organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-6-Bromo-4-(1-methyl-1H-indol-3-yl)-10,10a-di­hydro-1H,4H-2,9-dioxa-3-aza­benz[f]azulene

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 30 November 2010; accepted 24 January 2011; online 29 January 2011)

In the title compound, C20H17BrN2O2, the seven-membered oxepine ring adopts a chair conformation. The indole moiety is essentially planar with a maximum deviation of 0.031 (3)Å. The indole ring system forms a dihedral angle of 21.87 (8)° with the mean plane of the 10-membered heterobicycle. The crystal packing is stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the chemistry of 4,5-dihydro­isoxazole, see: Caramella & Grunanger (1984[Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, Vol. 1, pp. 291-392. New York: John Wiley and Sons.]). For the uses of isoxazoline derivatives, see: Ichiba & Scheuer (1993[Ichiba, T. & Scheuer, P. J. (1993). J. Org. Chem. 58, 4149-4150.]). For intra­molecular nitrile oxide cyclo­addition (INOC) reactions, see: Scott et al. (2006[Scott, J. P., Oliver, S. F., Brands, K. M. J., Brewer, S. E., Davies, A. J., Gibb, A. D., Hands, D., Keen, S. P., Sheen, F. J., Reamer, R. A., Wilson, R. D. & Dolling, U. H. (2006). J. Org. Chem. 71, 3086-3092.]); Mukaiyama & Hoshino (1960[Mukaiyama, T. & Hoshino, T. (1960). J. Am. Chem. Soc. 82, 5339-5342.]). For a related structure, see: Trigunait et al. (2010[Trigunait, A., Malathy, P., Ramachandiran, K., Perumal, P. T. & Gunasekaran, K. (2010). Acta Cryst. E66, o2035.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For bond-length distortions, see: Allen (1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17BrN2O2

  • Mr = 397.26

  • Monoclinic, P 21 /c

  • a = 12.5772 (4) Å

  • b = 14.7746 (5) Å

  • c = 9.2168 (3) Å

  • β = 97.193 (2)°

  • V = 1699.22 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 21255 measured reflections

  • 4461 independent reflections

  • 2831 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.099

  • S = 1.00

  • 4461 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.93 2.53 3.329 (3) 144
C3—H3⋯Cg2ii 0.93 2.79 3.653 (3) 155
C7—H7ACg1iii 0.96 2.92 3.427 (3) 114
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3-Dipolar cycloaddition of nitrile oxide is regarded as a useful synthetic method in organic synthesis. The cycloaddition occurs in a stereospecific way to provide 4,5-dihydroisoxazoles (Caramella & Grunanger, 1984). The isoxazoline derivatives are known to exibit interesting biological activities in the agricultural field and possess medicinal properties including antiviral and anti-HIV activities (Ichiba & Scheuer, 1993). Intramolecular nitrile oxide cycloaddition (INOC) reaction offers a powerful strategy to construct carbo- or heterocyclic compounds and many reports on the stereoselective INOC reaction have been published in recent years (Scott et al., 2006). The nitro group is converted into nitrile oxide by Mukaiyama reaction (Mukaiyama & Hoshino, 1960). They successfully prepared five- and six-membered carbo-, oxa-, and thiocyclic compounds and one-pot conversion of nitroalkenes to bicyclic isoxazoles was utilized in some protocols.

The molecular structure of the title compound C20H17BrN2O2, is shown at Fig. 1. In the compound, the indole bicycle is essentially planar. The maximum deviation of the atom C7 of the methyl group from the indole bicycle is 0.031 (3)Å. The indole moiety (N1/C1/C2/C3/C4/C5/C6/C8/C9) forms the dihedral angles with the main plane of heterobicycle (O1/O2/N2/C10/C11/C12/C13/C14/C15/C20) and phenyl ring (C15-C20) 21.85 (8)° and 71.10 (10)°, respectively.

