

S3. Refinement

The N-H atom length was set to 0.88Å (NH) and the H atom refined isotropically.

The H atoms were placed in their calculated positions with N—H = 0.88 and C—H = 0.95° A and refined using the riding model with isotropic displacement parameters set to 1.2 times U_{eq} of the parent atoms.

Figure 1

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Figure 2

Packing diagram of the title compound viewed down the *a* axis; hydrogen bonds are indicated by dashed lines indicate and H-atoms not involved in hydrogen bonding have been excluded for clarity.

N-(4-Bromophenyl)-4-nitrobenzamide

Crystal data	
$C_{13}H_9BrN_2O_3$	V = 1210.24 (3) Å ³
$M_r = 321.13$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 640
Hall symbol: -P 2ybc	$D_{\rm x} = 1.762 {\rm ~Mg} {\rm ~m}^{-3}$
a = 4.57903 (6) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
b = 12.92579 (15) Å	Cell parameters from 7736 reflections
c = 20.5614(3) Å	$\theta = 5.5 - 73.9^{\circ}$
$\beta = 96.0333 \ (11)^{\circ}$	$\mu = 4.70 \text{ mm}^{-1}$

T = 123 KNeedle, colorless

Data collection

8049 measured reflections 2434 independent reflections
2329 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.025$
$\theta_{\rm max} = 74.0^\circ, \theta_{\rm min} = 5.5^\circ$
$h = -5 \rightarrow 5$
$k = -15 \rightarrow 15$
$l = -20 \rightarrow 25$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0496P)^2 + 0.6292P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta ho_{ m max} = 0.52$ e Å ⁻³
$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.48 \times 0.12 \times 0.07 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br	0.32019 (4)	0.406567 (14)	0.541374 (10)	0.02940 (10)	
01	0.3492 (3)	-0.11877 (10)	0.59423 (6)	0.0247 (3)	
O2	-0.5374 (3)	-0.46316 (11)	0.76725 (7)	0.0345 (3)	
03	-0.2924 (4)	-0.55958 (11)	0.70717 (8)	0.0377 (4)	
N1	-0.0486 (3)	-0.02526 (11)	0.61758 (7)	0.0201 (3)	
H1A	-0.2223	-0.0300	0.6320	0.024*	
N2	-0.3666 (3)	-0.47512 (12)	0.72579 (7)	0.0231 (3)	
C1	0.0405 (3)	0.07385 (13)	0.59764 (8)	0.0182 (3)	
C2	0.2236 (4)	0.08785 (13)	0.54822 (9)	0.0201 (3)	
H2A	0.2927	0.0295	0.5262	0.024*	
C3	0.3048 (4)	0.18693 (15)	0.53110 (8)	0.0219 (3)	
H3A	0.4303	0.1968	0.4976	0.026*	
C4	0.2009 (4)	0.27132 (13)	0.56336 (8)	0.0198 (3)	
C5	0.0130 (4)	0.25951 (14)	0.61141 (9)	0.0239 (4)	

H5A	-0.0597	0.3182	0.6324	0.029*	
C6	-0.0673 (4)	0.16009 (14)	0.62825 (9)	0.0230 (3)	
H6A	-0.1968	0.1508	0.6610	0.028*	
C7	0.1117 (3)	-0.11336 (13)	0.61622 (8)	0.0178 (3)	
C8	-0.0198 (3)	-0.20704 (13)	0.64528 (8)	0.0184 (3)	
С9	-0.1905 (4)	-0.19869 (13)	0.69742 (8)	0.0200 (3)	
H9A	-0.2286	-0.1325	0.7148	0.024*	
C10	-0.3050 (4)	-0.28705 (14)	0.72402 (8)	0.0213 (3)	
H10A	-0.4215	-0.2822	0.7595	0.026*	
C11	-0.2449 (4)	-0.38172 (14)	0.69751 (8)	0.0194 (3)	
C12	-0.0747 (4)	-0.39293 (14)	0.64586 (9)	0.0231 (4)	
H12A	-0.0373	-0.4593	0.6287	0.028*	
C13	0.0391 (4)	-0.30400 (14)	0.62015 (8)	0.0222 (3)	
H13A	0.1581	-0.3094	0.5851	0.027*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.03917 (15)	0.01765 (14)	0.03289 (15)	-0.00443 (7)	0.01082 (9)	0.00390 (6)
O1	0.0192 (6)	0.0241 (6)	0.0322 (7)	0.0024 (5)	0.0095 (5)	0.0045 (5)
02	0.0452 (8)	0.0239 (7)	0.0383 (8)	-0.0015 (6)	0.0233 (6)	0.0050 (6)
03	0.0576 (10)	0.0158 (7)	0.0431 (8)	0.0013 (6)	0.0210 (7)	0.0009 (6)
N1	0.0158 (6)	0.0194 (7)	0.0264 (7)	-0.0010 (5)	0.0077 (5)	0.0028 (6)
N2	0.0279 (7)	0.0197 (8)	0.0222 (7)	0.0006 (6)	0.0048 (6)	0.0032 (6)
C1	0.0165 (7)	0.0188 (8)	0.0194 (8)	-0.0016 (6)	0.0019 (6)	0.0027 (6)
C2	0.0211 (8)	0.0190 (9)	0.0212 (8)	-0.0009 (6)	0.0065 (6)	-0.0020 (6)
C3	0.0235 (8)	0.0211 (9)	0.0223 (8)	-0.0021 (6)	0.0077 (6)	0.0008 (7)
C4	0.0219 (8)	0.0152 (8)	0.0224 (8)	-0.0030 (6)	0.0025 (6)	0.0049 (6)
C5	0.0289 (8)	0.0199 (9)	0.0241 (8)	0.0023 (7)	0.0079 (7)	0.0008 (7)
C6	0.0245 (8)	0.0231 (9)	0.0233 (8)	0.0029 (7)	0.0110 (6)	0.0028 (7)
C7	0.0153 (7)	0.0199 (8)	0.0184 (8)	-0.0010 (6)	0.0026 (6)	0.0008 (6)
C8	0.0153 (7)	0.0202 (8)	0.0194 (7)	0.0006 (6)	0.0012 (6)	0.0028 (6)
C9	0.0232 (8)	0.0157 (8)	0.0217 (8)	0.0019 (6)	0.0050 (6)	-0.0005 (6)
C10	0.0236 (8)	0.0209 (9)	0.0203 (8)	0.0019 (6)	0.0065 (6)	0.0025 (6)
C11	0.0216 (8)	0.0171 (8)	0.0196 (8)	0.0000 (6)	0.0022 (6)	0.0035 (6)
C12	0.0284 (9)	0.0174 (8)	0.0244 (8)	0.0025 (7)	0.0075 (7)	-0.0014 (6)
C13	0.0240 (8)	0.0220 (9)	0.0220 (8)	0.0011 (6)	0.0091 (6)	0.0006 (7)

Geometric parameters (Å, °)

Br—C4	1.9002 (17)	C5—C6	1.390 (3)
O1—C7	1.223 (2)	C5—H5A	0.9500
O2—N2	1.226 (2)	C6—H6A	0.9500
O3—N2	1.217 (2)	C7—C8	1.504 (2)
N1—C7	1.357 (2)	C8—C13	1.393 (2)
N1-C1	1.418 (2)	C8—C9	1.396 (2)
N1—H1A	0.8800	C9—C10	1.392 (2)
N2—C11	1.475 (2)	С9—Н9А	0.9500

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2	1.395 (2)	C10—C11	1.379 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6	1.396 (3)	C10—H10A	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.389 (2)	C11—C12	1.389 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—H2A	0.9500	C12—C13	1.389 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.387 (3)	C12—H12A	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—НЗА	0.9500	С13—Н13А	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.385 (2)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—C1	125.41 (14)	С1—С6—Н6А	119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—H1A	117.3	O1—C7—N1	124.04 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—H1A	117.3	O1—C7—C8	120.64 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—N2—O2	123.49 (16)	N1—C7—C8	115.31 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—N2—C11	118.72 (15)	C13—C8—C9	120.04 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—N2—C11	117.79 (15)	C13—C8—C7	118.42 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—C6	119.53 (16)	C9—C8—C7	121.52 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-N1	122.74 (16)	C10—C9—C8	120.17 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C1-N1	117.71 (15)	С10—С9—Н9А	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C1	120.10 (16)	С8—С9—Н9А	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—H2A	120.0	C11—C10—C9	118.27 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—H2A	120.0	С11—С10—Н10А	120.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—C2	119.30 (15)	C9—C10—H10A	120.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3А	120.3	C10-C11-C12	123.09 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—H3A	120.3	C10-C11-N2	118.11 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{5}-C_{4}-C_{3}$	121.64 (16)	C12-C11-N2	118.80 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—Br	119.13 (13)	C_{13} C_{12} C_{11}	117.87 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—Br	119.23 (13)	C13—C12—H12A	121.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C5-C6	118 67 (16)	C11—C12—H12A	121.1
C1C3H3AH20.3C12C13C13C14C14C15C	C4—C5—H5A	120.7	C12-C13-C8	120.55 (16)
C5 C5 C6 C1120.71 (16)C8 C12 C15 THSH115.17C5 C6 C1120.71 (16)C8 C13 H13A119.7C5 C6 H6A119.6 $C8 - C13 - H13A$ 119.7C7 N1 C1 C231.0 (3)O1 - C7 - C8 - C9146.78 (17)C7 N1 C1 - C6-150.50 (17)N1 - C7 - C8 - C9-32.2 (2)C6 - C1 - C2 - C32.0 (3)C13 - C8 - C9 - C10-0.7 (2)N1 - C1 - C2 - C3-179.60 (15)C7 - C8 - C9 - C10-178.88 (1C1 - C2 - C3 - C4-0.3 (3)C8 - C9 - C10 - C110.0 (2)C2 - C3 - C4 - C5-1.3 (3)C9 - C10 - C11 - C120.3 (3)C2 - C3 - C4 - C5-1.3 (3)C9 - C10 - C11 - N2-179.98 (1C3 - C4 - C5 - C61.3 (3)O3 - N2 - C11 - C10-173.01 (1	C6-C5-H5A	120.7	C12—C13—H13A	119 7
C5 $-C6 - H6A$ HS.17 (16)C5 $-C15 - HB1$ HS.17C7 $-N1 - C1 - C2$ 31.0 (3)01 $-C7 - C8 - C9$ 146.78 (17)C7 $-N1 - C1 - C6$ -150.50 (17)N1 $-C7 - C8 - C9$ -32.2 (2)C6 $-C1 - C2 - C3$ 2.0 (3)C13 $-C8 - C9 - C10$ -0.7 (2)N1 $-C1 - C2 - C3$ -179.60 (15)C7 $-C8 - C9 - C10$ -178.88 (1)C1 $-C2 - C3 - C4$ -0.3 (3)C8 $-C9 - C10 - C11$ 0.0 (2)C2 $-C3 - C4 - C5$ -1.3 (3)C9 $-C10 - C11 - C12$ 0.3 (3)C2 $-C3 - C4 - Br$ 178.45 (13)C9 $-C10 - C11 - N2$ -179.98 (1)C3 $-C4 - C5 - C6$ 1.3 (3)O3 $-N2 - C11 - C10$ -173.01 (1)	C5-C6-C1	120.71 (16)	C8-C13-H13A	119.7
C7-N1-C1-C2 $31.0 (3)$ $O1-C7-C8-C9$ $146.78 (17)$ C7-N1-C1-C6 $-150.50 (17)$ $N1-C7-C8-C9$ $-32.2 (2)$ C6-C1-C2-C3 $2.0 (3)$ $C13-C8-C9-C10$ $-0.7 (2)$ $N1-C1-C2-C3$ $-179.60 (15)$ $C7-C8-C9-C10$ $-178.88 (1)$ $C1-C2-C3-C4$ $-0.3 (3)$ $C8-C9-C10-C11$ $0.0 (2)$ $C2-C3-C4-C5$ $-1.3 (3)$ $C9-C10-C11-C12$ $0.3 (3)$ $C2-C3-C4-Br$ $178.45 (13)$ $C9-C10-C11-N2$ $-179.98 (1)$ $C3-C4-C5-C6$ $1.3 (3)$ $O3-N2-C11-C10$ $-173.01 (1)$	C5—C6—H6A	119.6		117.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		119.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—C1—C2	31.0 (3)	01—C7—C8—C9	146.78 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—C1—C6	-150.50 (17)	N1—C7—C8—C9	-32.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C1-C2-C3	2.0 (3)	C13—C8—C9—C10	-0.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C2—C3	-179.60 (15)	C7—C8—C9—C10	-178.88 (15)
C2—C3—C4—C5 -1.3 (3)C9—C10—C11—C12 0.3 (3)C2—C3—C4—Br178.45 (13)C9—C10—C11—N2 -179.98 (1C3—C4—C5—C61.3 (3)O3—N2—C11—C10 -173.01 (1	C1—C2—C3—C4	-0.3 (3)	C8—C9—C10—C11	0.0 (2)
C2-C3-C4-Br 178.45 (13) C9-C10-C11-N2 -179.98 (1 C3-C4-C5-C6 1.3 (3) O3-N2-C11-C10 -173.01 (1	C2—C3—C4—C5	-1.3 (3)	C9—C10—C11—C12	0.3 (3)
C3—C4—C5—C6 1.3 (3) O3—N2—C11—C10 -173.01 (1	C2—C3—C4—Br	178.45 (13)	C9—C10—C11—N2	-179.98 (15)
	C3—C4—C5—C6	1.3 (3)	O3—N2—C11—C10	-173.01 (17)
Br—C4—C5—C6 $-178.45(13)$ O2—N2—C11—C10 6.7(2)	Br—C4—C5—C6	-178.45 (13)	O2—N2—C11—C10	6.7 (2)
C4—C5—C6—C1 0.3 (3) O3—N2—C11—C12 6.7 (2)	C4—C5—C6—C1	0.3 (3)	O3—N2—C11—C12	6.7 (2)
C2-C1-C6-C5 -2.0 (3) O2-N2-C11-C12 -173.58 (1	C2-C1-C6-C5	-2.0 (3)	O2—N2—C11—C12	-173.58 (16)
N1—C1—C6—C5 179.52 (16) C10—C11—C12—C13 0.0 (3)	N1—C1—C6—C5	179.52 (16)	C10-C11-C12-C13	0.0 (3)
C1—N1—C7—O1 -3.9 (3) N2—C11—C12—C13 -179.68 (1	C1—N1—C7—O1	-3.9 (3)	N2-C11-C12-C13	-179.68 (15)
C1—N1—C7—C8 175.02 (14) C11—C12—C13—C8 -0.7 (3)	C1—N1—C7—C8	175.02 (14)	C11—C12—C13—C8	-0.7 (3)
O1-C7-C8-C13 -31.4 (2) C9-C8-C13-C12 1.0 (2)	01	-31.4 (2)	C9—C8—C13—C12	1.0 (2)
N1-C7-C8-C13 149.60 (16) C7-C8-C13-C12 179.28 (15	N1—C7—C8—C13	149.60 (16)	C7—C8—C13—C12	179.28 (15)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1A···O1 ⁱ	0.88	2.33	3.0026 (18)	133
N1—H1A···O2 ⁱⁱ	0.88	2.59	3.284 (2)	136
C3—H3A···O1 ⁱⁱⁱ	0.95	2.45	3.284 (2)	146
C5—H5A···O3 ^{iv}	0.95	2.52	3.447 (2)	166
C6—H6A····O2 ⁱⁱ	0.95	2.49	3.354 (2)	151
С9—Н9А…О2 ^{іі}	0.95	2.48	3.397 (2)	162

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*-1, *y*+1/2, -*z*+3/2; (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*, *y*+1, *z*.