organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthrolin-1-ium) 9,10-di­oxo-9,10-di­hydroanthracene-1,5-disul­fonate hexa­hydrate

aDepartment of Chemistry, Baicheng Normal College, Baicheng, Jilin 137000, People's Republic of China

(Received 11 December 2010; accepted 20 December 2010; online 8 January 2011)

The title hydrated molecular salt, 2C12H9N2+·C14H6O8S22−·6H2O, consists of 1,10-phenanthrolinium (phen-H+) cations, anthraquinone-1,5-disulfonate (AQDS2−) anions, which occupy a centre of inversion, and water molecules of crystal­lization. In the crystal, a supra­molecular network structure is formed via N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯O and ππ stacking inter­actions [centroid–centroid distances = 3.651 (6) and 3.545 (8) Å].

Related literature

For examples of multiple binding of 1,5-naphthalene­disulf­onate, see: Gao et al. (2005[Gao, S., Lu, Z.-Z., Huo, L.-H., Zhu, Z.-B. & Zhao, H. (2005). Acta Cryst. C61, m22-m24.]); Voogt & Blanch (2005[Voogt, J. N. & Blanch, H. W. (2005). Cryst. Growth Des. 5, 1135-1144.]). For the crystal structure of o-phenanthroline, see: Nishigaki et al. (1978[Nishigaki, S., Yoshioka, H. & Nakatsu, K. (1978). Acta Cryst. B34, 875-879.]). For the changes in protonated o-phenanthroline, see: Shriver et al. (1994[Shriver, D. F., Atkins, P. W. & Langford, C. H. (1994). Inorg. Chem. Oxford University Press.]). For weakly N—H⋯O hydrogen-bonded sulfonate ligands, see: Onoda et al. (2001[Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516-521.]). For graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C12H9N2+·C14H6O8S22−·6H2O

  • Mr = 836.83

  • Triclinic, [P \overline 1]

  • a = 10.0439 (6) Å

  • b = 10.1978 (6) Å

  • c = 11.1070 (6) Å

  • α = 111.591 (1)°

  • β = 98.848 (1)°

  • γ = 111.234 (1)°

  • V = 930.34 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 1.000

  • 5035 measured reflections

  • 3499 independent reflections

  • 2964 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.100

  • S = 1.06

  • 3499 reflections

  • 265 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5 0.87 (3) 1.91 (3) 2.713 (3) 153 (3)
O5—H5A⋯O2i 0.82 1.97 2.776 (3) 168
O5—H5B⋯O2 0.82 2.19 2.931 (3) 150
O5—H5B⋯O4 0.82 2.48 3.131 (3) 138
O6—H6A⋯O3ii 0.82 1.96 2.775 (3) 170
O6—H6B⋯O1iii 0.82 1.92 2.739 (3) 172
O7—H7A⋯O6 0.82 1.97 2.774 (4) 167
O7—H7B⋯O7iv 0.82 2.20 3.021 (6) 178
O7—H7C⋯O5 0.82 2.48 3.301 (4) 179
C2—H2A⋯O7 0.93 2.39 3.300 (4) 167
C4—H4A⋯O1v 0.93 2.58 3.418 (4) 151
C6—H6⋯O4v 0.93 2.54 3.350 (3) 145
C18—H18⋯O3vi 0.93 2.51 3.357 (4) 152
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z+1; (iii) -x+1, -y, -z+1; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y+1, -z+1; (vi) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The anthraquinone-1,5-disulfonate (AQDS 2-) possesses six sulfonate O atoms and has been also employed either as a counter ion, forming extensive hydrogen-bonding interaction with water molecules or as a ligand with multiple binding sites available to construct coordination polymers with varying dimensionalities (Gao et al., 2005; Voogt & Blanch, 2005). Hydrogen bonding patterns involving sulfonate in biological systems and metal complexes are of current interest (Onoda et al., 2001). In the molecular structure of the title cocrystal, (phen-H+)2(AQDS2-).6H2O (I), the dianion exhibits crystallographic inversion symmetry (Fig. 1). A supramolecular network structure is formed via N—H···O and O—H···O hydrogen bonds, and weak C—H···O and π-π stacking interactions (Fig. 2 and Table 1) support the stability of the crystal packing.