In the benzene ring of indole moiety, the endo-cyclic angles at C5 and C2 are contracted to 117.8 (2)° and 118.9 (2)°, respectively, while those at C6, C4 and C3 are expanded to 121.9 (2)°, 121.6 (3)° and 121.2 (3)°, respectively. This would appear to be a real effect caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring, and the strain is taken up by the angular distortion rather than by bond-length distortions (Allen, 1981).

The dihedral angle between the phenyl ring (C15-C20) and main plane of heterobicycle (O1/O2/N2/C10/C11/C12/C13/C14/C15/C20) is 50.91 (9)°. The dihedral angle between the phenyl ring (C15-C20) and five-membered oxazole ring (C11/N2/O1/C12/C13) is 73.83 (11)°. The maximum deviation of the atom Br1 from the phenyl ring (C15-C20) is 0.0635 (4)Å. The angles around atom C10 [C9–C10–C20 = 113.84 (18)°, C11–C10–C9 = 116.65 (18)° and C11–C10–C20 = 107.06 (17)°] deviates significantly from ideal tetrahedral values which may be as a result of steric interactions between isoxazole, bromophenol and indole moieties (Trigunait et al., 2010).

The oxepine ring (C10/C11/C13/C14/O2/C15/C20) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975 and Nardelli, 1983) of q2 = 0.547 (2)Å, ϕ2 = 158.6 (3)°, q3 = 0.602 (2)Å, ϕ3 = 232.4 (2)°. Also, the maximum deviation of atoms C10 and O2 of the oxepine ring are -0.0458 (2)Å and -0.469 (2)Å, respectively. The main plane of oxepine ring forms a dihedral angle with the indole ring system 35.42 (9)°. The position of atom O2 which lies between bromobenzene and isoxazone rings is defined by torsion angles O2–C15–C16–C17 = -178.4 (2)° and C12–C13–C14–O2 = -166.4 (2)°.

The crystal packing is stabilized by intermolecular C–H···O- and C–H···π-interactions, where Cg1 is the center of gravity of C1/C2/C3/C4/C5/C6 ring and Cg2 is the center of gravity of C15/C16/C17/C18/C19/C20 ring; The symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1; (iii) x, -y-1/2, z-1/2. The packing view of the title compound is shown at Fig. 2.

Related literature top

For the chemistry of 4,5-dihydroisoxazole, see: Caramella & Grunanger (1984). For the uses of isoxazoline derivatives, see: Ichiba & Scheuer (1993). For intramolecular nitrile oxide cycloaddition (INOC) reactions, see: Scott et al. (2006); Mukaiyama & Hoshino (1960). For a related structure, see: Trigunait et al. (2010). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). For bond-length distortions, see: Allen (1981).

Experimental top

3-[1-(2-Allyloxy-5-bromo-phenyl)-2-nitro-ethyl]-2-methyl-1 H-indole (1.0 mmol) and N,N-dimethyl-4-aminopyridine (0.2 mmol) were dissolved in toluene (5 ml). Di-tert-butyl dicarbonate (2.5 mmol) in toluene (5 ml) was added in portions over a period of 0.5 h at 363 K to the nitroalkane solution and the reaction was allowed to proceed for a further 2 h. The mixture was evaporated and the product was purified by column chromotography using ethyl acetate-petroleum ether (2:8) as eluent. Single crystals appeared from the same eluent mixture.

Refinement top

All hydrogen atoms were placed in calculated positions with C–H = 0.93-0.98Å and refined in riding model with isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for methyl group and Uiso(H) = 1.2 Ueq(C) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius.
[Figure 2] Fig. 2. The packing arrangement of the title compound. Dashed lines indicates the C–H···O interactions. Symmetry code: (i) x, y, z-1.
cis-6-Bromo-4-(1-methyl-1H-indol-3-yl)-10,10a-dihydro- 1H,4H-2,9-dioxa-3-azabenz[f]azulene top
Crystal data top
C20H17BrN2O2F(000) = 808
Mr = 397.26Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4461 reflections
a = 12.5772 (4) Åθ = 1.0–28.9°
b = 14.7746 (5) ŵ = 2.44 mm1
c = 9.2168 (3) ÅT = 295 K
β = 97.193 (2)°Block, yellow
V = 1699.22 (10) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2831 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 28.9°, θmin = 2.6°
ω scansh = 1617
21255 measured reflectionsk = 1920
4461 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.6061P]
where P = (Fo2 + 2Fc2)/3
4461 reflections(Δ/σ)max = 0.005
227 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C20H17BrN2O2V = 1699.22 (10) Å3
Mr = 397.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5772 (4) ŵ = 2.44 mm1
b = 14.7746 (5) ÅT = 295 K
c = 9.2168 (3) Å0.30 × 0.20 × 0.20 mm
β = 97.193 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2831 reflections with I > 2σ(I)
21255 measured reflectionsRint = 0.041
4461 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
4461 reflectionsΔρmin = 0.38 e Å3
227 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.55355 (16)0.06019 (14)0.8437 (2)0.0372 (5)
C20.49922 (18)0.02980 (16)0.7116 (2)0.0488 (6)
H20.52950.01400.65710.059*
C30.4004 (2)0.06538 (19)0.6630 (3)0.0590 (7)
H30.36350.04480.57560.071*
C40.35459 (19)0.13168 (18)0.7423 (3)0.0577 (6)
H40.28760.15470.70650.069*
C50.40554 (19)0.16370 (16)0.8712 (3)0.0501 (6)
H50.37480.20840.92350.060*
C60.50518 (17)0.12714 (14)0.9219 (2)0.0403 (5)
C70.5531 (2)0.20897 (19)1.1594 (3)0.0710 (8)
H7A0.54970.26921.12010.107*
H7B0.61020.20531.23870.107*
H7C0.48640.19451.19450.107*
C80.66164 (18)0.09158 (15)1.0478 (2)0.0432 (5)
H80.71910.09121.12180.052*
C90.65405 (16)0.03903 (13)0.9262 (2)0.0360 (4)
C100.73020 (16)0.03183 (13)0.8837 (2)0.0361 (5)
H100.68810.08750.86650.043*
C110.82340 (16)0.05514 (14)0.9955 (2)0.0391 (5)
C120.9709 (3)0.12919 (19)1.1159 (3)0.0701 (8)
H12A0.97220.17531.19110.084*
H12B1.03860.13061.07590.084*
C130.8786 (2)0.14544 (15)0.9967 (3)0.0513 (6)
H130.83160.19301.02650.062*
C140.9178 (2)0.17035 (18)0.8540 (3)0.0606 (7)
H14A0.97550.12980.83680.073*
H14B0.94660.23130.86140.073*
C150.82539 (17)0.07968 (15)0.6713 (2)0.0428 (5)
C160.86662 (18)0.06373 (18)0.5428 (2)0.0532 (6)
H160.89880.11060.49710.064*
C170.86065 (18)0.0213 (2)0.4810 (2)0.0547 (6)
H170.88740.03220.39300.066*
C180.81440 (17)0.08935 (17)0.5523 (2)0.0456 (5)
C190.77092 (16)0.07430 (14)0.6800 (2)0.0375 (5)
H190.73870.12150.72510.045*
C200.77544 (15)0.01140 (14)0.7409 (2)0.0351 (4)
N10.57283 (15)0.14517 (12)1.0459 (2)0.0453 (4)
N20.86495 (15)0.00096 (15)1.0909 (2)0.0554 (5)
O10.95362 (15)0.04308 (15)1.17437 (19)0.0769 (6)
O20.83522 (14)0.16586 (11)0.73157 (18)0.0571 (4)
Br10.80960 (3)0.20837 (2)0.47468 (3)0.07806 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (11)0.0388 (11)0.0401 (11)0.0033 (9)0.0158 (9)0.0016 (9)
C20.0451 (13)0.0560 (14)0.0472 (12)0.0074 (11)0.0133 (11)0.0055 (10)
C30.0435 (14)0.0775 (18)0.0559 (14)0.0078 (13)0.0055 (11)0.0018 (13)
C40.0366 (13)0.0696 (17)0.0678 (16)0.0011 (12)0.0101 (12)0.0145 (14)
C50.0419 (13)0.0494 (13)0.0634 (15)0.0022 (11)0.0233 (12)0.0084 (11)
C60.0380 (12)0.0398 (11)0.0460 (12)0.0036 (9)0.0167 (10)0.0026 (9)
C70.0712 (19)0.0711 (18)0.0731 (18)0.0136 (14)0.0177 (15)0.0307 (14)
C80.0414 (12)0.0468 (12)0.0428 (11)0.0006 (10)0.0108 (9)0.0070 (9)
C90.0380 (11)0.0338 (10)0.0386 (10)0.0034 (9)0.0147 (9)0.0006 (8)
C100.0404 (11)0.0326 (10)0.0373 (10)0.0035 (9)0.0123 (9)0.0023 (8)
C110.0416 (12)0.0413 (12)0.0369 (11)0.0009 (9)0.0155 (9)0.0031 (9)
C120.080 (2)0.0640 (18)0.0634 (16)0.0128 (15)0.0033 (15)0.0193 (14)
C130.0583 (15)0.0387 (12)0.0571 (14)0.0024 (11)0.0079 (12)0.0104 (10)
C140.0653 (17)0.0479 (14)0.0683 (16)0.0204 (13)0.0070 (14)0.0012 (12)
C150.0377 (12)0.0474 (13)0.0429 (11)0.0012 (10)0.0038 (9)0.0121 (10)
C160.0411 (13)0.0760 (18)0.0442 (12)0.0020 (12)0.0116 (10)0.0231 (12)
C170.0385 (13)0.094 (2)0.0334 (11)0.0071 (13)0.0114 (9)0.0054 (12)
C180.0342 (12)0.0657 (15)0.0368 (11)0.0094 (10)0.0048 (9)0.0049 (10)
C190.0333 (11)0.0456 (12)0.0341 (10)0.0025 (9)0.0065 (8)0.0032 (9)
C200.0304 (10)0.0428 (11)0.0325 (10)0.0022 (9)0.0057 (8)0.0069 (8)
N10.0453 (11)0.0444 (10)0.0488 (10)0.0039 (8)0.0158 (9)0.0110 (8)
N20.0421 (11)0.0735 (14)0.0504 (11)0.0127 (10)0.0054 (9)0.0159 (10)
O10.0582 (11)0.1117 (16)0.0574 (10)0.0313 (11)0.0067 (9)0.0287 (11)
O20.0644 (11)0.0422 (9)0.0642 (10)0.0073 (8)0.0056 (9)0.0151 (8)
Br10.0801 (2)0.0842 (2)0.0702 (2)0.01674 (16)0.01064 (15)0.03257 (15)
Geometric parameters (Å, º) top
C1—C21.394 (3)C11—N21.254 (3)
C1—C61.407 (3)C11—C131.503 (3)
C1—C91.426 (3)C12—O11.409 (3)
C2—C31.371 (3)C12—C131.514 (4)
C2—H20.9300C12—H12A0.9700
C3—C41.390 (4)C12—H12B0.9700
C3—H30.9300C13—C141.507 (3)
C4—C51.362 (4)C13—H130.9800
C4—H40.9300C14—O21.436 (3)
C5—C61.391 (3)C14—H14A0.9700
C5—H50.9300C14—H14B0.9700
C6—N11.363 (3)C15—C161.371 (3)
C7—N11.453 (3)C15—C201.388 (3)
C7—H7A0.9600C15—O21.389 (3)
C7—H7B0.9600C16—C171.378 (4)
C7—H7C0.9600C16—H160.9300
C8—C91.356 (3)C17—C181.370 (3)
C8—N11.367 (3)C17—H170.9300
C8—H80.9300C18—C191.377 (3)
C9—C101.504 (3)C18—Br11.897 (2)
C10—C111.501 (3)C19—C201.383 (3)
C10—C201.528 (3)C19—H190.9300
C10—H100.9800N2—O11.417 (3)
C2—C1—C6118.6 (2)C13—C12—H12A110.5
C2—C1—C9134.5 (2)O1—C12—H12B110.5
C6—C1—C9106.97 (18)C13—C12—H12B110.5
C3—C2—C1119.1 (2)H12A—C12—H12B108.7
C3—C2—H2120.4C11—C13—C14114.31 (19)
C1—C2—H2120.4C11—C13—C12100.1 (2)
C2—C3—C4121.1 (2)C14—C13—C12111.6 (2)
C2—C3—H3119.4C11—C13—H13110.2
C4—C3—H3119.4C14—C13—H13110.2
C5—C4—C3121.5 (2)C12—C13—H13110.2
C5—C4—H4119.2O2—C14—C13113.0 (2)
C3—C4—H4119.2O2—C14—H14A109.0
C4—C5—C6117.6 (2)C13—C14—H14A109.0
C4—C5—H5121.2O2—C14—H14B109.0
C6—C5—H5121.2C13—C14—H14B109.0
N1—C6—C5130.4 (2)H14A—C14—H14B107.8
N1—C6—C1107.61 (18)C16—C15—C20121.1 (2)
C5—C6—C1122.0 (2)C16—C15—O2118.6 (2)
N1—C7—H7A109.5C20—C15—O2120.29 (19)
N1—C7—H7B109.5C15—C16—C17120.5 (2)
H7A—C7—H7B109.5C15—C16—H16119.8
N1—C7—H7C109.5C17—C16—H16119.8
H7A—C7—H7C109.5C18—C17—C16118.4 (2)
H7B—C7—H7C109.5C18—C17—H17120.8
C9—C8—N1110.37 (19)C16—C17—H17120.8
C9—C8—H8124.8C17—C18—C19122.0 (2)
N1—C8—H8124.8C17—C18—Br1119.66 (16)
C8—C9—C1106.33 (18)C19—C18—Br1118.37 (18)
C8—C9—C10129.23 (19)C18—C19—C20119.6 (2)
C1—C9—C10124.37 (18)C18—C19—H19120.2
C11—C10—C9116.69 (17)C20—C19—H19120.2
C11—C10—C20107.08 (16)C19—C20—C15118.41 (18)
C9—C10—C20113.88 (16)C19—C20—C10121.97 (17)
C11—C10—H10106.1C15—C20—C10119.59 (18)
C9—C10—H10106.1C6—N1—C8108.71 (17)
C20—C10—H10106.1C6—N1—C7125.9 (2)
N2—C11—C10123.8 (2)C8—N1—C7125.4 (2)
N2—C11—C13114.2 (2)C11—N2—O1109.3 (2)
C10—C11—C13121.93 (19)C12—O1—N2109.74 (18)
O1—C12—C13106.2 (2)C15—O2—C14112.10 (18)
O1—C12—H12A110.5
C6—C1—C2—C30.6 (3)C12—C13—C14—O2166.5 (2)
C9—C1—C2—C3179.6 (2)C20—C15—C16—C171.0 (3)
C1—C2—C3—C40.8 (4)O2—C15—C16—C17178.6 (2)
C2—C3—C4—C50.2 (4)C15—C16—C17—C181.1 (3)
C3—C4—C5—C60.5 (3)C16—C17—C18—C192.3 (3)
C4—C5—C6—N1179.3 (2)C16—C17—C18—Br1177.58 (17)
C4—C5—C6—C10.7 (3)C17—C18—C19—C201.3 (3)
C2—C1—C6—N1179.84 (18)Br1—C18—C19—C20178.55 (15)
C9—C1—C6—N10.3 (2)C18—C19—C20—C150.8 (3)
C2—C1—C6—C50.2 (3)C18—C19—C20—C10178.98 (18)
C9—C1—C6—C5179.70 (19)C16—C15—C20—C191.9 (3)
N1—C8—C9—C10.7 (2)O2—C15—C20—C19177.61 (18)
N1—C8—C9—C10177.85 (19)C16—C15—C20—C10179.84 (19)
C2—C1—C9—C8179.5 (2)O2—C15—C20—C100.6 (3)
C6—C1—C9—C80.6 (2)C11—C10—C20—C19113.4 (2)
C2—C1—C9—C102.2 (4)C9—C10—C20—C1917.1 (3)
C6—C1—C9—C10177.92 (17)C11—C10—C20—C1564.8 (2)
C8—C9—C10—C116.3 (3)C9—C10—C20—C15164.68 (18)
C1—C9—C10—C11170.40 (18)C5—C6—N1—C8179.9 (2)
C8—C9—C10—C20119.3 (2)C1—C6—N1—C80.1 (2)
C1—C9—C10—C2064.0 (2)C5—C6—N1—C71.3 (4)
C9—C10—C11—N228.3 (3)C1—C6—N1—C7178.7 (2)
C20—C10—C11—N2100.7 (2)C9—C8—N1—C60.5 (2)
C9—C10—C11—C13154.99 (18)C9—C8—N1—C7179.1 (2)
C20—C10—C11—C1376.1 (2)C10—C11—N2—O1177.52 (18)
N2—C11—C13—C14122.5 (2)C13—C11—N2—O10.6 (3)
C10—C11—C13—C1454.6 (3)C13—C12—O1—N26.2 (3)
N2—C11—C13—C123.1 (3)C11—N2—O1—C124.4 (3)
C10—C11—C13—C12173.93 (19)C16—C15—O2—C14103.6 (2)
O1—C12—C13—C115.4 (3)C20—C15—O2—C1475.9 (3)
O1—C12—C13—C14126.8 (2)C13—C14—O2—C1587.0 (3)
C11—C13—C14—O253.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.533.329 (3)144
C3—H3···Cg2ii0.932.793.653 (3)155
C7—H7A···Cg1iii0.962.923.427 (3)114
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H17BrN2O2
Mr397.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.5772 (4), 14.7746 (5), 9.2168 (3)
β (°) 97.193 (2)
V3)1699.22 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21255, 4461, 2831
Rint0.041
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.00
No. of reflections4461
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.533.329 (3)144
C3—H3···Cg2ii0.932.793.653 (3)155
C7—H7A···Cg1iii0.962.923.427 (3)114
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y1/2, z1/2.
 

Acknowledgements

PN and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, Vol. 1, pp. 291–392. New York: John Wiley and Sons.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIchiba, T. & Scheuer, P. J. (1993). J. Org. Chem. 58, 4149–4150.  CrossRef CAS Web of Science Google Scholar
First citationMukaiyama, T. & Hoshino, T. (1960). J. Am. Chem. Soc. 82, 5339–5342.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationScott, J. P., Oliver, S. F., Brands, K. M. J., Brewer, S. E., Davies, A. J., Gibb, A. D., Hands, D., Keen, S. P., Sheen, F. J., Reamer, R. A., Wilson, R. D. & Dolling, U. H. (2006). J. Org. Chem. 71, 3086–3092.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrigunait, A., Malathy, P., Ramachandiran, K., Perumal, P. T. & Gunasekaran, K. (2010). Acta Cryst. E66, o2035.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds