

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2,3-Dimethoxybenzylidene)naphthalen-1-amine

Ailing Guo, Shurong Zhang,* Xiaofang Liu and Jianhua liao

Department of Traditional Chinese Pharmacology, Shanxi University of Traditional Chinese Medicine, Taivuan 030024, People's Republic of China Correspondence e-mail: ailingguo@126.com

Received 26 December 2010; accepted 4 January 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.187; data-to-parameter ratio = 13.5.

The title compound, $C_{19}H_{17}NO_2$, represents a *trans* isomer with respect to the C=N bond. The dihedral angle between the planes of the naphthyl ring system and the benzene ring is 71.70 (3)°. In the crystal, weak C-H···O hydrogen bonding is present.

Related literature

For properties of Schiff bases, see: Chen et al. (2008); May et al. (2004); Weber et al. (2007). For related structures, see: Tarig et al. (2010); Zhu et al. (2010).

Experimental

Crystal data

V = 3087.3 (5) Å³ Z = 8Mo Ka radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 298 K $0.48 \times 0.45 \times 0.36 \; \text{mm}$ 14855 measured reflections

 $R_{\rm int} = 0.057$

2721 independent reflections

1452 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.962, T_{\max} = 0.971$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	202 parameters
$wR(F^2) = 0.187$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
2721 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$C8 = H8C \cdots O1^{i}$ 0.96 2.54 3.232 (4) 12	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$C8-H8C\cdotsO1^{i}$	0.96	2.54	3.232 (4)	129

Symmetry code: (i) $x - \frac{1}{2}, y, -z + \frac{3}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors wish to acknowledge the Scientific and Technological Project of the Shanxi Science and Technology Agency (2006031083-01), the Scientific and Technological Project of Shanxi Province Health Department (200651) and the Shanxi University of Traditional Chinese Medicine Eleventh Five-Year Program of Science and Technology Industry (2006).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2375).

References

- Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.
- May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, 01561.
- Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162
- Zhu, R., Zhang, Y. & Ren, Y. (2010). Acta Cryst. E66, 02337.

supporting information

Acta Cryst. (2011). E67, o285 [doi:10.1107/S1600536811000079]

N-(2,3-Dimethoxybenzylidene)naphthalen-1-amine

Ailing Guo, Shurong Zhang, Xiaofang Liu and Jianhua Jiao

S1. Comment

The Schiff bases have received considerable attention for many years, primarily due to their importance as ligands in metal complexes with special magnetic (Weber *et al.*, 2007), catalytic (Chen *et al.*, 2008) and biological properties (May *et al.*, 2004). Here, we report the crystal structure of the title compound.

The title molecule (Fig. 1) represents a *trans*-isomer with respect to the C11=N1 bond. The planes of the aromatic systems of the naphthyl and benzene groups, C10—C19 and C2—C7, respectively, form dihedral angle of 71.70 (3)°. The bond distances and bond angles in the title compound are in agreement with the corresponding bond distances and angles reported in the crystale structures of closely related compounds, (Tariq *et al.*, 2010; Zhu *et al.*, 2010). The crystal structure of the title compound displays weak intermolecular interactions C8—H8C···O1 as well as intramolecular hydrogen bonds, C8—H8C···O2 and C16—H16···N1.

S2. Experimental

1-Naphthylamine (0.72 g, 5 mmol) and 2,3-dimethoxybenzaldehyde (0.83 g, 5 mmol) were dissolved in ethanol (20 ml). The mixture was refluxed for 2 h, and then cooled to room temperature. The reaction mixture was filtered and the filtered cake was recreystallized from ethyl alcohol (yield 80%). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

S3. Refinement

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93-0.96Å and $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Figure 1

A view of the molecular structure of the title compound; displacement ellipsoids are drawn at the 30% probability level.

N-(2,3-Dimethoxybenzylidene)naphthalen-1-amine

F(000) = 1232
$D_{\rm x} = 1.254 {\rm ~Mg~m^{-3}}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 2315 reflections
$\theta = 2.4 - 24.2^{\circ}$
$\mu=0.08~\mathrm{mm}^{-1}$
T = 298 K
Block, colorless
$0.48 \times 0.45 \times 0.36 \text{ mm}$
14855 measured reflections
2721 independent reflections
1452 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.057$
$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.4^\circ$
$h = -8 \rightarrow 9$
$k = -20 \rightarrow 10$
$l = -27 \rightarrow 27$
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_0^2) + (0.0462P)^2 + 2.0418P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$
Extinction correction: SHELXL97 (Sheldrick,
2008), Fc*=kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
Extinction coefficient: 0.0059 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.3928 (4)	0.08249 (16)	0.55054 (11)	0.0578 (8)	
01	0.4329 (3)	0.18230 (12)	0.70513 (9)	0.0535 (6)	
O2	0.4198 (3)	0.10066 (14)	0.80315 (9)	0.0682 (7)	
C1	0.4312 (4)	0.11133 (19)	0.59845 (13)	0.0508 (8)	
H1	0.4599	0.1641	0.6006	0.061*	
C2	0.4323 (4)	0.06453 (19)	0.65073 (13)	0.0492 (8)	
C3	0.4280 (4)	0.10162 (18)	0.70328 (13)	0.0471 (8)	
C4	0.4265 (4)	0.05837 (19)	0.75393 (14)	0.0523 (8)	
C5	0.4328 (5)	-0.0221 (2)	0.75084 (16)	0.0660 (10)	
Н5	0.4311	-0.0517	0.7842	0.079*	
C6	0.4417 (5)	-0.0591 (2)	0.69855 (17)	0.0714 (11)	
H6	0.4489	-0.1134	0.6971	0.086*	
C7	0.4402 (4)	-0.0173 (2)	0.64880 (16)	0.0624 (10)	
H7	0.4443	-0.0430	0.6139	0.075*	
C8	0.2786 (5)	0.2204 (2)	0.72204 (17)	0.0784 (12)	
H8A	0.1901	0.2114	0.6940	0.118*	
H8B	0.2996	0.2756	0.7254	0.118*	
H8C	0.2414	0.2001	0.7582	0.118*	
C9	0.4279 (6)	0.0592 (2)	0.85555 (14)	0.0817 (13)	
H9A	0.3322	0.0235	0.8579	0.122*	
H9B	0.4222	0.0956	0.8867	0.122*	
H9C	0.5347	0.0306	0.8575	0.122*	
C10	0.4014 (4)	0.13165 (18)	0.50188 (13)	0.0522 (8)	
C11	0.5459 (5)	0.1750 (2)	0.48899 (15)	0.0650 (10)	
H11	0.6406	0.1746	0.5136	0.078*	
C12	0.5514 (5)	0.2198 (2)	0.43916 (16)	0.0720 (11)	
H12	0.6505	0.2486	0.4308	0.086*	
C13	0.4152 (5)	0.2221 (2)	0.40291 (15)	0.0657 (10)	
H13	0.4217	0.2522	0.3699	0.079*	
C14	0.2641 (5)	0.17926 (18)	0.41459 (13)	0.0519 (8)	
C15	0.2558 (4)	0.13319 (17)	0.46482 (12)	0.0478 (8)	
C16	0.1014 (5)	0.09268 (19)	0.47708 (14)	0.0556 (9)	
H16	0.0948	0.0620	0.5098	0.067*	
C17	-0.0383 (5)	0.0976 (2)	0.44183 (15)	0.0644 (10)	
H17	-0.1399	0.0711	0.4509	0.077*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C18	-0.0290 (5)	0.1425 (2)	0.39210 (16)	0.0697 (11)	
H18	-0.1246	0.1454	0.3680	0.084*	
C19	0.1173 (5)	0.1817 (2)	0.37866 (15)	0.0636 (10)	
H19	0.1215	0.2108	0.3451	0.076*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0671 (19)	0.0592 (17)	0.0471 (16)	-0.0026 (15)	-0.0064 (14)	-0.0001 (14)
01	0.0566 (14)	0.0493 (13)	0.0546 (13)	-0.0039 (11)	0.0012 (11)	0.0036 (10)
O2	0.0968 (19)	0.0635 (15)	0.0443 (13)	-0.0053 (14)	-0.0050 (12)	0.0108 (12)
C1	0.051 (2)	0.0505 (19)	0.051 (2)	-0.0018 (16)	-0.0015 (16)	-0.0015 (16)
C2	0.0459 (19)	0.0527 (19)	0.0490 (19)	-0.0018 (15)	-0.0078 (15)	0.0007 (16)
C3	0.0377 (17)	0.0510 (19)	0.0526 (19)	-0.0033 (15)	-0.0039 (14)	0.0078 (16)
C4	0.050 (2)	0.055 (2)	0.051 (2)	-0.0034 (16)	-0.0060 (16)	0.0079 (17)
C5	0.077 (3)	0.058 (2)	0.063 (2)	-0.005 (2)	-0.009 (2)	0.016 (2)
C6	0.086 (3)	0.048 (2)	0.081 (3)	0.0014 (19)	-0.014 (2)	0.006 (2)
C7	0.065 (2)	0.058 (2)	0.064 (2)	0.0025 (18)	-0.0112 (18)	-0.0026 (19)
C8	0.077 (3)	0.070 (3)	0.088 (3)	0.015 (2)	0.017 (2)	0.006 (2)
C9	0.106 (3)	0.088 (3)	0.051 (2)	-0.010 (2)	-0.007 (2)	0.022 (2)
C10	0.062 (2)	0.0515 (19)	0.0428 (18)	-0.0016 (17)	0.0023 (16)	-0.0055 (15)
C11	0.064 (2)	0.076 (2)	0.055 (2)	-0.008 (2)	0.0008 (18)	-0.013 (2)
C12	0.079 (3)	0.074 (3)	0.063 (2)	-0.020 (2)	0.020 (2)	-0.008 (2)
C13	0.091 (3)	0.057 (2)	0.049 (2)	-0.004 (2)	0.014 (2)	0.0008 (17)
C14	0.070 (2)	0.0433 (18)	0.0427 (18)	0.0072 (18)	0.0079 (17)	-0.0064 (15)
C15	0.061 (2)	0.0412 (17)	0.0411 (17)	0.0046 (16)	0.0028 (16)	-0.0054 (14)
C16	0.067 (2)	0.0498 (19)	0.0502 (19)	-0.0001 (18)	-0.0005 (17)	0.0017 (16)
C17	0.065 (2)	0.061 (2)	0.067 (2)	-0.0013 (19)	-0.0048 (19)	0.0021 (19)
C18	0.076 (3)	0.065 (2)	0.068 (3)	0.015 (2)	-0.015 (2)	0.000 (2)
C19	0.088 (3)	0.054 (2)	0.049 (2)	0.016 (2)	-0.004 (2)	0.0052 (17)

Geometric parameters (Å, °)

N1—C1	1.261 (4)	С9—Н9В	0.9600
N1-C10	1.418 (4)	С9—Н9С	0.9600
O1—C3	1.379 (4)	C10—C11	1.372 (5)
O1—C8	1.413 (4)	C10—C15	1.420 (4)
O2—C4	1.362 (4)	C11—C12	1.396 (5)
O2—C9	1.418 (4)	C11—H11	0.9300
C1—C2	1.462 (4)	C12—C13	1.352 (5)
С1—Н1	0.9300	C12—H12	0.9300
C2—C3	1.385 (4)	C13—C14	1.403 (5)
C2—C7	1.399 (4)	C13—H13	0.9300
C3—C4	1.398 (4)	C14—C19	1.412 (5)
C4—C5	1.378 (5)	C14—C15	1.417 (4)
C5—C6	1.380 (5)	C15—C16	1.407 (4)
С5—Н5	0.9300	C16—C17	1.360 (5)
C6—C7	1.367 (5)	C16—H16	0.9300

С6—Н6	0.9300	C17—C18	1.396 (5)
С7—Н7	0.9300	С17—Н17	0.9300
C8—H8A	0.9600	C18—C19	1.350 (5)
C8—H8B	0.9600	C18—H18	0.9300
C8—H8C	0.9600	С19—Н19	0.9300
С9—Н9А	0.9600		
C1—N1—C10	118.3 (3)	О2—С9—Н9С	109.5
C3—O1—C8	116.5 (3)	H9A—C9—H9C	109.5
C4—O2—C9	117.8 (3)	H9B—C9—H9C	109.5
N1—C1—C2	122.2 (3)	C11—C10—N1	122.3 (3)
N1—C1—H1	118.9	C11—C10—C15	119.9 (3)
C2—C1—H1	118.9	N1-C10-C15	117.7 (3)
C3—C2—C7	119.1 (3)	C10-C11-C12	120.3 (3)
C3—C2—C1	119.6 (3)	C10-C11-H11	119.8
C7—C2—C1	121.3 (3)	C12—C11—H11	119.8
O1—C3—C2	119.0 (3)	C13—C12—C11	121.1 (4)
O1—C3—C4	120.1 (3)	C13—C12—H12	119.4
C2—C3—C4	120.9 (3)	C11—C12—H12	119.4
O2—C4—C5	125.1 (3)	C12—C13—C14	120.6 (3)
O2—C4—C3	116.0 (3)	С12—С13—Н13	119.7
C5—C4—C3	118.9 (3)	C14—C13—H13	119.7
C4—C5—C6	120.3 (3)	C13—C14—C19	122.4 (3)
С4—С5—Н5	119.8	C13—C14—C15	119.3 (3)
С6—С5—Н5	119.8	C19—C14—C15	118.3 (3)
C7—C6—C5	121.2 (3)	C16—C15—C14	118.7 (3)
С7—С6—Н6	119.4	C16—C15—C10	122.4 (3)
С5—С6—Н6	119.4	C14—C15—C10	118.8 (3)
C6—C7—C2	119.6 (3)	C17—C16—C15	121.1 (3)
С6—С7—Н7	120.2	C17—C16—H16	119.5
С2—С7—Н7	120.2	C15—C16—H16	119.5
O1—C8—H8A	109.5	C16—C17—C18	120.0 (4)
O1—C8—H8B	109.5	C16—C17—H17	120.0
H8A—C8—H8B	109.5	C18—C17—H17	120.0
O1—C8—H8C	109.5	C19—C18—C17	120.6 (4)
H8A—C8—H8C	109.5	C19—C18—H18	119.7
H8B—C8—H8C	109.5	C17—C18—H18	119.7
O2—C9—H9A	109.5	C18—C19—C14	121.2 (3)
O2—C9—H9B	109.5	C18—C19—H19	119.4
H9A—C9—H9B	109.5	C14—C19—H19	119.4
C10—N1—C1—C2	-177.7 (3)	C1—N1—C10—C15	-130.1 (3)
N1—C1—C2—C3	-162.3 (3)	N1-C10-C11-C12	177.0 (3)
N1—C1—C2—C7	18.7 (5)	C15—C10—C11—C12	-0.9 (5)
C8—O1—C3—C2	109.7 (3)	C10-C11-C12-C13	0.5 (6)
C8—O1—C3—C4	-73.1 (4)	C11—C12—C13—C14	0.1 (6)
C7—C2—C3—O1	175.4 (3)	C12—C13—C14—C19	178.3 (3)
C1—C2—C3—O1	-3.7 (4)	C12—C13—C14—C15	-0.3 (5)

C7—C2—C3—C4	-1.8 (5)	C13—C14—C15—C16	177.8 (3)
C1—C2—C3—C4	179.1 (3)	C19—C14—C15—C16	-0.7 (4)
C9—O2—C4—C5	3.0 (5)	C13—C14—C15—C10	-0.1 (4)
C9—O2—C4—C3	-176.6 (3)	C19—C14—C15—C10	-178.7 (3)
O1—C3—C4—O2	3.7 (4)	C11—C10—C15—C16	-177.2 (3)
C2—C3—C4—O2	-179.2 (3)	N1-C10-C15-C16	4.8 (4)
O1—C3—C4—C5	-175.9 (3)	C11—C10—C15—C14	0.7 (4)
C2—C3—C4—C5	1.2 (5)	N1-C10-C15-C14	-177.3 (3)
O2—C4—C5—C6	-179.1 (3)	C14—C15—C16—C17	-0.4 (5)
C3—C4—C5—C6	0.5 (5)	C10-C15-C16-C17	177.5 (3)
C4—C5—C6—C7	-1.6 (6)	C15—C16—C17—C18	1.0 (5)
C5—C6—C7—C2	1.1 (6)	C16—C17—C18—C19	-0.4 (5)
C3—C2—C7—C6	0.6 (5)	C17—C18—C19—C14	-0.7 (5)
C1—C2—C7—C6	179.7 (3)	C13—C14—C19—C18	-177.2 (3)
C1-N1-C10-C11	51.9 (4)	C15—C14—C19—C18	1.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C8—H8C····O1 ⁱ	0.96	2.54	3.232 (4)	129
C8—H8 <i>C</i> ···O2	0.96	2.43	2.998 (4)	118
C16—H16…N1	0.93	2.52	2.839 (4)	101

Symmetry code: (i) x-1/2, y, -z+3/2.