The phen-H+ cation is planar, with deviations of the non-H atoms from the least-squares plane of less than 0.021 (1) Å in the phen-H+ cation consisting of N1, N2, C1 to C12. The angle between the planar cation and planar anion in the asymmetric unit is 2.133 (3)°. Compared with the neutral base, 1,10-phenanthroline (Nishigaki et al., 1978), the bond distances in the phen-H+ cations show no significant differences, but some internal bond angles vary significantly, at the protonated N1 atom angle C2—N1—C1 = 123.1 (3)° and angle at neutral N2, C11—N2—C12 = 116.6 (3)°, which makes a difference of 6.5 (3)°. This is due to the formation of N—H bonds, which have a less repulsive effect on the N—C bonds than the lone electron pair (Shriver et al., 1994).

The phen-H+ cations and AQDS 2- anions are held together by weak hydrogen bonds C6—H6···O4v. Such adjacent units are assembled into 1-D chain through π-π stacking interactions between the adjacent phen-H+ rings (Fig. 2). Cg3···Cg4v distance is 3.651 (6) Å, the perpendicular distance between the inversion-related planes (therefore the dihedral angle is zero) is 3.395 (6) Å. Cg3 is the centroid of the ring (N1, C2, C3, C4, C5, C1), Cg4 is the centroid of the ring (N2, C12, C8, C9, C10, C11), and the symmetry code v = 1 - x, 1 - y, 1 - z. Additionally, the adjacent 1-D chains are extended into a two-dimensional structure also by π-π stacking interaction between the anthraquinone ring and phen-H+ ring. Cg2···Cg4iii distance is 3.545 (8) Å, Cg2 is the centroid of the ring (C15, C14, C16, C15A, C14A, C16A), and the symmetry code iii = 1 - x, - y, 1 - z.

Meanwhile, the lattice water molecules are anchored on the layer via hydrogen bonds (O5—H5A···O2i, O5—H5B···O2), resulting in the hydrogen-bonded ring motifs of R42 (8) (Bernstein et al., 1995). Such rings are linked to phen-H+ cations by hydrogen bond N1—H1A···O5. Dimeric water molecules are linked via O7—H7A···O6, and are connected to the sulfonate oxygen O3 atom by O6—H6A···O3ii (Fig. 2). The hydrogen-bond geometries and symmetry codes are listed in Table 1. In conclusion, this work indicates that anthraquinone-1,5-disulfonate is also a good participant in hydrogen-bonding and π-π stacking networks for the formation of acid-base molecular cocrystals.

Related literature top

For examples of multiple binding of 1,5-naphthalenedisulfonate, see: Gao et al. (2005); Voogt & Blanch (2005). For the crystal structure of o-phenanthroline, see: Nishigaki et al. (1978). For the changes in protonated o-phenanthroline, see: Shriver et al. (1994). For weakly N—H···O hydrogen-bonded sulfonate ligands, see: Onoda et al. (2001). For graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995).

Experimental top

A mixture of disodium anthraquinone-1,5-disulfonate (0.2 mmol, 82.4 mg), FeCl3.6H2O (0.2 mmol, 54.06 mg), 1,10-phenanthroline (0.2 mmol, 39.64 mg), and H2O (10 mL) was sealed in a 23 ml teflonlined stainless steel vessel under autogenous pressure; the vessel was heated to 150°C for 4 days and then cooled to room temperature at a rate of 2.6°C/h. The reaction mixture was filtered and yellow block-shaped crystals were collected by slow evaporation of the solvent.

Refinement top

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C···H = 0.930Å and N···H = 0.860 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2Ueq(C, N)].

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) drawn with 30% probability displacement ellipsoids.[symmetry code: 2 – x, 1 – y, 1 – z.]
[Figure 2] Fig. 2. A perspective view of the two-dimensional structure. Hydrogen bonds and π-π stacking interactions are indicated by dashed lines. H atoms not involved in the hydrogen bonds shown have been omitted.
Bis(1,10-phenanthrolin-1-ium) 9,10-dioxo-9,10-dihydroanthracene-1,5-disulfonate hexahydrate top
Crystal data top
2C12H9N2+·C14H6O8S22·6H2OZ = 1
Mr = 836.83F(000) = 436
Triclinic, P1Dx = 1.494 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0439 (6) ÅCell parameters from 3063 reflections
b = 10.1978 (6) Åθ = 2.4–27.6°
c = 11.1070 (6) ŵ = 0.22 mm1
α = 111.591 (1)°T = 296 K
β = 98.848 (1)°Block, yellow
γ = 111.234 (1)°0.24 × 0.22 × 0.20 mm
V = 930.34 (9) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3499 independent reflections
Radiation source: fine-focus sealed tube2964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
ϕ and ω scansθmax = 25.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 129
Tmin = 0.782, Tmax = 1.000k = 1112
5035 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.P)2 + 1.1P]
where P = (Fo2 + 2Fc2)/3
3499 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
2C12H9N2+·C14H6O8S22·6H2Oγ = 111.234 (1)°
Mr = 836.83V = 930.34 (9) Å3
Triclinic, P1Z = 1
a = 10.0439 (6) ÅMo Kα radiation
b = 10.1978 (6) ŵ = 0.22 mm1
c = 11.1070 (6) ÅT = 296 K
α = 111.591 (1)°0.24 × 0.22 × 0.20 mm
β = 98.848 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3499 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2964 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 1.000Rint = 0.009
5035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.42 e Å3
3499 reflectionsΔρmin = 0.39 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7261 (2)0.6318 (3)0.6490 (2)0.0508 (5)
H1A0.777 (3)0.583 (3)0.616 (3)0.061*
N20.7525 (2)0.5796 (3)0.3953 (2)0.0529 (5)
C10.6554 (3)0.6801 (3)0.5725 (3)0.0473 (6)
C20.7199 (3)0.6540 (3)0.7734 (3)0.0614 (7)
H2A0.77020.61890.82200.074*
C30.6388 (4)0.7293 (4)0.8305 (3)0.0678 (8)
H3A0.63510.74610.91790.081*
C40.5642 (3)0.7788 (3)0.7575 (3)0.0654 (8)
H4A0.50860.82850.79530.078*
C50.5701 (3)0.7558 (3)0.6260 (3)0.0547 (7)
C60.4937 (3)0.8035 (3)0.5441 (4)0.0657 (8)
H60.43660.85330.57790.079*
C70.5030 (3)0.7776 (3)0.4189 (4)0.0661 (8)
H70.45220.81010.36780.079*
C80.5896 (3)0.7008 (3)0.3618 (3)0.0536 (7)
C90.6022 (3)0.6695 (3)0.2310 (3)0.0643 (8)
H9A0.55320.69920.17560.077*
C100.6866 (4)0.5954 (4)0.1856 (3)0.0652 (8)
H10A0.69530.57350.09900.078*
C110.7599 (3)0.5531 (4)0.2714 (3)0.0610 (7)
H11A0.81740.50300.23920.073*
C120.6670 (3)0.6521 (3)0.4392 (3)0.0469 (6)
S10.78814 (8)0.11641 (9)0.22241 (7)0.05292 (19)
O10.6380 (2)0.0104 (3)0.2065 (3)0.0829 (7)
O20.8478 (2)0.2720 (2)0.3366 (2)0.0633 (5)
O30.8023 (3)0.1250 (4)0.0977 (2)0.1002 (9)
O40.7954 (2)0.1068 (3)0.4845 (2)0.0661 (6)
C130.9069 (3)0.0280 (3)0.2540 (2)0.0395 (5)
C140.9501 (2)0.0149 (3)0.3743 (2)0.0346 (5)
C150.8932 (3)0.0643 (3)0.4908 (2)0.0383 (5)
C161.0474 (2)0.0535 (3)0.3832 (2)0.0365 (5)
C171.0957 (3)0.1127 (3)0.2735 (3)0.0506 (6)
H171.15990.15830.28050.061*
C181.0489 (3)0.1042 (4)0.1554 (3)0.0602 (8)
H181.07880.14650.08120.072*
C190.9570 (3)0.0324 (3)0.1471 (3)0.0524 (6)
H190.92810.02450.06740.063*
O50.8925 (2)0.4707 (2)0.6231 (2)0.0661 (6)
H5A0.97580.54400.64390.099*
H5B0.86570.38920.55240.099*
O60.6538 (3)0.2203 (3)0.9409 (3)0.1278 (13)
H6A0.68930.19130.99190.192*
H6B0.56780.14700.90150.192*
O70.8515 (4)0.4711 (3)0.9125 (3)0.1289 (12)
H7A0.78600.39110.90800.193*
H7B0.93140.48780.96190.193*0.50
H7C0.86130.47150.84060.193*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0456 (13)0.0436 (12)0.0565 (14)0.0198 (10)0.0116 (10)0.0190 (11)
N20.0491 (13)0.0509 (13)0.0583 (14)0.0265 (11)0.0134 (11)0.0228 (11)
C10.0359 (13)0.0337 (12)0.0602 (16)0.0118 (10)0.0078 (11)0.0169 (12)
C20.0577 (18)0.0542 (17)0.0579 (18)0.0174 (14)0.0096 (14)0.0233 (14)
C30.0648 (19)0.0566 (18)0.0622 (19)0.0178 (16)0.0222 (16)0.0171 (15)
C40.0542 (17)0.0481 (16)0.077 (2)0.0190 (14)0.0266 (16)0.0151 (15)
C50.0419 (14)0.0389 (14)0.0711 (19)0.0155 (12)0.0154 (13)0.0173 (13)
C60.0515 (17)0.0521 (17)0.094 (2)0.0305 (14)0.0218 (16)0.0285 (17)
C70.0518 (17)0.0539 (17)0.095 (2)0.0287 (14)0.0111 (16)0.0376 (17)
C80.0426 (14)0.0402 (14)0.0718 (19)0.0154 (12)0.0078 (13)0.0275 (13)
C90.0605 (18)0.0559 (17)0.076 (2)0.0212 (15)0.0093 (15)0.0398 (16)
C100.0660 (19)0.0627 (19)0.0659 (19)0.0239 (16)0.0191 (15)0.0350 (16)
C110.0562 (17)0.0614 (18)0.0654 (19)0.0291 (15)0.0193 (14)0.0271 (15)
C120.0368 (13)0.0355 (13)0.0595 (16)0.0132 (11)0.0079 (11)0.0196 (12)
S10.0617 (4)0.0595 (4)0.0475 (4)0.0369 (4)0.0117 (3)0.0279 (3)
O10.0439 (12)0.0733 (15)0.1110 (19)0.0275 (11)0.0012 (12)0.0309 (14)
O20.0819 (14)0.0497 (11)0.0684 (13)0.0355 (11)0.0266 (11)0.0308 (10)
O30.161 (3)0.153 (3)0.0635 (14)0.122 (2)0.0502 (16)0.0712 (16)
O40.0783 (14)0.1073 (17)0.0764 (14)0.0750 (14)0.0483 (12)0.0644 (13)
C130.0372 (12)0.0404 (12)0.0392 (12)0.0173 (10)0.0100 (10)0.0182 (10)
C140.0320 (11)0.0330 (11)0.0369 (12)0.0143 (9)0.0106 (9)0.0151 (9)
C150.0385 (12)0.0396 (12)0.0464 (13)0.0227 (10)0.0181 (10)0.0229 (11)
C160.0356 (12)0.0370 (12)0.0375 (12)0.0179 (10)0.0138 (9)0.0160 (10)
C170.0522 (15)0.0625 (17)0.0479 (15)0.0370 (14)0.0225 (12)0.0228 (13)
C180.0671 (19)0.083 (2)0.0429 (15)0.0455 (17)0.0283 (14)0.0256 (15)
C190.0560 (16)0.0664 (18)0.0388 (13)0.0302 (14)0.0160 (12)0.0258 (13)
O50.0582 (12)0.0608 (12)0.0744 (14)0.0309 (10)0.0177 (10)0.0243 (11)
O60.0916 (19)0.0847 (18)0.170 (3)0.0179 (15)0.0330 (19)0.074 (2)
O70.123 (2)0.091 (2)0.150 (3)0.0416 (19)0.005 (2)0.061 (2)
Geometric parameters (Å, º) top
N1—C21.330 (4)S1—O11.439 (2)
N1—C11.359 (3)S1—O21.443 (2)
N1—H1A0.87 (3)S1—O31.445 (2)
N2—C111.320 (4)S1—C131.801 (2)
N2—C121.359 (3)O4—C151.211 (3)
C1—C51.408 (4)C13—C191.384 (3)
C1—C121.433 (4)C13—C141.409 (3)
C2—C31.382 (4)C14—C161.402 (3)
C2—H2A0.9300C14—C151.487 (3)
C3—C41.364 (4)C15—C16i1.494 (3)
C3—H3A0.9300C16—C171.391 (3)
C4—C51.406 (4)C16—C15i1.494 (3)
C4—H4A0.9300C17—C181.369 (4)
C5—C61.427 (4)C17—H170.9300
C6—C71.341 (4)C18—C191.381 (4)
C6—H60.9300C18—H180.9300
C7—C81.439 (4)C19—H190.9300
C7—H70.9300O5—H5A0.8200
C8—C91.405 (4)O5—H5B0.8200
C8—C121.406 (3)O6—H6A0.8201
C9—C101.363 (4)O6—H6B0.8200
C9—H9A0.9300O7—H7A0.8199
C10—C111.398 (4)O7—H7B0.8200
C10—H10A0.9300O7—H7C0.8200
C11—H11A0.9300
C2—N1—C1123.0 (3)C10—C11—H11A117.9
C2—N1—H1A117.5 (19)N2—C12—C8123.9 (3)
C1—N1—H1A119.5 (19)N2—C12—C1117.7 (2)
C11—N2—C12116.6 (2)C8—C12—C1118.4 (2)
N1—C1—C5118.8 (3)O1—S1—O2113.37 (14)
N1—C1—C12120.0 (2)O1—S1—O3113.36 (17)
C5—C1—C12121.2 (2)O2—S1—O3111.51 (15)
N1—C2—C3120.1 (3)O1—S1—C13106.06 (12)
N1—C2—H2A119.9O2—S1—C13108.18 (11)
C3—C2—H2A119.9O3—S1—C13103.59 (12)
C4—C3—C2119.3 (3)C19—C13—C14119.0 (2)
C4—C3—H3A120.3C19—C13—S1114.84 (18)
C2—C3—H3A120.3C14—C13—S1126.17 (18)
C3—C4—C5121.0 (3)C16—C14—C13118.6 (2)
C3—C4—H4A119.5C16—C14—C15117.95 (19)
C5—C4—H4A119.5C13—C14—C15123.4 (2)
C4—C5—C1117.7 (3)O4—C15—C14122.0 (2)
C4—C5—C6123.7 (3)O4—C15—C16i118.9 (2)
C1—C5—C6118.6 (3)C14—C15—C16i119.07 (19)
C7—C6—C5121.0 (3)C17—C16—C14120.7 (2)
C7—C6—H6119.5C17—C16—C15i116.5 (2)
C5—C6—H6119.5C14—C16—C15i122.7 (2)
C6—C7—C8121.6 (3)C18—C17—C16120.1 (2)
C6—C7—H7119.2C18—C17—H17119.9
C8—C7—H7119.2C16—C17—H17119.9
C9—C8—C12116.7 (3)C17—C18—C19119.7 (2)
C9—C8—C7124.0 (3)C17—C18—H18120.2
C12—C8—C7119.3 (3)C19—C18—H18120.2
C10—C9—C8119.8 (3)C18—C19—C13121.8 (2)
C10—C9—H9A120.1C18—C19—H19119.1
C8—C9—H9A120.1C13—C19—H19119.1
C9—C10—C11118.9 (3)H5A—O5—H5B117.0
C9—C10—H10A120.5H6A—O6—H6B100.6
C11—C10—H10A120.5H7A—O7—H7B106.1
N2—C11—C10124.1 (3)H7A—O7—H7C118.2
N2—C11—H11A117.9H7B—O7—H7C109.6
C2—N1—C1—C50.7 (4)C5—C1—C12—N2179.5 (2)
C2—N1—C1—C12180.0 (2)N1—C1—C12—C8178.7 (2)
C1—N1—C2—C30.0 (4)C5—C1—C12—C80.6 (4)
N1—C2—C3—C40.7 (4)O1—S1—C13—C19109.1 (2)
C2—C3—C4—C50.7 (4)O2—S1—C13—C19129.0 (2)
C3—C4—C5—C10.0 (4)O3—S1—C13—C1910.6 (2)
C3—C4—C5—C6179.5 (3)O1—S1—C13—C1470.5 (2)
N1—C1—C5—C40.7 (4)O2—S1—C13—C1451.5 (2)
C12—C1—C5—C4180.0 (2)O3—S1—C13—C14169.9 (2)
N1—C1—C5—C6178.8 (2)C19—C13—C14—C162.4 (3)
C12—C1—C5—C60.5 (4)S1—C13—C14—C16178.08 (17)
C4—C5—C6—C7179.7 (3)C19—C13—C14—C15175.1 (2)
C1—C5—C6—C70.2 (4)S1—C13—C14—C154.4 (3)
C5—C6—C7—C80.1 (5)C16—C14—C15—O4171.1 (2)
C6—C7—C8—C9179.4 (3)C13—C14—C15—O46.4 (4)
C6—C7—C8—C120.3 (4)C16—C14—C15—C16i5.7 (3)
C12—C8—C9—C100.0 (4)C13—C14—C15—C16i176.7 (2)
C7—C8—C9—C10179.7 (3)C13—C14—C16—C172.4 (3)
C8—C9—C10—C110.4 (4)C15—C14—C16—C17175.3 (2)
C12—N2—C11—C100.3 (4)C13—C14—C16—C15i176.4 (2)
C9—C10—C11—N20.3 (5)C15—C14—C16—C15i5.9 (4)
C11—N2—C12—C80.8 (4)C14—C16—C17—C180.3 (4)
C11—N2—C12—C1179.1 (2)C15i—C16—C17—C18178.6 (2)
C9—C8—C12—N20.7 (4)C16—C17—C18—C191.8 (4)
C7—C8—C12—N2179.6 (2)C17—C18—C19—C131.8 (5)
C9—C8—C12—C1179.2 (2)C14—C13—C19—C180.4 (4)
C7—C8—C12—C10.5 (4)S1—C13—C19—C18179.9 (2)
N1—C1—C12—N21.3 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.87 (3)1.91 (3)2.713 (3)153 (3)
O5—H5A···O2ii0.821.972.776 (3)168
O5—H5B···O20.822.192.931 (3)150
O5—H5B···O40.822.483.131 (3)138
O6—H6A···O3iii0.821.962.775 (3)170
O6—H6B···O1iv0.821.922.739 (3)172
O7—H7A···O60.821.972.774 (4)167
O7—H7B···O7v0.822.203.021 (6)178
O7—H7C···O50.822.483.301 (4)179
C2—H2A···O70.932.393.300 (4)167
C4—H4A···O1vi0.932.583.418 (4)151
C6—H6···O4vi0.932.543.350 (3)145
C18—H18···O3vii0.932.513.357 (4)152
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x+2, y+1, z+2; (vi) x+1, y+1, z+1; (vii) x+2, y, z.

Experimental details

Crystal data
Chemical formula2C12H9N2+·C14H6O8S22·6H2O
Mr836.83
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.0439 (6), 10.1978 (6), 11.1070 (6)
α, β, γ (°)111.591 (1), 98.848 (1), 111.234 (1)
V3)930.34 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.782, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5035, 3499, 2964
Rint0.009
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.100, 1.06
No. of reflections3499
No. of parameters265
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.39

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.87 (3)1.91 (3)2.713 (3)153 (3)
O5—H5A···O2i0.821.972.776 (3)168
O5—H5B···O20.822.192.931 (3)150
O5—H5B···O40.822.483.131 (3)138
O6—H6A···O3ii0.821.962.775 (3)170
O6—H6B···O1iii0.821.922.739 (3)172
O7—H7A···O60.821.972.774 (4)167
O7—H7B···O7iv0.822.203.021 (6)178
O7—H7C···O50.822.483.301 (4)179
C2—H2A···O70.932.393.300 (4)167
C4—H4A···O1v0.932.583.418 (4)151
C6—H6···O4v0.932.543.350 (3)145
C18—H18···O3vi0.932.513.357 (4)152
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x+2, y+1, z+2; (v) x+1, y+1, z+1; (vi) x+2, y, z.
 

Acknowledgements

The author gratefully acknowledges financial support from the Youth Fund of Baicheng Normal College.

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, S., Lu, Z.-Z., Huo, L.-H., Zhu, Z.-B. & Zhao, H. (2005). Acta Cryst. C61, m22–m24.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNishigaki, S., Yoshioka, H. & Nakatsu, K. (1978). Acta Cryst. B34, 875–879.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOnoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516–521.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShriver, D. F., Atkins, P. W. & Langford, C. H. (1994). Inorg. Chem. Oxford University Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVoogt, J. N. & Blanch, H. W. (2005). Cryst. Growth Des. 5, 1135–1144.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds